
applied  
sciences

Review

A Review on Nanocomposite Materials for
Rechargeable Li-ion Batteries

Dervis Emre Demirocak 1,* ID , Sesha S. Srinivasan 2 ID and Elias K. Stefanakos 3

1 Department of Mechanical and Industrial Engineering, Texas A&M University-Kingsville,
Kingsville, TX 78363, USA

2 Department of Physics, Florida Polytechnic University, 4700 Research Way, Lakeland, FL 33805, USA;
ssrinivasan@flpoly.org

3 Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620, USA;
estefana@usf.edu

* Correspondence: Dervis.Demirocak@tamuk.edu; Tel.: +1-361-5932-029

Academic Editor: Carlo Casari
Received: 15 June 2017; Accepted: 12 July 2017; Published: 17 July 2017

Abstract: Li-ion batteries are the key enabling technology in portable electronics applications,
and such batteries are also getting a foothold in mobile platforms and stationary energy storage
technologies recently. To accelerate the penetration of Li-ion batteries in these markets, safety, cost,
cycle life, energy density and rate capability of the Li-ion batteries should be improved. The Li-ion
batteries in use today take advantage of the composite materials already. For instance, cathode, anode
and separator are all composite materials. However, there is still plenty of room for advancing the
Li-ion batteries by utilizing nanocomposite materials. By manipulating the Li-ion battery materials
at the nanoscale, it is possible to achieve unprecedented improvement in the material properties.
After presenting the current status and the operating principles of the Li-ion batteries briefly, this
review discusses the recent developments in nanocomposite materials for cathode, anode, binder
and separator components of the Li-ion batteries.
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1. Introduction

Rechargeable (rechargeable battery and secondary battery terms are used interchangeably
throughout this article) batteries are one of the key technologies in today’s information-rich and
mobile society. For a long time, the most important application for rechargeable batteries has been
the starter-ignition-lighting (SLI) batteries in motor vehicles. With the rapid market penetration of the
portable electronics such as laptops, smartphones and tablets since 2000s, the rechargeable battery
market significantly expanded. More recently, interest in plug-in hybrid electric vehicles (PHEV)
and electric vehicles (EV) has been driving the further expansion of the rechargeable battery market,
specifically Li-ion batteries. Additionally, large-scale utilization of rechargeable batteries for peak
shaving and load leveling applications in the power grid has been envisioned by many, but is still
in very early phases [1]. Apart from the aforementioned applications, rechargeable batteries are also
critical for e-bikes and power tools [2]. Considering the importance of the rechargeable batteries in a
variety of applications, the future of these batteries looks brighter than ever.

Rechargeable batteries comprise three quarters of the global battery market, and the most
important rechargeable battery chemistries are lithium-ion (Li-ion), lead acid, nickel-metal-hydride
(NiMH) and nickel-cadmium (Ni–Cd) as shown in Figure 1 [3].
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Figure 1. Market share of rechargeable battery chemistries in 2009 [3]. 

Li-ion and lead acid batteries dominate the market, and Li-ion is the fastest-growing market.  
The lead acid batteries are mostly utilized in the SLI, stationary (i.e., back-up power) and deep cycle 
applications, whereas Li-ion batteries are preferred in portable electronics. In recent years, Li-ion 
chemistry is making inroads to the lead acid market (i.e., SLI batteries), but the lead acid battery 
market still continues to grow due to its low cost and maturity [4]. The NiMH and Ni–Cd batteries 
have much smaller market share compared to lead acid and Li-ion batteries, and their share continues 
to shrink because Li-ion batteries are rapidly replacing these types of batteries. The NiMH batteries 
are still utilized in some hybrid electric vehicles (HEV) such as the Toyota Prius, while Ni–Cd 
batteries are employed in power tools due to their high rate capability. The introduction of the Li-ion 
chemistries with high rate capability such as LiFePO4 significantly dropped the market share of the 
Ni–Cd batteries. The popularity of Li-ion chemistry is associated with its high gravimetric and 
volumetric energy density as well as the significant cost reduction during the last decade. The main 
characteristics of the most common battery chemistries are summarized in Table 1 [5,6]. 

Table 1. Comparison of different battery chemistries [5,6]. 

Properties 
Rechargeable Battery Chemistry 

Li-ion Lead Acid NiMH Ni–Cd
Specific energy density (Wh/kg) 90–190 30–55 60–120 45–80 

Cycle life (80% of initial capacity) 500–2000 200–300 300–500 1000 
Cell voltage (V) 3.3–3.8 2.0 1.2 1.2 

Self-discharge/month at 25 °C <5% 5–15% 30% 20% 
Safety Protection circuit is mandatory Thermally stable 

Commercialized in 1991 1881 1990 1950 
Toxicity Low High Low High 

Despite the significant growth of the rechargeable battery market since 2000s, further 
improvements in energy density and cost reduction are required for EV and grid level energy storage 
applications. The progress in rechargeable battery technologies is rather slow, the energy density of 
the rechargeable batteries has only increased 3% per year on average during the last 60 years, and the 
rate of energy density increase has been slightly higher since the introduction of Li-ion batteries in 
1991 as seen in Figure 2 [7]. However, the current rate of increase (i.e., 5–8%) in the energy density of 
secondary batteries is not sufficient to meet the targets set by the United States (U.S.) Department of 
Energy (DOE) [8]. 

There are two ways to improve the energy density of the secondary batteries: (i) by introducing 
new battery chemistries; and (ii) by employing enhanced battery designs and manufacturing 
processes (i.e., engineering improvements) to reduce the weight and volume of the inactive 
components in the existing battery chemistries. A closer look at Figure 2 shows that a quantum leap 
in energy density of secondary batteries was usually achieved when new battery chemistries were 
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Li-ion and lead acid batteries dominate the market, and Li-ion is the fastest-growing market.
The lead acid batteries are mostly utilized in the SLI, stationary (i.e., back-up power) and deep cycle
applications, whereas Li-ion batteries are preferred in portable electronics. In recent years, Li-ion
chemistry is making inroads to the lead acid market (i.e., SLI batteries), but the lead acid battery market
still continues to grow due to its low cost and maturity [4]. The NiMH and Ni–Cd batteries have much
smaller market share compared to lead acid and Li-ion batteries, and their share continues to shrink
because Li-ion batteries are rapidly replacing these types of batteries. The NiMH batteries are still
utilized in some hybrid electric vehicles (HEV) such as the Toyota Prius, while Ni–Cd batteries are
employed in power tools due to their high rate capability. The introduction of the Li-ion chemistries
with high rate capability such as LiFePO4 significantly dropped the market share of the Ni–Cd
batteries. The popularity of Li-ion chemistry is associated with its high gravimetric and volumetric
energy density as well as the significant cost reduction during the last decade. The main characteristics
of the most common battery chemistries are summarized in Table 1 [5,6].

Table 1. Comparison of different battery chemistries [5,6].

Properties Rechargeable Battery Chemistry

Li-ion Lead Acid NiMH Ni–Cd

Specific energy density (Wh/kg) 90–190 30–55 60–120 45–80
Cycle life (80% of initial capacity) 500–2000 200–300 300–500 1000

Cell voltage (V) 3.3–3.8 2.0 1.2 1.2
Self-discharge/month at 25 ◦C <5% 5–15% 30% 20%

Safety Protection circuit is mandatory Thermally stable
Commercialized in 1991 1881 1990 1950

Toxicity Low High Low High

Despite the significant growth of the rechargeable battery market since 2000s, further
improvements in energy density and cost reduction are required for EV and grid level energy storage
applications. The progress in rechargeable battery technologies is rather slow, the energy density of
the rechargeable batteries has only increased 3% per year on average during the last 60 years, and the
rate of energy density increase has been slightly higher since the introduction of Li-ion batteries in
1991 as seen in Figure 2 [7]. However, the current rate of increase (i.e., 5–8%) in the energy density of
secondary batteries is not sufficient to meet the targets set by the United States (U.S.) Department of
Energy (DOE) [8].
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introduced. Therefore, it is critical to develop advanced chemistries and materials to facilitate the 
higher market penetration of secondary batteries. 

 
Figure 2. Increase in the energy density of the secondary batteries since 1900s. Adapted with 
permission from [7], © Royal Society of Chemistry, 2011. 

The U.S. DOE “EV Everywhere” initiative was launched in 2012, and the energy storage targets 
for battery systems identified by this initiative are given in Table 2 [8]. Although significant progress 
has been made in improving the cost and energy density of batteries, it is estimated the targets can 
only be achieved by utilizing advanced Li-ion chemistries and materials. 

Among the targets listed in Table 2, the cost target for the Li-ion batteries is critical to make 
PHEV and EV cost competitive with the gasoline powered cars. As shown in Figure 3, cost of Li-ion 
battery packs has significantly dropped during the last 10 years, mostly due to efforts by the EV 
market leaders such as Tesla (i.e., Model S) and Nissan (i.e., Leaf). The most recent cost estimate in 
2016 for Li-ion battery packs is ~$190/kWh indicating that the U.S. DOE cost target for battery energy 
systems for 2022 is well within reach [9]. 
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Figure 2. Increase in the energy density of the secondary batteries since 1900s. Adapted with permission
from [7], © Royal Society of Chemistry, 2011.

There are two ways to improve the energy density of the secondary batteries: (i) by introducing
new battery chemistries; and (ii) by employing enhanced battery designs and manufacturing processes
(i.e., engineering improvements) to reduce the weight and volume of the inactive components in the
existing battery chemistries. A closer look at Figure 2 shows that a quantum leap in energy density of
secondary batteries was usually achieved when new battery chemistries were introduced. Therefore, it
is critical to develop advanced chemistries and materials to facilitate the higher market penetration of
secondary batteries.

The U.S. DOE “EV Everywhere” initiative was launched in 2012, and the energy storage targets
for battery systems identified by this initiative are given in Table 2 [8]. Although significant progress
has been made in improving the cost and energy density of batteries, it is estimated the targets can
only be achieved by utilizing advanced Li-ion chemistries and materials.

Among the targets listed in Table 2, the cost target for the Li-ion batteries is critical to make PHEV
and EV cost competitive with the gasoline powered cars. As shown in Figure 3, cost of Li-ion battery
packs has significantly dropped during the last 10 years, mostly due to efforts by the EV market leaders
such as Tesla (i.e., Model S) and Nissan (i.e., Leaf). The most recent cost estimate in 2016 for Li-ion
battery packs is ~$190/kWh indicating that the U.S. DOE cost target for battery energy systems for
2022 is well within reach [9].
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Table 2. The U.S. DOE “EV Everywhere” energy storage targets for battery systems [8].

Metrics Status in 2012 Target for 2022

Battery cost ($/kWh) 500 125
Pack specific energy (Wh/kg) 80–100 250
Pack energy density (Wh/L) 200 400
Pack specific power (W/kg) 500 2000

The operation of a secondary battery relies on various interfacial processes at the nanoscale;
therefore, manipulating the material properties at the nanoscale is essential for developing advanced
materials. The most common strategies to improve the battery materials are particle size reduction,
morphology control, composite formation, doping, functionalization, coating, encapsulation and
electrolyte modification [11]. The battery electrodes (i.e., anode and cathode) that determine the overall
performance of a battery are composite materials. A typical composite battery electrode includes active
material, conductive carbon additive and a binder. Each of these components is vital to the operation
of a rechargeable battery, and their performances can be improved by utilizing nanocomposites.

In this review article, the basics of rechargeable batteries and the key developments in
nanocomposite materials are discussed with a focus on Li-ion batteries due to their technological
significance. Specifically, the nanocomposite-based developments in cathode, anode, binder and
separator materials for Li-ion batteries are discussed in detail. Readers can also benefit from the
following review articles based exclusively on cathodes [12,13], anodes [14,15], binders [16,17] and
separators [18].

2. Basics of Rechargeable Batteries

A rechargeable battery or a secondary battery is a type of battery that can be discharged and
charged (i.e., cycled) multiple times over its lifetime as opposed to a primary battery, which can only
be discharged one time only before being discarded. The smallest packaged unit of a battery is the cell.
Most applications require higher voltages (i.e., PHEV/EV battery packs are in the range of 100–400 V,
SLI batteries are ~12 V) than a single cell (i.e., ~3–4 V for Li-ion) can provide; therefore, multiple cells
are assembled into modules (i.e., in a typical EV battery module there are 4 cells in a 2 series and 2
parallel formation) in parallel or in series configuration depending on the application. Battery pack is
the final product formed by connecting multiple modules together. A battery pack is custom designed
for a specific application and includes battery management system, sensors for voltage, current, and
temperature measurements, cooling system in addition to battery modules.

A typical Li-ion rechargeable battery cell is composed of a cathode (positive electrode), an anode
(negative electrode), a separator filled with an electrolyte and the current collectors for both anode and
cathode. The electrodes (i.e., cathode and anode) in Li-ion batteries are composite materials, which
include active materials (i.e., typically, metal oxides for cathode and graphite for anode) for storing Li
ions, conductive carbon additive to improve the electronic conductivity and a binder to keep the active
materials together and attached to the current collector. The cell components that are not involved
in Li storage are called the inactive materials (i.e., current collector, separator, electrolyte, binder and
carbon additive). The inactive components do not directly contribute to the cell capacity so it is critical
to minimize their content; however, the inactive components play a remarkable role in the operation
and safety of a battery. The cross-sectional view of a cylindrical Li-ion battery is given in Figure 4.
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The energy and power characteristics of an electrochemical cell can be determined by utilizing
thermodynamic and kinetics relations. The net useful energy of an electrochemical cell can be calculated
by the following thermodynamic equation [20]:

∆G = −nFE (1)

where ∆G is the Gibbs free energy, n is the number of electrons transferred per mole of reactants, F is the
Faraday constant, and E is the cell potential. The Equation (1) implies that, the higher the cell potential
(i.e., E) the higher the capacity of an electrochemical cell assuming number of electrons transferred
per mole of reactants are the same (i.e., this is the case for different Li-ion chemistries such as LiCoO2

and LiFePO4). To maximize the useful energy of an electrochemical cell, the difference between the
cathode and anode potentials (i.e., open circuit voltage, EOCV) should be as large as possible, and this
is the main reason behind the research efforts on developing high voltage batteries [21].

Although the thermodynamic relations are useful in understanding the limits of an electrochemical
cell, the practical batteries do not operate under equilibrium conditions hence deviate from
thermodynamic equilibrium condition when current is withdrawn due to kinetic limitations (i.e.,
polarization effects, η). The terminal cell potential (ET) of an electrochemical cell is dependent on three
different types of polarization effects: (a) activation polarization which is related to charge transfer
reactions occurring at the electrode-electrolyte interface, (b) ohmic polarization which is the overall
internal resistance of the cell components, and (c) concentration polarization which is related to mass
transfer limitations during cell operation. The terminal cell potential is given by Equation (2) [20]
as follows:

ET = EOCV − η (2)

The polarization effects can be observed on a discharge curve of a battery as shown in Figure 5.
The discharge curve can be utilized to calculate the capacity of the cell, and to understand the effects
of the C-rate and temperature on the cell capacity. A C-rate is a measure of the rate at which a battery
is charged or discharged relative to its maximum capacity. Charging a battery at 1C rate would take
1 h to completely charge the battery [22].
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Additional information regarding electrode kinetics can be obtained by electrochemical impedance
spectroscopy (EIS) [23–25]. EIS is a non-destructive technique, and can reveal various reaction steps
during Li-ion intercalation/deintercalation. Each electrode reaction has a distinctive impedance
pattern, which can be modeled by an equivalent-circuit model. The depressed semicircle, as seen in
Figure 6b, in an EIS curve indicates an inhomogeneous electrode surface. Therefore, constant phase
element (CPE) is used in the equivalent circuit model rather than pure capacitance as in Figure 6c.
The EIS of InVO4 (indium vanadium oxide) anode is shown in Figure 6 where Re is the combined
resistance (R) of electrolyte and cell components, Rsf+ct is resistance due to surface film (sf) and charge
transfer (ct), CPEsf+dl is the capacitance due to surface film and double layer (dl), CPEb is the bulk
(b) capacitance, Rb is the bulk resistance, Ws is the Warburg impedance that represents the solid state
diffusion of Li-ions through the electrode lattice, and Cint is the intercalation (int) capacitance (C) [23].
Impedance values are highly dependent on voltage values during discharge/charge as shown in
Figure 6a.
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3. Li-ion Batteries

Li-ion batteries are the most popular battery chemistry as of today due to their high gravimetric
and volumetric energy density as compared to the other rechargeable battery chemistries. The main
components of a Li-ion battery are the cathode, anode, electrolyte, separator and current collector.
The schematic of a Li-ion battery is shown in Figure 7.
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During the operation of a Li-ion battery, Li ions shuttle back and forth in between cathode and
anode through the electrolyte absorbed in the separator. Both cathode (i.e., transition metal oxides)
and anode (i.e., graphite) are intercalation compounds with layered structures where Li ions can be
reversibly inserted and removed. The primary reason behind using intercalation compounds instead
of pure metallic Li as an anode is the poor safety and cycle life of the Li-ion batteries with metallic Li
anode due to dendrite formation [27]. The cathode, anode, binder and separator are discussed in more
detail in the following sections.

4. Cathode

Mostly, intercalation-type cathode materials based on transition metal oxides are utilized in the
commercial Li-ion batteries. Basically, there are three types of cathodes: (i) Layered oxides such as
LiCoO2 which is the first Li-ion chemistry that was discovered in 1980, and commercialized by SONY
in 1991 [27–29]. The LiCoO2 chemistry still dominates the Li-ion battery market (i.e., ~37%) [30]. The
layered oxides have two dimensional Li ion diffusion channels; (ii) Spinels such as LiMn2O4 has three
dimensional Li ion diffusion channels, and was discovered in 1983 [31]; and (iii) Olivines such as
LiFePO4 has one dimensional Li ion diffusion channels, and was discovered in 1997 [32]. The crystal
structures of these three main types of intercalation cathodes are shown in Figure 8.
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4.1. Layered Oxides, LiMO2 (M = Co, Mn, Ni and Their Mixtures)

LiCoO2 is the first layered oxide type cathode material with a practical capacity of 140 mAh/g
and average voltage of 3.9 V vs. Li/Li+. In practice, only half of the lithium (i.e., 1 > x > 0.5) stored
in LixCoO2 is extracted because further Li extraction (i.e., x < 0.5 which corresponds to upper cut-off
voltage of 4.2 V) triggers structural transition from a hexagonal to monoclinic phase as well as amplifies
the side reactions, and results in quick degradation of the cycle life. Significant number of studies
was conducted to understand the capacity fading mechanism over 4.2 V as well as to improve the
capacity of LiCoO2 by pushing the upper cut-off voltage above 4.2 V while keeping the cycle life at
a reasonable level (i.e., ~500 cycles) [34–37]. It was shown by many that the cycle life of LiCoO2 at
higher voltages (i.e., >4.2 V) can be improved by metal oxide coatings such as Al2O3, SnO2, ZrO2, TiO2,
MgO, [34,38–42], metal phosphate coatings such as AlPO4 [43–46], metal fluoride coatings such as AlF3

and LaF3 [47,48] and multicomponent metal fluoride coatings such as aluminum-tungsten-fluoride
(AlWxFy) [49]. Although the underlying reasons for such an improvement in cycle life of LiCoO2

at higher cut-off voltages due to coatings are still debatable [35,50,51], following mechanisms have
been suggested: coating (i) inhibits the structural transformation [34,52], (ii) acts as a physical barrier,
Figure 9, between the electrolyte and the active material, and prevents the trace amounts of hydrogen
fluoride (HF) and water present in the electrolyte from reaching the active material thus effectively
suppresses cobalt dissolution and the associated oxygen evolution [53,54], (iii) converts Lewis acids
which in return corrode the insulating surface species and improves the electronic conductivity of the
solid electrolyte interface (SEI) layer on LiCoO2 [50].
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In addition to the cycle life, rate capability (i.e., electronic conductivity) can also be improved by
metal oxide coatings [55]. Additionally, thermal stability of the LiCoO2 can be improved by a metal
oxide coating, which is desirable for safety purposes [37,43,55]. The sample preparation technique can
also affect the cycle life of LiCoO2. Tan et al. showed that LiCoO2 prepared by the eutectic LiNO3–LiCl
molten salt can attain 80 charge–discharge cycles in the 2.5–4.4 V range without any capacity loss which
was associated with the inhibited structural transitions (i.e., hexagonal↔ monoclinic↔ hexagonal) of
LiCoO2 [56].

One of the problems of the LiCoO2 chemistry for large scale applications is its high cost due to
limited Co sources; additionally, Co is a toxic substance, and environmentally friendly commercial
scale recycling technologies are yet to be developed [57,58]. LiNiO2 is a lower cost cathode compared
to LiCoO2, and has a similar structure to LiCoO2; however, it is difficult to obtain stoichiometric
LiNiO2, and synthesis conditions significantly affect its compositional and structural properties
which impede the widespread utilization of LiNiO2 cathode [59]. LiNiO2 exhibits similar structural
transformations as in LiCoO2; thus, the upper cut-off voltage is 4.2 V (i.e., x ~0.5), and beyond 4.2 V
cycle-life quickly degrades. Several metal oxide coatings such as ZrO2 have shown to improve the
cycling stability of LiNiO2 by inhibiting the structural transformation as shown by ex-situ X-ray
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diffraction (XRD) and cyclic voltammetry (CV) experiments [60]. The thermal stability of LixNi1−xO2

is also of great concern and it is function of Li content (i.e., x), the smaller the Li content (i.e., x < 0.5)
the less thermally stable the LiNiO2. In addition to the problems associated with the capacity fading,
overcharging the LiNiO2 also poses a safety risk; however, thermal stability of LiNiO2 can be improved
by Mg doping and coating [33,61]. LiNiO2 can also be prepared using a single source precursor (i.e.,
Li(H2O)Ni(N2H3CO2)3]·0.5H2O) which is a desired synthetic route to prepare this cathode material in
large scale [62].

LiMnO2 is another layered metal oxide which is isostructural to LiCoO2; similar to LiNiO2,
LiMnO2 is a low cost (i.e., Co is $23.99/kg, Ni is $8.94/kg and Mn is $2.01/kg as of 9 May 2016 [63]) and
environmentally friendly cathode material compared to LiCoO2. LiMnO2 irreversibly transforms from
layered structure into spinel structure upon cycling and its capacity fades quickly [64,65]. The Al2O3

and CoO coatings improve the cycle life of LiMnO2 by impeding Mn dissolution and lattice instability
due to Jahn-Teller distortion [66,67].

Another strategy to lower the cost of LiCoO2 is to partially or fully substitute Co with Ni, Mn and
Al such as LiNi1/3Mn1/3Co1/3O2 (NMC), LiNi0.8Co0.15Al0.05O2 (NCA), LiNixCo1−x (0 < x < 1) and
Li(NixMn1−x)O2 (0 < x < 1) [24,46,68–73]. These composite cathodes derived from LiCoO2 have also
higher specific capacity than the LiCoO2, and are extensively used in portable electronics.

4.2. Spinel, LiM2O4 (M = Mn, and Mixtures of Co and Ni)

Spinel LiMn2O4 has three-dimensional Li ion conduction channels which translate to excellent
rate capability; additionally, it is easy to synthesize LiMn2O4 from various precursors. Mn is a low cost
and an earth abundant material. Spinel LiMn2O4 is also inherently safe due to its thermal stability [74].
On the other hand, the major problems associated with LiMn2O4 are Mn dissolution especially at high
operating and storage temperatures (i.e., 55 ◦C) and the phase transition (i.e., Jahn-Teller distortion) that
occurs if LiMn2O4 is over discharged. LixMn2O4 has two voltage plateaus at ~4 V (x = 0 to 1.0) and ~3 V
(x = 1.0 to 2.0), and phase transition from cubic to tetragonal structure can be prevented if LiMn2O4 is
not discharged below 3.5 V [75]. The over discharge of LiMn2O4 results in significant capacity fade and
poor cycling hence should be avoided. The Mn dissolution is more problematic and occurs at both 3 V
and 4 V voltage plateaus. It was shown by Tarascon et al. that Mn dissolution is a function of surface
area of LiMn2O4 particles indicating Mn dissolution is originated at the active material-electrolyte
interface [76]. The LiMn2O4 surface acts as a catalyst at high open circuit voltages and oxidizes the
non-aqueous electrolyte producing harmful by-products, and higher temperatures accelerates these
side reactions further. The dissolved Mn ions can also migrate to the anode side and get reduced and
precipitate as Mn metal at the anode surface which can damage the structure of the solid electrolyte
interface and increase the charge transfer resistance [77]. To circumvent the Mn dissolution problem,
passivation layer needs to be formed between the active material and the electrolyte.

Various coatings and dopants such as lithium boron oxide (LBO) glass [76], SiO2 [78], SnO2 [79],
MgO [80], Ag [81,82], Al [83], carbon nanotube (CNT) [84], LiCoO2 [85] as well as mixing with other
cathode materials such as NMC [86] have shown to suppress Mn dissolution hence improves the
storage life, cycle life and/or capacity fading [87]. In particular, LBO glass was the first reported coating
for LiMn2O4; it has a favorable ionic conductivity and can withstand oxidation at high potentials
(i.e., 4 V) as well as molten LBO glass has good wetting properties. The LBO glass surface treatment
improves the storage performance, but has a detrimental effect on cycling life which is associated with
the reduction of average Mn valence state on the surface by boron containing solid species [76]. On the
other hand, Al doping of LiMn2O4 increased the average valance of Mn, and showed enhanced cycling
performance at high temperatures [83]. Li and Al co-doped manganese oxide spinel compounds
prepared by polyvinyl pyrrolidone precursor method improved the initial discharge capacity and
capacity retention [88]. LiMn2O4/CNT composites are also reported with improved capacity retention
and high rate capability for flexible electronics applications [84]. More stable cathode materials such
as LiCoO2 are also utilized as a barrier coating for LiMn2O4 [85]. A 5 nm LiCoO2 coating prepared
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by micro-emulsion technique improved the cycle life and reduced the self-discharge of LiMn2O4;
however, resulted in slight decrease in capacity of pristine LiMn2O4 due to Li storage inability of the
LiCoO2 coating [85]. Synthesis of nano or submicron size LiMn2O4 particles and doping (i.e., partially
substituting Mn site in LiMn2O4) LiMn2O4 with transition and nontransition metals were shown to
reduce the Mn dissolution upon cycling hence improved the cycle life of LiMn2O4 [88–94]. LiMn2O4

prepared by the one-pot molten salt method resulted in nano sized (~50 nm) hollow spherical particles
which showed improved capacity retention even at high C-rates (i.e., 96% retention at 5C rate) [89].
These nano sized spherical LiMn2O4 particles were also performed well at 50 ◦C which was associated
with their high crystallinity and the presence of spherical particles [89]. In another study, Ru doped
LiMn2−xRuxO4 (x = 0.1 and 0.25) was shown to reduce the capacity fading as compared to undoped
sample by mitigating the spinel-to-double-hexagonal transition at 4.5 V, and due to the presence of
Ru4+ ↔ Ru5+ redox couple and better electronic conductivity of the Ru doped samples [92]. The other
dopants studied for LiMn2O4 were Co, Cr, Al, Ni and Fe [90,91,95,96]. Sakunthala et al. obtained a
notable 94% capacity retention at the end of 1000 cycles at 5C rate by the Co doped LiMn2O4 (i.e.,
Li(Co1/6Mn11/6)O4). Most of the aforementioned coatings and dopants are inactive materials, and
in practice, these materials lower the overall capacity of the spinel LiMn2O4 and increase the cost
of material preparation. An alternative strategy is to mix the LiMn2O4 with a more stable cathode
material such as NMC [86].

4.3. Olivine, LiMPO4 (M = Fe, Co, Mn and Their Mixtures)

Olive LiFePO4 stands out among cathode materials by its superior cycle life and intrinsic
safety [97]. Additionally, Fe is one of the most abundant elements on Earth’s crust (i.e., even less costly
than Mn [63]), making LiFePO4 highly cost competitive. LiFePO4 has an average operating voltage of
3.4 V vs. Li/Li+, and a specific capacity of ~170 mAh/g corresponding to one Li per LiFePO4 formula
unit. The enhanced cycle life and safety of LiFePO4 are associated with its lower operating voltage (i.e.,
3.4 V) compared to other cathode materials such as LiCoO2 (i.e., 4.2 V) and LiMn2O4 (i.e., 4 V). At such
low potentials, non-aqueous electrolytes are highly stable. However, LiFePO4 has one-dimensional
Li-ion diffusion channels leading to poor ionic conductivity, and it has an intrinsically low electronic
conductivity. Moreover, LiFePO4’s density is lower (i.e., 3.6 g/cm3) than the layered oxides and spinels
(~5 g/cm3) leading to poor volumetric energy density.

The low electronic conductivity of LiFePO4 can be enhanced by carbon coating [98] and by
decreasing the LiFePO4 particle size [99], or both. Saranavan et al. showed that LiFePO4 nanoplates
(~30–40 nm along the b-axis) with a 5 nm amorphous carbon layer coating prepared by the solvothermal
method significantly improved the high rate performance by effectively reducing the Li+ diffusion
length as compared to mesoporous spherical LiFePO4/C cathodes [100]. However, decreasing the
particle size has a negative effect on tap density and accelerates the side reactions due to increased
surface area; therefore, carbon coating is the most widely used method to improve the performance of
LiFePO4. It was shown that, the quantity of carbon coating in LiFePO4 is not always proportional to the
performance enhancement because several other parameters also play a key role in the performance of a
carbon coated LiFePO4 such as structure of carbon [101], especially sp2/sp3 and disordered/graphene
(D/G) ratios [102], carbon source [103], carbon thickness [104], and processing conditions [105]. The
single doping and co-doping of the carbon layer to improve the electronic conductivities are also
explored. Phosphorus doped carbon layer on LiFePO4 has shown to decrease the charge transfer
resistance significantly which is considered to be associated with the free carriers donated by the
phosphorus. Additionally, phosphorus doped carbon layer improves the capacity and capacity
retention at high C rates [106]. In another study, the LiFePO4 composite with boron and nitrogen
co-doped carbon layers were synthesized by the ball milling process followed by calcination [107].
The sequence of doping shown to be critical (i.e., N + B is preferred), and improvements in high-rate
capacity are attributed to electron and hole type carriers donated by nitrogen and boron atoms,
respectively [107]. Large scale and low-cost material preparation methods are critical for the higher
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penetration of Li-ion batteries. LiFePO4 prepared by the carbothermal reduction method, which is
suitable for large scale synthesis, showed almost no capacity fade for 400 cycles [108].

Carbon nanotubes (i.e., CNT) are excellent electronic conductors and have high surface area,
and their tubular structure can enhance the overall electronic and ionic conductivity of the active
cathode/anode materials by connecting the inert “dead” zones in these materials [109]. The schematic
of the CNT dispersed in a porous LiFePO4–CNT composite is shown in Figure 10. The LiFePO4–CNT
composite performed significantly better than the pristine LiFePO4 at both low and high C rates [109].
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corresponding electron transport and ion diffusion mechanisms; (b) is an enlarged zone from (a).
Adapted with permission from [109], © Royal Society of Chemistry, 2010.

Another superior electronic conductor is the graphene. Utilizing graphene in LiFePO4 composites
resulted in achieving near theoretical specific capacity (i.e., 170 mAh/g), exceptional rate capability and
improved the cycle life due to intimate contact between non-aqueous electrolyte and the LiFePO4 active
materials as well as enhanced the charge and mass transfer [110,111]. The schematic of the graphene
wrapped LiFePO4 particles are shown in Figure 11 [111]. Hu et al. reported that electrochemically
exfoliated graphene wrapped commercial LiFePO4 particles can deliver 208 mAh/g capacity which is
more than the theoretical capacity of LiFePO4. This extra capacity is attributed to the reversible redox
reaction between Li ion in the electrolyte and the electrochemically exfoliated graphene sheets [112].
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Further improvement in the performance of LiFePO4 was obtained by encapsulating
one-dimensional LiFePO4 nanowires (~20–30 nm) into CNTs (i.e., LiFePO4@CNT). These core–shell
structures were synthesized by a sol–gel route followed by the post-heating treatment [113]. The
dispersion of the CNT and its intimate contact with the LiFePO4 active material are critical for the
performance enhancement [114]. By utilizing nitrogen doped CNT (i.e., N–CNT), instead of pristine
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CNT, it is possible to facilitate the uniform dispersion of CNT in the LiFePO4 composite due to higher
defect density and hydrophilic properties of N–CNTs. Additionally, nitrogen groups enhance the
electronic conductivity of N–CNT as a result of increased electron density [114].

One of the limitations of LiFePO4 is its low operating voltage (i.e., 3.42 V), which limits its
energy density. It is possible to push the operating voltage to higher voltages (i.e., 4–4.2 V) using
vanadium-based cathodes such as LiVPO4F and LiVOPO4 [115–121]. Novel porous materials
such as metal-organic frameworks (MOF) were also studied as electrode materials for Li-ion
batteries [118,119,122–124]. Metal organic phosphate open frameworks (MOPOF) and their reduced
graphene oxide nanocomposite derivatives showed promising Li storage, but further work is required
to improve their rate capability and cycle life [118,119].

5. Anode Materials

5.1. Carbon Based Anodes

Carbon based anode materials are the industry standard in Li-ion batteries, and graphitic carbon
is the dominant one due to its favorable electrochemical properties (i.e., low and near flat operating
voltage of ~0.25 V vs. Li/Li+), low cost, and chemical and mechanical stability [125,126]. Graphite
has a theoretical capacity of 372 mAh/g with the stoichiometry of LiC6. Non-graphitic carbons such
as hard carbons have higher specific capacity and cycle life, good rate capabilities and lower cost of
production; however, they suffer from low density and larger irreversible capacity and hysteresis in
the voltage profile [127].

The metal-carbon composites have been extensively studied to improve the performance of carbon
anode materials [128–135]. The composite anodes, in general, showed improved performance than
simple mechanical mixing of the metals with the anode materials [125]. The chemically deposited
Ag on graphite improved the cycle life, which was attributed to the enhanced electron conduction
between graphite particles due to low electrical resistance of Ag. Additionally, the capacity of the
Ag-graphite composite cathode was superior to the graphite cathode alone since Ag can form LiAg alloy
upon interaction with Li [128]. Moreover, Ag deposited graphite was shown to be more resistant to
humidity (i.e., ~1000 ppm) which is beneficial for easy manufacturing of Li-ion batteries [129,130]. The
microencapsulation of graphite with nanosized Ni showed improvement in initial charge–discharge
performance, Coulombic efficiency and cycle life. The proposed mechanism for the improvement in
the initial charge–discharge behavior (i.e., decrease in irreversible capacity) was the passivation of
the graphite edge surfaces by Ni deposition which in return reduces the highly active edge surface
area that is exposed to the electrolyte, and makes the edge surfaces less permeable to the solvated Li
ions [131,132]. Similar effects were also observed for Cu deposited natural graphite, in addition to the
suppression of electrolyte decomposition and solvated Li ion co-intercalation, improvement in high rate
capability was reported due to enhanced charge-transfer properties [133]. The Al deposition of natural
graphite improved the cycle life and rate capability remarkably due to decreased charge-transfer
resistance during cycling [134]. The other metals studied for metal-graphite composites include Au,
Bi, In, Pb, Pd, Sn and Zn, and all these metal coatings, which were prepared by vacuum evaporation
technique, improved the rate capability [135]. The rate capability was found to be dependent on the
film thickness, too thick coatings limit the Li mobility hence reduces the rate capability.

Carbon coating is another strategy to improve the electrochemical performance of the
graphite [136–139]. One of the methods to enhance the low temperature performance of Li-ion
batteries is to utilize propylene carbonate (i.e., PC, melting point = −49 ◦C) based solvents instead of
ethylene carbonate (i.e., EC, melting point = 38 ◦C) based ones. However, it is well known that PC
decomposes on the graphite surface; therefore, cannot form a stable solid electrolyte interphase (SEI)
layer on the graphite surface which leads to diminished cycle life [140]. The studies conducted on
carbon coated graphite prepared by thermal and chemical vapor decomposition techniques showed
that Coulombic efficiency can be improved significantly since carbon coating acts as a buffer zone
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between graphite and the PC based electrolyte, and leads to compact and thinner SEI layer as shown
in Figure 12 [137–139]. If carbon coated graphite anode is utilized in Li-ion battery manufacturing,
high rolling and calendaring pressures should be avoided since high pressures can destroy the carbon
coating [137]. The carbon coating also stores Li hence does not adversely affect the specific capacity of
the graphite [139].

Appl. Sci. 2017, 7, 731  13 of 25 

calendaring pressures should be avoided since high pressures can destroy the carbon coating [137]. 
The carbon coating also stores Li hence does not adversely affect the specific capacity of the  
graphite [139]. 

 
Figure 12. Schematic of the SEI layer on (a) pristine and (b) carbon coated graphite. Adapted with 
permission from [138], © Elsevier, 2001. 

Another promising approach to protect pristine graphite from PC based solvents is rolling 
graphite flakes into spherical shape, and then coating with carbon [136]. The spherical shape 
mitigates the high orientation of the graphite flakes when coated over a current collector, hence 
improves the Li ion diffusion rate. Additionally, spherical graphite formed by concentric alignment 
of multiple graphene layers reduces the number of edge planes exposed to solvents (i.e., PC); in other 
words, inert basal planes are mostly exposed to PC instead of active edge planes which is favorable 
to improve the Coulombic efficiency [136]. 

5.2. Alloy Anodes 

To meet the battery system targets set by the U.S. DOE given in Table 2, it is necessary to improve 
the gravimetric and volumetric energy density of the batteries significantly which can only be 
achieved by developing novel materials with enhanced Li storage properties. To achieve this goal, 
one of the alternatives is to replace graphite, either completely or partially, with alloy anode 
materials. The most promising and well-studied alloy anodes are presented in Figure 13. 

Figure 12. Schematic of the SEI layer on (a) pristine and (b) carbon coated graphite. Adapted with
permission from [138], © Elsevier, 2001.

Another promising approach to protect pristine graphite from PC based solvents is rolling graphite
flakes into spherical shape, and then coating with carbon [136]. The spherical shape mitigates the
high orientation of the graphite flakes when coated over a current collector, hence improves the Li ion
diffusion rate. Additionally, spherical graphite formed by concentric alignment of multiple graphene
layers reduces the number of edge planes exposed to solvents (i.e., PC); in other words, inert basal
planes are mostly exposed to PC instead of active edge planes which is favorable to improve the
Coulombic efficiency [136].

5.2. Alloy Anodes

To meet the battery system targets set by the U.S. DOE given in Table 2, it is necessary to improve
the gravimetric and volumetric energy density of the batteries significantly which can only be achieved
by developing novel materials with enhanced Li storage properties. To achieve this goal, one of the
alternatives is to replace graphite, either completely or partially, with alloy anode materials. The most
promising and well-studied alloy anodes are presented in Figure 13.
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One should note that, currently Li metal anode is not considered to be a viable candidate due
to dendrite formation and the accompanying safety concerns [142]. Among different alloy anodes
given in Figure 13, Si and Sn have attracted the most attention due their superior gravimetric and
volumetric capacity. However, these alloy anodes experience large volume change (>300%) upon Li
de-/intercalation which causes particle cracking and pulverization upon cycling which leads to poor
cycle life. Additionally, this large volume change during cycling prevents the formation of a stable
SEI layer on the alloy anodes, which continuously consumes Li ions, and results in low Coulombic
efficiency. One simple but effective strategy to suppress the rapid deterioration of cycle life in Si anodes
is to prepare a composite anode with low Si (i.e., Si < 33 wt %) and high binder (i.e., 33–56 wt %)
content [143]. However, high inactive mass in this composite cathode severely limits the specific
capacity (i.e., ~250 mAh/g after 400 cycles).

Another approach is to partially replace graphite with Si. The graphite-Si composite anodes with
carbon coating showed better performance than Si alone, but quick degradation of cycle life is still
a concern in these type of materials [144,145]. The carbon and metal coating techniques were also
applied to improve the cycle life and Coulombic efficiency of Si anodes [146,147]. These coatings
reduce the electrolyte decomposition on Si anodes by creating a buffer zone between the electrolyte
and Si, but due to significant volume change of Si anode, the carbon coating loses its structural
integrity by cycling, and fresh Si surfaces are exposed to electrolyte eventually. In another study,
nanocrystalline Si particles of 20–80 nm that were encapsulated in a carbon aerogel showed a stable
reversible capacity of 1450 mAh/g for 50 cycles [147]. The carbon aerogel works as a cushion during
the expansion-contraction of the nanocrystalline Si particles, and maintains the three dimensional
electrical network; this way, Si particles stay in physical contact with the carbon matrix at all times.
More recent studies on Si anodes concentrated on minimizing the Si surface area exposed to electrolyte
by encapsulating single Si nanoparticle in a carbon shell (i.e., yolk-shell design) which has enough
void space to accommodate significant volume changes during de-/lithiation of Si [148]. This strategy
minimizes the carbon shell deformation upon cycling, hence helps with obtaining a stable SEI layer
over the carbon shell. This Si-carbon composite showed a reversible capacity of 1500 mAh/g at 1C
rate after the initial formation cycles, and kept 74% of its initial capacity after 1000 cycles. In a similar
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approach, inspired by a pomegranate fruit, carbon coated Si nanoparticles are further encapsulated in
a thick secondary carbon layer as shown in Figure 14 [149]. As a result, the SEI layer mostly forms on
this secondary carbon layer (i.e., lower surface area) instead of the individual Si nanoparticles (i.e.,
higher surface area), Figure 14c. This pomegranate inspired Si-carbon composite anode showed 97%
percent capacity retention (i.e., 1160 mAh/g) after 1000 cycles.
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6. Binder

Binder is one of the inactive components in a Li-ion battery electrode, but its role is critical for
proper operation of the Li-ion batteries. Binder serves as a polymeric matrix that connects active
materials to each other and to the current collector in a composite Li-ion battery electrode, and
accommodates volume changes due to de-/lithiation of active materials during battery operation.
An ideal binder should have: (a) high binding strength, (b) favorable mechanical properties to
accommodate volume changes, (c) high electronic conductivity, (d) optimal porous structure for
high ionic conductivity and (e) chemical inertness [16,150]. Currently, polyvinylidene fluoride
(PVDF) is the most common binder despite its shortcomings. PVDF is not conductive and does
not store Li hence considered as an inactive material. Several different electroactive polymers
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such as polyaniline and polypyrrole were proposed to replace PVDF. These multifunctional binders
improved the rate capability and cycle life of the LiFePO4 which has an intrinsically poor electronic
conductivity [151–154]. The polyaniline binder also improved the irreversible capacity loss during the
first cycle in a graphite anode [155]. As discussed earlier, the alloy anodes show significant volume
change upon de-/lithiation; therefore, an ideal binder should be highly flexible and mechanically
robust to keep active materials together during cycling. Different composite elastomeric binders were
developed for Si alloy anodes [156–158]. The PVDF-tetrafluoroethylene-propylene (PVDF-TFE-P)
binder can be extended to 100% strain, whereas PVDF can only be extended to 10% strain. The
PVDF-TFE-P binder enhanced the cycle life of a-Si0.64Sn0.36 alloy anode reasonably [157]. Another
promising elastomeric binder is styrene-butadiene-rubber (SBR) and sodium-carboxyl-methylcellulose
(SCMC) composite. As compared to PVDF, SBR + SCMC binder showed smaller moduli, a larger
maximum elongation, and a stronger adhesion strength hence better cycle life in Si alloy anodes [158].
Crosslinking is an effective strategy to improve the mechanical properties of polymeric binders.
By crosslinking poly(acrylic acid) with SCMC, Koo et al. obtained a capacity of 2000 mAh/g for Si
anode after 100 cycles [159]. Recently, a new type of binder, hyperbranched β-cyclodextrin polymer
and a dendritic gallic acid cross-linker with six adamantane units, for Si anodes based on “dynamic
crosslinking” method was developed as shown in Figure 15 [160]. The dynamic crosslinking refers to
supramolecular host-guest interactions. The distinctive feature of this polymer is that it can restore
the broken connections between polymer chains during cycling; therefore, it can be considered as
a self-healing binder. The Si anode based on this novel composite binder retained 90% of its initial
capacity after 150 cycles (~1550 mAh/g).
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Separator

Separator is another inactive component in Li-ion batteries, but it plays a critical role in the
operation and safety of such batteries. Separator physically separates the anode and cathode to prevent
the electrical short circuit, while allowing Li-ion diffusion due to its porous structure in between the
anode and cathode during cycling of a cell. Therefore, an ideal separator should be a good electronic
insulator, mechanically robust, chemically inert under the operating conditions of the battery, and
should have good wettability in non-aqueous liquid electrolytes [18]. The most common types of
Li-ion battery separators are microporous and non-woven separators, former being the dominant in
the Li-ion battery market [161]. The microporous separators are mainly made of polyolefins such
as polyethylene (PE) and polypropylene (PP). The scanning electron microscope (SEM) images of a
multilayered composite separator manufactured by Celgard™ are given in Figure 16. The multilayer
structure (PP/PE/PP) is instrumental in preventing the thermal runaway of the Li-ion battery via
thermal shut-down mechanism [161].
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The thermal stability, wettability and mechanical properties of the separators can be improved
by surface coating, grafting and blending techniques [18]. The surface coating of the microporous
separators with high temperature polymers such as polyimide, inorganic nanoparticles such as Al2O3

and SiO2, or the combination of polymers and inorganic nanoparticles have shown to reduce the
thermal shrinkage, and improved the mechanical properties and wettability of the separators [162–165].
It is important to note that surface coating creates an additional layer on the separator, which may
limit the Li-ion diffusion rate hence the performance (i.e., cycle life and rate capability) of the cell.
Although the surface coating is effective in improving the aforementioned properties of the separator,
uniformity, thickness and adhesion of the coated layer are of concern in practical applications [18].
To circumvent these issues associated with the surface coating technique, surface grafting can be
utilized. Unlike coting, grafting results in the permanent attachment of the desired functional groups
via covalent bonding. The surface grafting can be achieved by UV-irradiation, plasma treatment and
high energy radiation methods [18]. The siloxane grafted PE separator prepared by electron beam
irradiation showed enhanced ionic conductivity and wettability as well as improved cycle life at high
voltage operating conditions [166]. Similar results were obtained for glycidyl methacrylate grafted PE
separator [167].

Traditionally, non-woven separators are not considered to be competitive with the microporous
separators due to their large pore structure and difficulty in manufacturing them thin (<25 µm) with the
desired mechanical properties [18,161]. One of the promising non-woven (polyethylene terephthalate)
separators with ceramic coating (i.e., Al2O3) on both sides (i.e., Degussa-Separion™) is shown in
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Figure 17. This commercially available separator have good wettability, superior chemical resistance
and very low shrinkage at high temperatures [18].
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7. Conclusions

Rechargeable batteries play a critical role in portable electronics, transportation, back-up power
and load-leveling applications. Currently, lead acid and Li-ion chemistries are the most important
types of rechargeable batteries. The Li-ion chemistry is expected to play a bigger role in the future
due to its superior gravimetric and volumetric densities as compared to other battery chemistries.
Additionally, the cost of Li-ion batteries continues to drop due to engineering improvements and
materials advancements. The nanocomposite materials are at the center of the material developments
in cathode, anode, binder and separator of Li-ion batteries as discussed in this article. Particularly,
nanocomposite materials can improve the safety, cycle-life, rate capability and specific capacity of
Li-ion batteries. It should be noted that further improvements in the nanocomposites and their
manufacturing processes are required to reach the U.S. DOE targets for energy density and cost of
battery systems.
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