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Abstract: In this note, we study the scaled consensus (tracking) problems, wherein all agents
reach agreement, but with different assigned ratios in the asymptote. Based on the nearest
neighbor-interaction rules, the scaled consensus processes are characterized with and without time
delay. We consider both the signal transmission and signal processing delays and calculate the final
scaled consensus values. When the underlying communication network contains a spanning tree,
it is found that the scaled consensus can be achieved independent of the transmission delays while
the specified consensus values in the asymptote depend on the initial history of the agents over a
period of time. This phenomenon is in sharp contrast to the case of processing delays, where large
delays are likely to jeopardize the consensus behavior, but the scaled consensus values once achieved
are the same as the undelayed case.
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1. Introduction

Multi-agent coordination of interconnected systems has found a diversity of applications in a
number of fields, such as sensor networks, vehicle systems, social insects and cyber-physical systems.
Consensus as a critical problem for multi-agent coordination aims to design appropriate protocols
and strategies for reaching an agreement on a certain quantity of interest depending on the states of
all agents. Different from traditional centralized controllers, the designed protocols take advantage
of nearest-neighbor rules rendering the multi-agent systems in a distributed network framework
governed by the graph Laplacians [1] since each agent can only interact with those within its local
area due to limited communication capability. There has been an extensive literature on consensus
problems using effective tools such as matrix theory, algebraic graph theory and system theory; see the
recent surveys [2,3] on this wide ranging topics.

In many practical applications, the states of all agents may achieve consensus on a common
quantity, but of their own scales due to the constraints of physical environments. Examples include
water distribution systems, compartmental mass-action systems [4] and multiscale coordination
control between spacecraft and their simulating vehicles on the ground [5]. As an extension to standard
consensus, Roy [6] recently introduced a novel notion of scaled consensus, which permits prescribed
ratios among the final convergent values of all of the agents. The scaled consensus offers a less
conservative framework, which can be specialized to achieve standard consensus (with all ratios being
one), cluster consensus [7], where agents in a subnetwork share a common value while there is no
agreement between different subnetworks, and bipartite consensus [8] or signed consensus [9] by
adopting appropriate scales.

Scaled consensus has been studied for a fixed strongly-connected topology in [6,10] and switching
topologies in [11], where the agents are modeled by continuous-time single integrators. Scaled
consensus can also be achieved through linear iterations [12,13]. However, time delay (especially
distributed delay) has not been considered. Inspired by the stability analysis for delay systems in [14],
we try to investigate the delayed scaled problems and distinguish between two main sources of time
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delays, to wit, signal transmission delays and signal processing delays. The contribution of this paper is
two-fold. First, new scaled consensus protocols are proposed to accommodate discrete and distributed
delays in networks containing spanning trees by extending the delayed complete consensus analysis
in [14]. Second, for the undelayed scaled consensus process, we generalize some existing results on
scaled consensus in [6,10,11]. In particular, we find that the ubiquitous spanning tree condition is both
sufficient and necessary for scaled consensus, as well as for the related tracking formation problems
on the scaled consensus manifold.

2. Preliminaries

The communication topology of a multi-agent system can often be characterized by a weighted
directed graph [1] G = (V , E ,A) with a node set V = {1, 2, · · · , n} representing n agents, an edge set
E ⊆ V × V describing the information exchange among them and a nonnegative adjacency matrix
A = (aij) ∈ Rn×n. We assume aij > 0 if and only if (j, i) ∈ E , representing the information flow from
agent j to agent i. Because there are no self-loops in G, we have aii = 0 for all i ∈ V . The degree
of i is defined as di = ∑n

j=1 aij. Given a sequence i1, i2 · · · , ik of distinct nodes, a directed path in G
from i1 to ik consists of a sequence of edges (ij, ij+1) ∈ E for j = 1, · · · , k− 1. If there is a node (called
root) in G from which all other nodes can be reached along directed paths, then we say that it has a
spanning tree. Furthermore, G is said to be strongly connected if between any pair of distinct nodes i, j,
there exists a directed path from i to j. The graph Laplacian matrix of A, L = (lij) ∈ Rn×n, is defined
by lii = −∑j∈V\{i} lij = di and lij = −aij for i 6= j. Clearly, L1n = 0, where 1n ∈ Rn represents the
n-dimensional vector with elements being all ones. It is well known that L plays a significant role in
the convergence analysis for consensus seeking [1]. By convention, the determinant, trace and adjugate
of a square matrix are denoted by det(·), tr(·) and adj(·), respectively.

Here, we consider a group of n agents, labeled from one to n, composing a fixed directed network
G = (V , E ,A). The dynamical behavior of each agent is described by a continuous-time system:

ẋi(t) = ui(t), i ∈ V , (1)

where xi(t) ∈ R is the information state and ui(t) ∈ R is the control input of the agent i at time t. In the
vector form, we denote x(t) = (x1(t), · · · , xn(t))T ∈ Rn and let x(0) = (x1(0), · · · , xn(0))T ∈ Rn be
the initial value. Given any scalar scale αi 6= 0 for the agent i, the system (1) is said to achieve
scaled consensus to (α1, · · · , αn) if limt→∞(αixi(t) − αjxj(t)) = 0 for all i, j ∈ V and all initial
conditions x(0) [6].

Remark 1. The notion of scaled consensus is a generalization of the standard consensus [2], cluster consensus [7]
and bipartite consensus [8]. Note that the scales αi associated with each individual i can be positive or negative,
adding to the flexibility of the consensus-seeking process. Scaled consensus can also be defined in terms of
the global asymptotic stability of the manifold defined by the above condition limt→∞(αixi(t)− αjxj(t)) = 0,
both of which are known to be equivalent for linear processes [6].

3. Undelayed Scaled Consensus Process

In this section, we first consider the undelayed scaled consensus problem. Given the scales
(α1, · · · , αn) with nonzero αi’s, we apply the nearest-neighbor rules to propose the distributed strategy
for agent i as:

ui(t) = sgn(αi)
n

∑
j=1

aij(αjxj(t)− αixi(t)), (2)

where sgn(·) is the signum function. Let D = diag(d1, · · · , dn) ∈ Rn×n be the degree diagonal
matrix. Then, we have L = D − A. Moreover, for ease of presentation, we define α :=
diag(α1, · · · , αn) ∈ Rn×n, |α| := diag(|α1|, · · · , |αn|) ∈ Rn×n, α−1 := diag(α−1

1 , · · · , α−1
n ) ∈ Rn×n



Appl. Sci. 2017, 7, 713 3 of 10

and sgn(α) := diag(sgn(α1), · · · , sgn(αn)) ∈ Rn×n. With these notations, the switched multi-agent
system (1) with Protocol (2) can be recast as:

ẋ(t) = −sgn(α)Lαx(t). (3)

The following result gives a concise characterization for the scaled consensus process
governed by (3).

Theorem 1. The multi-agent system (3) achieves scaled consensus to (α1, · · · , αn) if and only if G has
a spanning tree.

Proof. Sufficiency: It follows from (3) that x(t) = exp(−sgn(α)Lαt)x(0) for t ≥ 0 using the matrix
exponential. We first consider the matrix |α|L. Clearly, it has zero row sums, and hence, zero is always
an eigenvalue of |α|L. By applying the Gershgorin disk theorem [15], we see that all eigenvalues of
|α|L are in the right half plane, and its nonzero eigenvalues have strictly positive real parts (cf. [16]).
Since G has a spanning tree, λ1 = 0 is a simple eigenvalue of the Laplacian L, as well as of |α|L
recalling that |α| is a positive definite diagonal matrix [17]. Noting that α−1|α|Lα = sgn(α)Lα, we see
that the state matrix −sgn(α)Lα is similar to −|α|L. Hence, all eigenvalues of −sgn(α)Lα, denoted by
λ1 = 0, λ2, · · · , λn, are in the left half plane, and λ2, · · · , λn have strictly negative real parts.

It is direct to see that exp(−sgn(α)Lαt) is a normal matrix, and its eigenvalues are
eλ1t, · · · , eλnt. Therefore, exp(−sgn(α)Lαt) possesses a complete set of eigenvectors, denoted
by {v1 = (α−1

1 , · · · , α−1
n )T, v2, · · · , vn}, which are exactly the corresponding eigenvectors of

−sgn(α)Lα [15]. That is, −sgn(α)Lαvi = λivi for i = 1, · · · , n. Let {w1, · · · , wn} be the set of linearly
independent eigenvectors of (exp(−sgn(α)Lαt))T, such that wT

i vj = δij, where δij is the Kronecker
delta for i, j = 1, · · · , n. Hence, x(t) = ∑n

i=1(w
T
i x(t))vi, and furthermore,

x(t) = exp(−sgn(α)Lαt)x(0) =
n

∑
i=1

wT
i exp(−sgn(α)Lαt)x(0)vi

=
n

∑
i=1

eλitwT
i x(0)vi → wT

1 x(0)v1 (4)

as t tends to infinity. Recalling v1 = (α−1
1 , · · · , α−1

n )T, we see that the multi-agent system (3) achieves
scaled consensus to (α1, · · · , αn).

Necessity: Suppose that G does not contain a spanning tree. Then, the zero eigenvalue is no
longer a simple eigenvalue of |α|L [17]. We consider the following two cases: (i) λi = λ1 = 0 for some
i 6= 1, and the geometric multiplicity of zero is equal to its algebraic multiplicity; and (ii) the geometric
multiplicity of zero is less than the algebraic multiplicity.

In Case (i), say, λ2 = λ1 = 0, we have ẋ(t) = 0 for any x(0) ∈ span{v2} by (3). However, for such
initial values, scaled consensus to (α1, · · · , αn) is impossible because v2 6∈ span{v1}. Next, we consider
Case (ii). In this situation, the state matrix −sgn(α)Lα is similar to a Jordan matrix J ∈ Rn×n. Hence,
exp(−sgn(α)Lαt) = P−1eJtP for some invertible matrix P. For a k× k Jordan block (k ≥ 2), we have:

exp




0 1 · · · 0

0 0
. . .

...
...

...
. . . 1

0 0 · · · 0

 t

 =


1 t · · · tk−1

(k−1)!

0 1
. . .

...
...

...
. . . t

0 0 · · · 1

 ∈ Rk×k,

which is divergent with respect to t. Similar reasoning as (4) implies that xi(t)/xj(t) does not approach
αj/αi for all i, j and generic initial conditions x(0). Thus, scaled consensus to (α1, · · · , αn) is not
achieved, and this completes the proof of necessity.
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Remark 2. The scaled consensus protocol specified by (3) is first studied in [6]. It is proven that [6] if G is
strongly connected, then the scaled consensus can be reached. Theorem 1 improves the result by showing that
a weaker spanning tree condition, actually, is not only sufficient, but necessary.

Remark 3. It is clear that the scaled consensus states are represented by wT
1 x(0)v1 = wT

1 x(0)(α−1
1 , · · · , α−1

n )T

and the scaled states αx(t) → wT
1 x(0)1n, a common asymptote, as t grows. In fact, the quantity wT

1 x(t) is
conserved under the dynamics (3) since d

dt (w
T
1 x(t)) = −wT

1 sgn(α)Lαx(t) = 0.

Similarly as in [6], we may extend Theorem 1 by considering a tracking dynamics on the scaled
consensus manifold as:

ẋ(t) = −sgn(α)Lαx(t) + ḟ (t)α−11n, (5)

where the forcing input f : [0,+∞)→ R is continuously differentiable. Setting y(t) = x(t)− f (t)α−11n,
we can prove the following result using the same argument as in Theorem 1.

Corollary 1. The multi-agent system (5) achieves scaled consensus to (α1, · · · , αn) if and only if G has
a spanning tree. In particular, x(t) converges to the time function (wT

1 x(0) + f (t))v1 as t grows.

4. Scaled Consensus with Signal Transmission Delays

Signal transmission delay, also known as coupling delay, can be introduce to the control scheme (1)
by considering:

ui(t) = sgn(αi)
n

∑
j=1

aij(αjxj(t− τ)− αixi(t)), (6)

where τ ≥ 0 represents the time delay. Signal transmission delay often appears in networks of
oscillators and has been investigated in, e.g., [14,18] for standard consensus problems. In fact, (6) can
be generalized to accommodate a history dependence over the interval [t− τ, t] instead of a discrete
past time instant t− τ:

ui(t) = sgn(αi)
n

∑
j=1

aij

(∫ 0

−τ
αjxj(t + s)dη(s)− αixi(t)

)
, (7)

where η : [−τ, 0]→ R is a function of bounded variation describing the distributed delays. Assume
that η is nondecreasing and appropriately normalized:

∫ 0
−τ dη(s) = 1. η can be viewed as a probability

distribution and admits scaled consensus solutions. In particular, when η is a Heaviside step function,
the control input (7) readily reduces to (6).

The switched multi-agent system (1) with Protocol (7) can be recast in a compact form as:

ẋ(t) = −sgn(α)Dαx(t) + sgn(α)Aα
∫ 0

−τ
x(t + s)dη(s). (8)

The formulation x(t) = eωtv (v ∈ Rn) yields the characteristic equation in ω ∈ C as:

χ(ω) := det (ωIn + sgn(α)Dα− G(ω)sgn(α)Aα) = 0, (9)

where In ∈ Rn×n is the n-dimensional identity matrix and G(ω) =
∫ 0
−τ eωsdη(s). Let

τ̄ := −
∫ 0
−τ sdη(s) ≥ 0 represent the mean delay. It is clear that G(0) = 1 and G′(0) = −τ̄. Moreover,

zero is always a characteristic value of (9) since χ(0) = det(sgn(α))det(L)det(α) = 0.
Our main result in this section shows that the stability of scaled consensus is independent of the

transmission delays, generalizing the stability result of standard consensus [14] with all αi being one.

Theorem 2. If G has a spanning tree, the multi-agent system (8) achieves scaled consensus to (α1, · · · , αn).
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Proof. We first show that all nonzero characteristic values of (9) have negative real parts. In fact,
assume that χ(ω) = 0 and Re(ω) ≥ 0. It follows from (9) that −ω is an eigenvalue of sgn(α)Dα−
G(ω)sgn(α)Aα. Note that the matrix sgn(α)Dα− G(ω)sgn(α)Aα is similar to |α|D − G(ω)|α|A. In
light of the Gershgorin disk theorem, the eigenvalues of sgn(α)Dα− G(ω)sgn(α)Aα must lie in the
union of n disks centered at |αi|di with radius |G(ω)| · |αi| · ∑n

j=1 aij ≤ |αi|di ·
∫ 0
−τ dη(s) ≤ |αi|di

for i = 1, · · · , n. This implies that the nonzero characteristic values of (9) are contained in the set
{ω ∈ C : Re(ω) > 0} ∪ {0}, and thus, Re(−ω) ≤ 0. Accordingly, we have ω = 0, which completes
the proof of the claim.

Next, we show that zero is a simple characteristic value of (9). It follows from (9) and some basic
algebras [15] that:

χ′(0) =tr (adj(sgn(α)Lα) · (In + τ̄sgn(α)Aα))

=tr (adj(sgn(α)Lα) · (In + τ̄sgn(α)(D −L)α))
=tr (adj(sgn(α)Lα) · (In + τ̄sgn(α)Dα)) ,

where in the last equality, we note that adj(sgn(α)Lα) · sgn(α)Lα = det(sgn(α) Lα)In =

det(sgn(α))det(L)det(α)In = 0. Let ˜̀ ii represent the diagonal entries of adj(sgn(α)Lα). Then:

χ′(0) =
n

∑
i=1

˜̀ ii(1 + τ̄|αi|di). (10)

As in Theorem 1, we know that zero is a simple eigenvalue of |α|L since G contains a spanning
tree. Since zero is also a simple eigenvalue of sgn(α)Lα due to similarity, the matrix sgn(α)Lα has rank
n− 1 and a one-dimensional kernel spanned by v1 = (α−1

1 , · · · , α−1
n )T. Therefore, adj(sgn(α)Lα) 6= 0.

Moreover, we have sgn(α)Lα · adj(sgn(α)Lα) = det(sgn(α)Lα)In = 0, which implies that the columns
of adj(sgn(α)Lα) belong to the kernel of sgn(α)Lα. Accordingly, adj(sgn(α)Lα) = v1u for some row
vector u = (u1, · · · , un). Analogously, the equality adj(sgn(α)Lα) · sgn(α)Lα = 0 implies that the
rows of adj(sgn(α)Lα) belong to span{w1}, where w1 ∈ Rn is defined in the proof of Theorem 1.
Hence, for each 1 ≤ i ≤ n, there exists some ci ∈ R such that:(

u1

αi
, · · · ,

un

αi

)
= ciwT

1 . (11)

If ci = 0, then the i-th row in the matrix (11) becomes zero, and u1 = · · · = un = 0. This indicates
adj(sgn(α)Lα) = 0, which is a contradiction. Therefore, ci 6= 0 for all i. We can show in the same way
that ui 6= 0 for all i. Therefore, there exists some k 6= 0 such that ci =

k
αi

and ˜̀ ii =
kw1i

αi
for all 1 ≤ i ≤ n,

where we write w1 = (w11, · · · , w1n)
T. In view of (10), we have:

χ′(0) = k
n

∑
i=1

w1i
αi

(1 + τ̄|αi|di). (12)

By definition, wT
1 sgn(α)Lα = 0. Writing wT

1 sgn(α) := w̃T
1 = (w̃11, · · · , w̃1n), we obtain w̃T

1L = 0.
For a sufficiently small ε > 0, In − εL is a stochastic matrix, and w̃T

1 (I − εL) = w̃T
1 . Based on the

Perron–Frobenius theory, we know that w̃T
1 (under an appropriate normalization) is the stationary

distribution of the Markov chain described by the stochastic matrix. Hence, w̃T
1 6= 0 and has

non-negative entries. Noting that w1i
αi

=
w̃1isgn(αi)

αi
and 1 + τ̄|αi|di > 0 for all i, we see from (12)

that χ′(0) 6= 0. Consequently, zero is a simple characteristic value of (9).
Since all solutions of (8) involve a factor eωt with ω being a root of the characteristic Equation (9).

Note that the root ω = 0 corresponds to the kernel of sgn(α)Lα, i.e., span{v1}. Moreover, the dynamics
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on the subspace span{v1} is constant, to wit, ẋ(t) ≡ 0. Combining the above discussions, we are led to
the conclusion that:

lim
t→∞

x(t) = cv1 = c(α−1
1 , · · · , α−1

n )T (13)

for some c ∈ R. The proof is complete.

Remark 4. The quantity c in (13) can be determined. In fact, noting that wT
1 sgn(α)Lα = 0, we obtain from

(8) that:

d
dt

(
wT

1

(
x(t) + sgn(α)Dα

∫ 0

−τ

∫ t

t+s
x(t′)dt′dη(s)

))
= wT

1 ẋ(t) + wT
1 sgn(α)Dα

∫ 0

−τ
(x(t)− x(t + s))dη(s)

= wT
1 sgn(α)Aα

∫ 0

−τ
x(t + s)dη(s)− wT

1 sgn(α)Dα
∫ 0

−τ
x(t + s)dη(s) = 0.

This means that the quantity wT
1

(
x(t) + sgn(α)Dα

∫ 0
−τ

∫ t
t+s x(t′)dt′dη(s)

)
remains unchanged with respect

to time. By setting t→ ∞, we have:

wT
1

(
x(0) + sgn(α)Dα

∫ 0

−τ

∫ 0

s
x(t)dtdη(s)

)
= wT

1

(
cv1 + sgn(α)Dα

∫ 0

−τ

∫ 0

s
cv1dtdη(s)

)
= c− cwT

1 sgn(α)Dαv1

∫ 0

−τ
sdη(s)

= c
(

1 + τ̄wT
1 sgn(α)D1n

)
.

Hence, we have:

c =
1

1 + τ̄wT
1 sgn(α)D1n

wT
1

(
x(0) + sgn(α)Dα

∫ 0

−τ

∫ 0

s
x(t)dtdη(s)

)
. (14)

In the case of no delay, i.e., τ̄ = 0, (14) reduces to c = wT
1 x(0), which agrees with Equation (4) in [6]. In

the case of discrete delay delineated by (6), we have:

c =
1

1 + τwT
1 sgn(α)D1n

wT
1

(
x(0) + sgn(α)Dα

∫ 0

−τ
x(t)dt

)
.

Remark 5. From (14), we observe that the scaled consensus values rely on the initial history of the agents’
state x over the interval [−τ, 0] and that the scaled consensus is guaranteed independent of the magnitude of
transmission delays. An important implication is that, in the event of additive measurement noise with zero
temporal mean, the delayed system may have better performance by choosing a suitable τ to reduce the noise
effect by averaging over [−τ, 0] via (14). In [18], a similar procedure for delayed standard consensus problems
has been discussed.

Finally, we consider a tracking dynamics on the scaled consensus manifold as:

ẋ(t) = −sgn(α)Dαx(t) + sgn(α)Aα
∫ 0

−τ
x(t + s)dη(s) + ḟ (t)α−11n, (15)

where the forcing input f is defined as in Section 3. We can similarly derive the following useful corollary.
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Corollary 2. If G has a spanning tree, then the multi-agent system (15) achieves scaled consensus to
(α1, · · · , αn). In particular, x(t) converges to the time function (c + f (t))v1 as t grows, where c is given
by (14).

5. Scaled Consensus with Signal Processing Delays

In this section, we examine the signal processing delay, which is also known as internal delay.
Signal processing delay has been much studied in the literature of consensus problems; see, e.g., [1–3].
In parallel with (6), the scaled consensus control scheme can be designed as:

ui(t) = sgn(αi)
n

∑
j=1

aij(αjxj(t− τ)− αixi(t− τ)), (16)

where τ ≥ 0 indicates the time delay. The distributed-delay version is:

ui(t) = sgn(αi)
n

∑
j=1

aij

∫ 0

−τ

(
αjxj(t + s)− αixi(t + s)

)
dη(s), (17)

where η : [−τ, 0]→ R is a function of bounded variation describing the distributed delays. In analogy
to (8), the switched multi-agent system (1) with protocol (17) can be written as:

ẋ(t) = −sgn(α)Lα
∫ 0

−τ
x(t + s)dη(s). (18)

The characteristic equation is given by:

χ(ω) := det (ωIn + G(ω)sgn(α)Lα) = 0, (19)

where ω ∈ C and G(ω) =
∫ 0
−τ eωsdη(s). Similarly as the transmission delay case, we have G(0) = 1,

χ(0) = 0 and G′(0) = −τ̄ :=
∫ 0
−τ sdη(s).

Here, we will only study the system (1) with discrete delay (16), which corresponds to a special
form G(ω) = e−ωτ. We assume the following detailed balanced condition.

Assumption 1. |αi|aij = |αj|aji holds for all i, j = 1, · · · , n.

The detailed balanced condition has proven to be instrumental in studying coupled dynamics;
see, e.g., [19,20] for details. Our main result in this section reads as follows.

Theorem 3. Suppose that G has a spanning tree and that Assumption 1 holds. The multi-agent system (1) with
Protocol (16) achieves scaled consensus to (α1, · · · , αn) if and only if 0 ≤ τ < π

2 max1≤i≤n λi
, where {λi}n

i=1 are
the eigenvalues of |α|L.

Proof. Note that |α|L is symmetric and positive semidefinite under Assumption 1. Let λ1 = 0.
The spanning tree condition implies λi > 0 for i = 2, · · · , n.

We first show that zero is a simple characteristic value of (19). Indeed, we already see that χ(0) = 0.
Arguing similarly as in Theorem 2, we have:

χ′(0) =tr (adj(sgn(α)Lα) · (In − τsgn(α)Lα))

=tr (adj(sgn(α)Lα)) = k
n

∑
i=1

w1i
αi
6= 0,

where k 6= 0 and w1 = (w11, · · · , w1n)
T are interpreted in the same way as in (12). This means zero is

a simple root of (19).
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Next, we show that 0 < λiτ < π
2 for all i ≥ 2 if and only if all nonzero characteristic values

of (19) have negative real parts. Suppose that χ(ω) = 0 for some ω ∈ C. By (19), we know that
−ω

G(ω)
= −ωeωτ is an eigenvalue of |α|L. That is, ωeωτ = λi (i = 2, · · · , n). Under Assumption

1, Theorem 1 in [21] implies that Re(ω) < 0 for all solutions ω of the above system if and only if
0 < λiτ < π

2 for i = 2, · · · , n.
It is easy to see that the sufficiency of Theorem 3 holds by the same argument at the end of

Theorem 2. The necessity of Theorem 3 follows similarly from the necessity proof of Theorem 1.

Remark 6. It follows from the Gershgorin disk theorem that 0 ≤ λi ≤ 2 max1≤i≤n |αi|di. Therefore,
the eigenvalue condition in Theorem 3 can be replaced by a more geometric (sufficient) condition 0 ≤ τ <

π
4 max1≤i≤n |αi|di

. We mention that a deep investigation regarding the conditions guaranteeing Re(λi) < 0 (i ≥ 2)
would be critical for tackling the general system (18).

Remark 7. Since d
dt
(
wT

1 x(t)
)
= −wT

1 sgn(α)Lαx(t− τ) = 0, the quantity wT
1 x(t) is conserved with respect

to time t. Thus, setting limt→∞ x(t) = cv1, we have wT
1 x(0) = cwT

1 v1 = c, which is the same as the undelayed
multi-agent system (3).

Remark 8. From Theorem 3, we find that introducing signal processing delay may prohibit the scaled consensus
process, while the scaled consensus values are independent of the magnitude of the delay once scaled consensus is
achieved, which is in sharp contrast to the effect of transmission delay.

By considering the following tracking dynamics:

ẋ(t) = −sgn(α)Lαx(t− τ) + ḟ (t)α−11n, (20)

we can similarly derive the following corollary.

Corollary 3. Suppose that G has a spanning tree and Assumption 1 holds. The multi-agent system (20) achieves
scaled consensus to (α1, · · · , αn) if and only if 0 ≤ τ < π

2 max1≤i≤n λi
, where {λi}n

i=1 are the eigenvalues of |α|L.

In particular, x(t) converges to the time function (wT
1 x(0) + f (t))v1 as t grows.

An example of delayed scaled consensus over a graph G of n = 4 agents with α = diag(1,−1, 1, 2)

and A =


0 1 1 0
1 0 1 2
1 1 0 0
0 1 0 0

 is shown in Figure 1. Here, we take τ = 0.2 and x(−τ) = (3,−2,−1, 1)T.

It is direct to check that the conditions of Theorems 2 and 3 are satisfied. As one would expect, the
scaled consensus to (1,−1, 1, 2) has been achieved under both signal transmission delays (Figure 2a)
and signal processing delays (Figure 2b).

Figure 1. A communication network G over n = 4 agents.
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(a)Transmission delay
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Figure 2. State evolution of agents under (a) signal transmission delays for system (1) with (6) and
(b) signal processing delays for system (1) with (16).

6. Conclusions

Scaled consensus problems have found diverse applications in cooperative tasks in practical
multi-agent systems. This paper discusses the stability of scaled consensus problems with and
without time delays. We distinguish between signal transmission delays and signal processing delays
by deriving sufficient and necessary scaled consensus conditions and calculating the final scaled
consensus values in each case. These two types of delays are shown to possess distinct features on the
scaled consensus processes, as well as the scaled consensus tracking on associated manifolds.

The scales encoded in α in this paper are assumed to be constant. It would be interesting to
explore time-varying scales α = α(t) (leading to a non-autonomous linear system) in the delayed
system framework. It is noteworthy that our results assume a fixed communication topology and
homogeneous agents. Therefore, delayed scaled consensus processes with switching/uncertain
topologies and heterogeneously motivated agents (e.g., [22]) can be meaningful subjects of future work.
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