
applied  
sciences

Article

Potential Model Overfitting in Predicting Soil Carbon
Content by Visible and Near-Infrared Spectroscopy

Lizardo Reyna 1,2,†, Francis Dube 3, Juan A. Barrera 1 and Erick Zagal 1,*
1 Department of Soils and Natural Resources, Faculty of Agronomy, Universidad de Concepción,

Vicente Méndez 595, Casilla 537, Chillán 3812120, Chile; lreyna@udec.cl or lreyna@utm.edu.ec (L.R.);
jbarrera@udec.cl (J.A.B.)

2 Doctoral Program in Agronomic Sciences, Faculty of Agronomy, Universidad de Concepción,
Vicente Méndez 595, Casilla 537, Chillán 3812120, Chile

3 Department of Silviculture, Faculty of Forest Sciences, Universidad de Concepción, Victoria 631,
Casilla 160-C, Concepción 4030000, Chile; fdube@udec.cl

* Correspondence: ezagal@udec.cl; Tel.: +56-42-2208853
† Current address: Facultad de Ingeniería Agrícola, Universidad Técnica de Manabí, Casilla 82, Lodana,

Manabí, Ecuador.

Academic Editor: Johannes Kiefer
Received: 13 June 2017; Accepted: 5 July 2017; Published: 8 July 2017

Abstract: Soil spectroscopy is known as a rapid and cost-effective method for predicting soil
properties from spectral data. The objective of this work was to build a statistical model to predict
soil carbon content from spectral data by partial least squares regression using a limited number
of soil samples. Soil samples were collected from two soil orders (Andisol and Ultisol), where
the dominant land cover is native Nothofagus forest. Total carbon was analyzed in the laboratory
and samples were scanned using a spectroradiometer. We found evidence that the reflectance
was influenced by soil carbon content, which is consistent with the literature. However, the reflectance
was not useful for building an appropriate regression model. Thus, we report here intriguing results
obtained in the calibration process that can be confusing and misinterpreted. For instance, using the
Savitzky–Golay filter for pre-processing spectral data, we obtained R2 = 0.82 and root-mean-squared
error (RMSE) = 0.61% in model calibration. However, despite these values being comparable with
those of other similar studies, in the cross-validation procedure, the data showed an unusual behavior
that leads to the conclusion that the model overfits the data. This indicates that the model should not
be used on unobserved data.

Keywords: chemometrics; SOC; spectral diffuse reflectance; partial least squares regression;
cross-validation

1. Introduction

Soil total carbon (TC) is composed of organic (all organic components mainly derived from the
decomposition of plants and animals; and including living organisms) and inorganic (non-living C,
typically as carbonates) carbon forms. Due to the short-term cycle of soil organic carbon (SOC) and its
key role for soil functions, the quantitative evaluation of SOC is essential for determining a suitable
management practice to conserve or increase soil carbon stock [1–4]. Monitoring SOC over large areas
or long periods of time requires analysis of substantial numbers of samples which can be labor-intensive
and expensive. Under those circumstances, the soil spectroscopy technique is an effective method
to predict SOC rapidly at minimal cost [5,6]. Soil spectroscopy uses the visible and near-infrared
(VIS-NIR, 400–2500 nm) and mid-infrared ( 2500–25,000 nm) spectral reflectance to infer soil properties
from a scanned sample [7]. This technique has been used mainly under laboratory conditions, but it can
also be applied in the field for a specific site or in an instrument setup for ongoing scanning [6].
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Spectral reflectance of soil in the VIS-NIR has been used to predict soil C in different soil types.
Sarkhot et al. [8] reported high correlation values for total and organic C (R2 = 0.85 and R2 = 0.86,
respectively) with an error of 5.33 g·kg−1 for total C and 2.88 g·kg−1 for organic C in an entisol in the
first 50-cm layer of soil. Fontán et al. [9] found higher correlation values for inorganic C (R2 = 0.76)
than organic C (R2 = 0.67) in a vertisol to a depth of 90 cm. In addition, successful predictions
of soil carbon fractions have been made by VIS-NIR spectroscopy [10,11], suggesting this technique
as a reliable alternative for assessing the impact of land use change on soil carbon pools. Other
related studies show the performance of different multivariate methods in calibrating models [12–14].
Classical methods for analyzing soil C require a rigorous sample preparation and expensive chemical
supplies (e.g., dry combustion). As a complement to these methods, soil spectroscopy can be used
to build empirical models to predict soil properties from spectral data. The potential of this technique
to predict soil C has been extensively reported [15–19], and important considerations for the effective
application of soil spectroscopy have been also reviewed by Reeves III [7]. However, to our knowledge,
there are no studies that describe potential issues such as overfitting in model calibration procedures
in a realistic field example.

In general, better correlations and fewer errors have been reported for sieved (<2 mm) and
dry (air/oven) samples [9,20]. Brunet et al. [16] concluded that grinded samples notably improve the
predictions of total soil carbon. In contrast, Fystro [15] found that the quality of prediction was not
benefited by grinding samples. Soil darkness is the most evident effect of water on spectral variability,
but strong effects occur in the infrared spectral reflectance where the wavelengths of 1450 nm and
1950 nm are absorption bands [21,22]. Because water molecules in soil are dispersed, broad bands
are usually seen at these wavelengths [21]. Andisols have special properties such as low density and
relatively high amounts of organic carbon within the soil profile [23], which have an important effect
on soil reflectance.

Before model calibration, a pre-processing step is needed to reduce random noise and
dimensionality of the spectral data [12]. The purpose of pre-processing techniques in spectroscopy
is to eliminate the portion of reflectance that does not come from the desired properties of the
target. In soil spectroscopy, the spectra variability includes incident light reflected in multiple
directions (diffuse reflectance) due to soil roughness, soil aggregates, soil structure, and particle
size. These physical properties scatter the incident energy in many directions. In a complex soil sample,
the variation of reflectance is not strongly wavelength-dependent (Lorentz–Mie scattering) and can
be observed as a multiplicative effect [24]. For this reason, filtering data is an essential process before
analysis [25,26]. Spectral correction and spectral derivatives are two categories of pre-processing
techniques. For the first category, the most used methods are multiplicative scatter correction (MSC)
and the standard normal variate (SNV). For the second category, Norris–Williams (NW) and
Savitzky–Golay (SG) derivatives filters are widely applied to spectral data. In this study, we performed
the pre-processing step using the SG filter.

The aim of the present work was to evaluate the potential of soil NIR spectroscopy to predict total
organic soil carbon using a limited number of soil samples collected from the native temperate forest.
We used the partial least square regression (PLSR) method to find the statistical relation between the
analyzed samples and spectral data.

2. Materials and Methods

2.1. Site Description

The study took place in the Biobio and Araucanía Regions of Chile (Figure 1). Two soil orders
were selected for the experiment: (1) Andisol, located in the Andean range (medial, amorphic, mesic,
Typic Hapludands) [23]; and (2) Ultisol, which is located in the coastal range (very fine, mixed,
semiactive, mesic Typic Paleudults) [27]. In both experimental sites the land cover is dominated
by Nothofagus obliqua and Nothofagus nervosa. Andisol is located at latitude 36◦48′ S, longitude
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71◦38′ W, and Ultisol is located at latitude 37◦46′ S, longitude 72◦58′ W. These soils are derived
from volcanic ash due to the intense volcanic activity in the Quaternary [28] and are rich in organic
carbon [23]. This parent material does not contain carbonates. Furthermore, in the field, these soils
do not react to the hydrochloric acid test. Therefore, TC and organic carbon (OC) were equivalents.

Figure 1. Location of the study sites. Two regions were selected; Region VIII (Biobio) and
Region IX (Araucanía) which are located in the Andean and coastal ranges of Chile, respectively.
In the box, a representation of the different Nothofagus obliqua forest conditions is shown for where the
soil samples were extracted.

2.2. Soil Sampling, Total Carbon Analysis and Spectral Measurement

A total of 70 samples were taken from the sites and three soil layers were sampled at depths
of 0–5, 5–20, and 20–40 cm. The sampling strategy was selected to represent different conditions of the
native forest, from undisturbed to degraded (Figure 1, for details see [27]). The samples were kept
in plastic bags and stored at −4 ◦C for later analysis. Later, the samples were air-dried and put
through a 2-mm sieve in order to minimize spectral variation due to fresh organic matter, soil moisture
and soil aggregates. One portion of the sample was reserved for analysis and the other for spectral
scanning. Total carbon (TC) was obtained by dry combustion method [29] using an elemental analyzer
(model Leco CN-2000, macro-analyzer, LECO Corporation, Saint Joseph, Michigan, USA). All TC
values were combined in a unique data set that contained the entire range of all depths and both soil
types. Samples for scanning were oven-dried at 60 ◦C for 48 h to standardize the moisture level, then
were set in petri dishes (60 × 15 mm) and flattened with a spatula. Thirty-six Andisol samples were
taken and 34 Ultisol. Each depth was represented by twelve samples, except for the depths of 5–20
and 20–40 cm for Ultisol, where 11 samples were selected for each one.

Spectral reflectance was measured in the VIS-NIR range (350–1075 nm) at 1-nm intervals using a
spectroradiometer (HandHeld 2: Hand-held VNIR, ASD-FieldSpec R©, ASD, Boulder, Colorado, USA).
We used this interval to detect possible sharp peaks in the spectral. The sensor was located vertically
at a distance of 5 cm from the soil sample and it was fixed in a tripod, then a Spectralon panel was
used as white reference before sample scans. Outdoor scanning was performed using the natural
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source of light at 3:00 p.m. on a sunny day. A dark background was used to minimize the influence
of ambient light, and to record the soil reflectance provided by natural illumination. Ten consecutive
scans were averaged and recorded for each sample.

2.3. Spectral Pre-Processing and Reflectance Analysis

Before model calibration we performed several pre-processing configurations using the
Savitzky–Golay filter in order to remove both additive and multiplicative effects in the spectral data [24].
This digital filter smooths the data while the original characteristics are minimally affected [30,31]. Input
of three parameters are needed: window size, polynomial order, and derivative order e.g., (5, 1, 1).
Window size must be set in the form 2M + 1, where M is half of the window size [30]. This value is the
number of consecutive points that will be used by least-squares smoothing, and for the end points
of the curve this window can be asymmetric. If derivative order is given, the data is transformed.
In the original publication, a detailed explanation of this filter can be found [25]. We also evaluated
two additional functions, the Log(1/R) (where R is reflectance) to transform reflectance (R) into
apparent absorbance [5], and mean-center function (centering) making the spectral curves to fluctuate
around zero [32]. We carried out fourteen pretreatments to the spectral data including smooth and
transformation by first and second derivative orders in the Savitzky–Golay algorithm.

Spectral data can be decomposed into a small number of explanatory variables containing huge
amount of variance [33]. Thus a principal component analysis (PCA) was performed on the spectral
data to examine its structure and identify outliers.

The relationship between soil carbon content and reflectance is essentially inverse, i.e., when
soil carbon increases the reflectance decreases across the spectra [19,34,35]. To prove this postulation,
we conducted an analysis for each soil type in order to observe the influence of soil carbon content
on reflectance. Thus, the spectral curves corresponding to each sampled depth were averaged and
plotted for visual analysis. In the same way, TC values were also averaged to be related with the
spectral reflectance (Table 1).

Table 1. Average of soil total carbon (TC) of each depth sampled for the two soil orders (Andisol and
Ultisol). In brackets the numbers of samples averaged.

Soil order Depth (cm) Average Standard Deviation

0–5 6.4 (12) 2.42
Andisol 5–20 4.4 (12) 1.65

20–40 3.0 (12) 1.29

0–5 5.3 (12) 1.55
Ultisol 5–20 4.5 (11) 1.26

20–40 2.7 (11) 1.78

2.4. Cross-Validation and Partial Least Squares Regression

Partial least squares regression or PLSR is a multivariate technique based on the combination
of dimensionality reduction similar to PCA and multiple linear regression (MLR) [36]. Unlike PLSR,
the latent variables or factors (equivalent to principal components in PCA) are calculated taking into
account the response variable [33]. With these latent variables a predictor matrix X is built. Then,
this matrix is used to build a regression model to explain the variance of the response variable Y. When
Y contains only one variable, the method is referred to as PLSR1, and when it contains more than one
variable it is referred to as PLSR2; in both cases we refer to Y as a matrix of response variables. Some
exhaustive reviews of this method have been published [36,37]. PLSR1 was used to relate TC with
spectral data.

A common practice in soil spectroscopy is to use cross-validation techniques to select the optimal
number of latent variables for PLSR. We performed leave-k-out cross-validation [38,39] to select the
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number of latent variables for regression (also referred to as k-fold CV). In this technique, the data
set is randomly split into k equal-sized groups, where k is defined by the user. We used k = 5
as recommended by Li et al. [39] and latent variables ranged from 1 to 20. One group is left out,
and the model is calibrated with the remaining (k− 1) groups. Then, the prediction accuracy of the
model is evaluated using the group that was left out by comparing the predicted and measured values.
This process is repeated until each group is used to validate the model. When the value of k is equal
to the number of samples, this technique is referred to as leave-one-out cross-validation (LOOCV).
The mean of statistical indicators such as root-mean-squared error (RMSE) (Equation (1)) and coefficient
of determination R2 (Equation (2)) were used as a reference to evaluate the model performance.

RMSE =

√√√√ i

∑
i=1

(yi − ŷi)2

n
(1)

R2 = 1− ∑i
i=1(yi − ŷi)

2

∑i
i=1(yi − yi)

2
(2)

where yi is the measured value of sample i, ŷi is the predicted value of sample i and y is the average
of measured samples.

After the optimal number of latent variables were determined, the data set was split into two
groups. The group for calibration contained 80% of the data set and the remaining 20% was used
as validation group. Some strategies to split data have been applied by researchers [18,33,40].
Nonetheless, we performed an iterative procedure to find the best data split (80/20%) in terms
of model performance i.e., several possible data splits of 80/20% were evaluated by PLSR.
This was made using the scikit-learn library [41] of Python programming language (Python
Software Foundation, https://www.python.org/), which achieves the same data split every
time (pseudo-random) in order to reproduce the results. The best calibration/validation sets were
selected by the higher R2 in PLSR.

For the final model selection, all pre-processing configurations listed in Table 2 were
applied to the spectral data before splitting. Then, PLSR was performed for each one and
the quality of model prediction was evaluated using the most-used quality estimators for
regression such as R2 and RMSE. All analyses were performed using a Python-based ecosystem
for scientific computing [42] (https://www.scipy.org/). All calculations ware made under the
Jupyter Notebook environment (formerly Ipython Notebook) to facilitate the reproduction of the
results [43] (Supplementary Files: S1-reflectance-analysis and S2-calculations).

3. Results and Discussion

3.1. Soil Total Carbon

Total carbon measured in the 70 samples ranged from 0.77 to 10.7% (Figure 2A). The highest
and lowest concentration of C in soil were found in the Andisol at the depths of 0–5 and 20–40 cm,
respectively. These values were justified by environmental conditions and soil type. For Andisol,
the ranges of TC of the three depths overlap mainly in lower values, i.e., values between 2 and 5% were
found in all of the sampled depths. Values greater than 8% were found in the top soil layer (0–5 cm).
For Ultisol, the lower values of TC were clearly observed in the depth of 20–40 cm. However, outliers
were found for values greater than 4%, probably due to such samples being taken from undisturbed
Nothofagus forest conditions [27]. The minimum and maximum frequency of the TC values were 1 and
14 (Figure 2B), respectively.

 https://www.python.org/
https://www.scipy.org/
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Figure 2. Carbon content by depth and soil order. (A) The full range variation is represented in the box
and whisker diagrams. The top of the gray box is the third quartile and the bottom the first quartile.
The horizontal line inside the box is the median of the data. Whiskers above and below the box show
the minimum and maximum values and outliers are represented by black circles; (B) The distribution
of the soil total carbon of the whole data set.

3.2. Spectral Pre-Processing

Before filtering the entire spectral data set, we tested the Savitzky–Golay filter on a noisy spectral
curve in order to visually inspect its effect on noise (Figure 3). These filter settings (no transformation)
were applied to the entire spectral data and their means were compared; their means showed
no significant differences. The extremes of the curves were removed due to noise, and the range
of 400–924 nm was selected for the analysis.

After pre-processing, PCA was performed on the filtered data sets to explore their structure. In the
most cases, two principal components explained high amount of variability of the spectra (>95%).
However, using first derivative transformation, the explained variability reached 70% with five PCs
and this value decreased when derivative order increased. Nonetheless, PCA showed potential for
classifying samples from different soil orders from spectral data. A sophisticated method for enhancing
the performance of classification of soils from spectral data was proposed by Xie et al. [44].

Figure 3. Effect of the Savitzky–Golay filter applied to a noisy spectral curve. No derivative
transformation was used. Only forty points are displayed in order to appreciate its effect on noise.
Inside the parentheses, window size, polynomial order and derivative order are given.
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3.3. Effect of Soil TC on Reflectance

As we expected, soil layers with higher TC values, tend to have lower reflectance. However,
in Andisol samples (Figure 4A), for 5–20 and 20–40 cm depths, the spectral curves intersected
at wavelengths shorter than 400 nm. By contrast, the maximum spectral separation was observed near
650 nm. In the Ultisol samples (Figure 4B), the curves of the depths of 0–5 and 5–20 cm intersected
between 700 and 800 nm. We attribute this curve intersection to the little difference in soil TC between
the first two depths in Ultisol soil (Figure 5). We also calculated the correlation coefficient (r) between
every spectral curve and soil TC. In accordance with [19], we found the most negative correlation
between TC and spectral wavelengths near the 500–600 nm range (Figure 6).

By comparing soil reflectance with TC, our results showed the influence of absorption features
of soil carbon on reflectance. This is in agreement with previous works published by [19,34]. However,
the correlation coefficient between spectral bands and TC in the region of 500–700 nm (r ≈ −0.5),
were poorer than those reported by others [19,34] (r = −0.8 or better). One possible explanation
of this is the spectral distortion due to natural source of light used for scanning the samples (outdoor
scanning) and low bulk density of the studied soils (≤ 1 g· cm−3) [27] which promote more dispersion
of light [45]. This distortion was probably not successfully corrected by the Savitzky–Golay filter.
Despite this, near 450 nm (Figure 4), the absorption features of distinct iron oxides can be observed [34].
For the Ultisol samples, this absorption was lightly observed in the curve. The spectral separability
was not clear when the curves were plotted individually, for some samples with higher soil TC the
reflectance along the spectra was not necessarily lower than for samples with lower TC. However,
our results showed that averaging the reflectance by depth, the influence of soil TC was evident.

Figure 4. The average of soil reflectance of the three soil depths. (A) The spectral separability between
depths can be observed from 450 nm; (B) for the depths of 0–5 and 5–20 cm the spectral separability
was not exhibited, and the curves intersected between 650 and 750 nm.

Figure 5. Total carbon (TC) in the Andisol and Ultisol soil orders. The gray area represents the
difference in soil TC of the two depths.
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3.4. Cross-Validation (CV) and Partial Least Squares Regression

To better understand the experimental results in this section, we will discuss them separately.
Firstly, we will discuss the results obtained in leave-k-out CV, secondly we will analyze the results
obtained by splitting the data set into calibration/validation subsets (80/20%, respectively), and finally
the implications of the potential misinterpretation of the results will be addressed.

Figure 6. Correlation coefficient between individual spectral curves and TC. This graph shows the
negative correlation between soil carbon content and soil reflectance. The higher correlation occurs
near 550 nm.

3.4.1. Cross-Validation

With the parameters used for CV, the smoothed spectra yielded the lowest RMSE (1.8%) with
2 latent variables (LVs). The performance of the model was significantly poorer from 6 LVs (Figure 7)
and this did not improve using LOOCV which is considered the most accurate [39]. If this is the
case, Abdi [46] manifests that the model is overfitting the data and is not useful for predicting
unobserved data. To our knowledge, this unusual behavior of the data in cross-validation has rarely
been reported in the literature. According to several authors [39,47,48] the optimal number of LVs
is determined when only marginal improvements in model performance are observed, but with our
data this marginal improvement was not clear, and the optimal number of LVs was selected based
on lowest RMSE (Figure 7A). The R2 in most cases was negative, indicating a bad model fit (Figure 7B).
Negative R2 resulted in model calibration, which has been also reported [19].

Figure 7. Performance of partial least squares regression (PLSR) in cross-validation with k = 5.
(A) Root-mean-squared error (RMSE), and (B) R2. These graphs could be used to indicate the
consistency of the data for modeling. Both curves indicate that the data is not useful for modeling.
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3.4.2. PLSR Calibration

Prior to final model calibration, an iterative process was performed to evaluate 600 possible data
splits into calibration and validation data sets, at 80/20%, respectively. The best data split was selected
by the highest R2 resulting from PLSR prediction. The key function for this process was train_test_split
of the scikit-learn library, test_size parameter was 0.2 indicating the proportion of the validation set.
The optimal value of random_state parameter was 280 in most cases.

Using the split data set of the smoothed spectra, the performance of the model was significantly
better in terms of R2 and RMSE. Varying the number of LVs to 1 and 5, the values of R2 were 0.82
and 0.74 and RMSE were 0.64% and 0.75%, respectively. Usingmore than 5 LVs, the R2 decreased
drastically. With some pre-processing settings the model fitted better than others (Table 2). This has
been also found by several authors [16,19,26]. An ordinary least squares regression was performed
to inspect the best model (Figure 8). Our best model (R2 = 0.82 and RMSE = 0.64%) indicates a
good prediction capacity for TC in accordance with the standard used by Sarkhot et al. [8], and the
worst model was obtained using a second-order derivative transformation (R2 = 0.23 and RSME =
1.51%). These results were congruent with those reported by [49] who used a similar pre-processing
configuration, and the second derivative transformation produced the worst models for the most of the
predicted variables. In contrast, Vasques et al. [12] found subtle differences in PLSR performance using
derivative transformations in pre-processing the data. On the other hand, Knadel et al. [50] indicated
that non-preprocessed spectral data generated the best model for soil organic carbon. Window
size and polynomial order in the Savitzky–Golay algorithm had no important influence on model
performance (Table 2).

Our results demonstrate that with the same data, it was possible to obtain different results
in predicting soil TC. This discordance between the two procedures (with and without cross-validation),
may lead to an ambiguous interpretation of the predictive capacity of the built model. For example,
avoiding cross-validation, the model resulted in a good capacity for predicting soil TC and could be used
to predict TC from soil samples. Before final model calibration, the cross-validation technique was useful
to inspect the potential of the spectral data to predict soil TC, and to select the optimal number of the
latent variables for regression. PLSR is subject to overprediction when the number of samples for
calibration is small (<58, in the soil spectroscopy context) [22]. However, some studies applied soil
spectroscopy with fewer samples [12]. We used 70 soil samples from two study sites. After splitting
the data and removing outliers, the calibration set resulted with 54 samples in most cases. The Ultisol
samples were re-scanned several days later and the results were similar despite a different intensity
of reflectance. More research is needed to better understand soil reflectance variability in these soil types.

Table 2. PLSR performance for different Savitzky–Golay filter configurations applied to spectral data.
The outlier ID column contains the index of the samples in the data set that were considered as outliers.

SG Filter Number of LVs R2 RMSE Outliers ID

(5, 1, 0) 2 0.82 0.61 21, 60
(5, 2, 0) 2 0.82 0.61 21, 60
(5, 1, 1) 2 0.58 1.22 20, 57
(5, 2, 2) 1 0.23 1.51 –

(11, 1, 0) 2 0.82 0.61 21, 60
(11, 2, 0) 2 0.82 0.61 21, 60
(11, 1, 1) 1 0.54 1.08 –
(11, 2, 2) 1 0.36 1.29 20
(17, 1, 0) 2 0.82 0.61 21, 60
(17, 2, 0) 2 0.82 0.61 21, 60
(17, 1, 1) 2 0.58 1.48 –
(17, 2, 2) 1 0.26 1.59 20

(17, 1, 0) + Log(1/R) 2 0.79 0.66 21, 60
(17, 1, 0) + centering 2 0.79 0.66 21, 60
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In summary we found that firstly, the average of reflectance in the VIS-NIR recorded from
soil samples was useful as a descriptive type of information about the carbon content, showing
an appreciable relationship with soil TC, especially in the andisol samples. However, it was not
appropriate for building a robust model for predicting soil TC. Secondly, the Savitzky–Golay filter
was effective in eliminating the most visible noise in the spectral data. Thirdly, using the random_state
parameter in the iterative process, we rapidly found the best calibration/validation subsets for
model calibration.

We attempt with this study to offer additional support for an effective application of soil
spectroscopy. In contrast to most published works, we report this negative case of the soil spectroscopy
technique to show the potential model overfitting and misinterpretation of the results by soil scientists
with little experience in data analysis. The results presented here need to be interpreted with caution
because of the unusual behavior observed in reflectance for predicting soil carbon content.

Figure 8. Linear regression applied to predicted and measured TC.

4. Conclusions

We conducted the standard procedure to build a statistical model to predict soil TC from spectral
data. The results of the experiment warn of possible model overfitting when the sources of variability
of the spectra (particle size and illumination) have not been effectively controlled and the amount and
distribution of the soil samples are inadequate. However, we demonstrate that if cross-validation (CV)
is avoided, it is possible to obtain a good PLSR model, which may, in turn, be inappropriately applied
to unobserved data. To identify this issue, the cross-validation technique was useful for plotting
the performance of the model versus the number of latent variables. Notwithstanding, our results
confirm that the reflectance was influenced by soil carbon content, although it was only useful at the
description level. We concluded that the potential of soil spectroscopy may be minimized when the
spectral distortion exceeds the capacity of the filter to correct it. The cause of the spectral variability
in these soil samples remains unclear. More sophisticated instruments and more rigorous scanning
procedures may help to understand why in this case soil spectroscopy was not feasible.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/7/7/708/s1, S1:
reflectance-analysis, S2: calculations.

Acknowledgments: The present work benefited from the FONDECYT Project No. 11121279 granted by the
National Commission for Scientific and Technological Research of the Chilean Government. L.R. received financial
support from the National Secretary of Higher Education, Science, and Technology (SENESCYT) of Ecuador. Two
anonymous reviewers are acknowledged for their suggestions that improved the manuscript.



Appl. Sci. 2017, 7, 708 11 of 13

Author Contributions: Lizardo Reyna, Juan A. Barrera and Erick Zagal, conceived, designed and performed the
experiments; Francis Dube facilitated access to the experimental sites and soil samples. All authors contributed
with valuable discussions and scientific advices in order to improve the quality of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stevenson, F.; Cole, M. Cycles of Soils, 2nd ed.; Wiley: New York, NY, USA, 1999.
2. Dube, F.; Zagal, E.; Stolpe, N.; Espinosa, M. The Influence of Land-Use Change on the Organic Carbon

Distribution and Microbial Respiration in a Volcanic Soil of the Chilean Patagonia. For. Ecol. Manag. 2009,
257, 1695–1704.

3. Zagal, E.; Muñoz, C.; Espinoza, S.; Campos, J. Soil Profile Distribution of Total C Content and Natural
Abundance of 13C in Two Volcanic Soils Subjected to Crop Residue Burning versus Crop Residue Retention.
Acta Agric. Scand. 2012, 62, 263–272.

4. Powlson, D.; Smith, P.; Nobili, M.D. Soil organic matter. In Soil Conditions and Plant Growth;
Blackwell Publishing Ltd.: Oxford, UK, 2013; pp. 86–131.

5. Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Chapter Five—Visible and Near Infrared
Spectroscopy in Soil Science. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA,
USA, 2010; Volume 107, pp. 163–215.

6. Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Chapter Five—Proximal
Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. In Advances in Agronomy;
Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2011; Volume 113, pp. 243–291.

7. Reeves, J.B., III. Near- versus Mid-Infrared Diffuse Reflectance Spectroscopy for Soil Analysis Emphasizing
Carbon and Laboratory versus on-Site Analysis: Where Are We and What Needs to Be Done? Geoderma
2010, 158, 3–14.

8. Sarkhot, D.V.; Grunwald, S.; Ge, Y.; Morgan, C.L.S. Comparison and Detection of Total and Available Soil
Carbon Fractions Using Visible/near Infrared Diffuse Reflectance Spectroscopy. Geoderma 2011, 164, 22–32.

9. Fontán, J.M.; Calvache, S.; López-Bellido, R.J.; López-Bellido, L. Soil Carbon Measurement in Clods and
Sieved Samples in a Mediterranean Vertisol by Visible and Near-Infrared Reflectance Spectroscopy. Geoderma
2010, 156, 93–98.

10. Reeves, J.B., III; Follett, R.F.; McCarty, G.W.; Kimble, J.M. Can Near or Mid-Infrared Diffuse Reflectance
Spectroscopy Be Used to Determine Soil Carbon Pools? Commun. Soil Sci. Plant Anal. 2006, 37, 2307–2325.

11. Knox, N.M.; Grunwald, S.; McDowell, M.L.; Bruland, G.L.; Myers, D.B.; Harris, W.G. Modelling Soil
Carbon Fractions with Visible Near-Infrared (VNIR) and Mid-Infrared (MIR) Spectroscopy. Geoderma 2015,
239, 229–239.

12. Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of Multivariate Methods for Inferential Modeling
of Soil Carbon Using Visible/near-Infrared Spectra. Geoderma 2008, 146, 14–25.

13. Lucà, F.; Conforti, M.; Castrignanò, A.; Matteucci, G.; Buttafuoco, G. Effect of Calibration Set Size
on Prediction at Local Scale of Soil Carbon by Vis-NIR Spectroscopy. Geoderma 2017, 288, 175–183.

14. Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among Principal Component,
Partial Least Squares and Back Propagation Neural Network Analyses for Accuracy of Measurement
of Selected Soil Properties with Visible and near Infrared Spectroscopy. Geoderma 2010, 158, 23–31.

15. Fystro, G. The Prediction of C and N Content and Their Potential Mineralisation in Heterogeneous Soil
Samples Using Vis-NIR Spectroscopy and Comparative Methods. Plant Soil 2002, 246, 139–149.

16. Brunet, D.; Barthès, B.G.; Chotte, J.L.; Feller, C. Determination of Carbon and Nitrogen Contents in Alfisols,
Oxisols and Ultisols from Africa and Brazil Using NIRS Analysis: Effects of Sample Grinding and Set
Heterogeneity. Geoderma 2007, 139, 106–117.

17. Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil Organic Carbon Prediction by Hyperspectral Remote
Sensing and Field Vis-NIR Spectroscopy: An Australian Case Study. Geoderma 2008, 146, 403–411.

18. Wenjun, J.; Zhou, S.; Jingyi, H.; Shuo, L. In Situ Measurement of Some Soil Properties in Paddy Soil Using
Visible and Near-Infrared Spectroscopy. PLoS ONE 2014, 9, e105708.

19. Zheng, G.; Ryu, D.; Jiao, C.; Hong, C. Estimation of Organic Matter Content in Coastal Soil Using Reflectance
Spectroscopy. Pedosphere 2016, 26, 130–136.



Appl. Sci. 2017, 7, 708 12 of 13

20. Guillén, C.E.; Dávila, M.J.; Gilliot, J.M.; Vaoudour, E. Aporte de la espectroscopia a la estimación de carbono
orgánico de los suelos de la planicie de Versalles, Francia. Revista Geográfica Venezolana 2013, 54, 85–98.

21. Baumgardner, M.F.; Silva, L.F.; Biehl, L.L.; Stoner, E.R. Reflectance Properties of Soils. In Advances
in Agronomy; Brady, N.C., Ed.; Academic Press: San Diego, CA, USA, 1986; Volume 38, pp. 1–44.

22. Reeves, J.B., III; McCarty, G.W.; Calderon, F.; Hively, W.D. Chapter 20—Advances in Spectroscopic
Methods for Quantifying Soil Carbon A2—Liebig, Mark A. In Managing Agricultural Greenhouse Gases;
Franzluebbers, A.J., Follett, R.F., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 345–366.

23. Stolpe, N.B. Descripción de Los Principales Suelos de La VII Región de Chile; Publicaciones del Departamento de
Suelos y Recursos Naturales—Universidad de Concepción: Chillán, Chile, 2006; Volume 1, p. 1.

24. Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for
near-Infrared Spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222.

25. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 1964, 36, 1627–1639.

26. Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the Soil Clay Content and
Organic Matter by Means of Different Calibration Methods of Vis-NIR Diffuse Reflectance Spectroscopy.
Soil Tillage Res. 2016, 155, 510–522.

27. Dube, F.; Stolpe, N.B. SOM and Biomass C Stocks in Degraded and Undisturbed Andean and Coastal
Nothofagus Forests of Southwestern South America. Forests 2016, 7, 320.

28. Casanova, M.; Salazar, O.; Seguel, O.; Luzio, W. Main Features of Chilean Soils. In The Soils of Chile; Springer:
Dordrecht, The Netherlands, 2013; pp. 25–97.

29. Wright, A.F.; Bailey, J.S. Organic Carbon, Total Carbon, and Total Nitrogen Determinations in Soils of Variable
Calcium Carbonate Contents Using a Leco CN-2000 Dry Combustion Analyzer. Commun. Soil Sci. Plant Anal.
2001, 32, 3243–3258.

30. Schafer, R.W. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117.
31. Kinoshita, R.; Roupsard, O.; Chevallier, T.; Albrecht, A.; Taugourdeau, S.; Ahmed, Z.; van Es, H.M. Large

Topsoil Organic Carbon Variability Is Controlled by Andisol Properties and Effectively Assessed by VNIR
Spectroscopy in a Coffee Agroforestry System of Costa Rica. Geoderma 2016, 262, 254–265.

32. Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, Scaling,
and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genom.
2006, 7, 142.

33. Adeline, K.R.M.; Gomez, C.; Gorretta, N.; Roger, J.M. Predictive Ability of Soil Properties to Spectral
Degradation from Laboratory Vis-NIR Spectroscopy Data. Geoderma 2017, 288, 143–153.

34. Henderson, T.L.; Baumgardner, M.F.; Franzmeier, D.P.; Stott, D.E.; Coster, D.C. High Dimensional Reflectance
Analysis of Soil Organic Matter. Soil Sci. Soc. Am. J. 1992, 53, 865–872.

35. Zhang, P.; Shao, M. Spatial Variability and Stocks of Soil Organic Carbon in the Gobi Desert of Northwestern
China. PLoS ONE 2014, 9, e93584.

36. Geladi, P.; Kowalski, B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17.
37. Haenlein, M.; Kaplan, A.M. A Beginner’s Guide to Partial Least Squares Analysis. Underst. Stat. 2004,

3, 283–297.
38. Jonathan, P.; Krzanowski, W.J.; McCarthy, W.V. On the Use of Cross-Validation to Assess Performance

in Multivariate Prediction. Stat. Comput. 2000, 10, 209–229.
39. Li, B.; Morris, J.; Martin, E.B. Model Selection for Partial Least Squares Regression. Chemom. Intell. Lab. Syst.

2002, 64, 79–89.
40. Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of Soil Organic Carbon for Different Levels

of Soil Moisture Using Vis-NIR Spectroscopy. Geoderma 2013, 199, 37–42.
41. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer,

P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

42. Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. Available online:
http://www.scipy.org (accessed on 5 May 2016).

43. Shen, H. Interactive Notebooks: Sharing the Code. Nat. News 2014, 515, 151.

http://www.scipy.org


Appl. Sci. 2017, 7, 708 13 of 13

44. Xie, H.; Zhao, J.; Wang, Q.; Sui, Y.; Wang, J.; Yang, X.; Zhang, X.; Liang, C. Soil Type Recognition as Improved
by Genetic Algorithm-Based Variable Selection Using near Infrared Spectroscopy and Partial Least Squares
Discriminant Analysis. Sci. Rep. 2015, 5, 10930.

45. Demattê, J.A.M.; Nanni, M.R.; da Silva, A.P.; de Melo Filho, J.F.; Santos, W.C.D.; Campos, R.C. Soil Density
Evaluated by Spectral Reflectance as an Evidence of Compaction Effects. Int. J. Remote Sens. 2010, 31, 403–422.

46. Abdi, H. Partial Least Squares Regression and Projection on Latent Structure Regression (PLS Regression).
Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106.

47. Brown, D.J.; Bricklemyer, R.S.; Miller, P.R. Validation Requirements for Diffuse Reflectance Soil
Characterization Models with a Case Study of VNIR Soil C Prediction in Montana. Geoderma 2005,
129, 251–267.

48. Viscarra Rossel, R.A. ParLeS: Software for Chemometric Analysis of Spectroscopic Data. Chemom. Intell.
Lab. Syst. 2008, 90, 72–83.

49. Askari, M.S.; O’Rourke, S.M.; Holden, N.M. Evaluation of Soil Quality for Agricultural Production Using
Visible-near-Infrared Spectroscopy. Geoderma 2015, 243–244, 80–91.

50. Knadel, M.; Gislum, R.; Hermansen, C.; Peng, Y.; Moldrup, P.; de Jonge, L.W.; Greve, M.H. Comparing
Predictive Ability of Laser-Induced Breakdown Spectroscopy to Visible near-Infrared Spectroscopy for Soil
Property Determination. Biosyst. Eng. 2017, 156, 157–172.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Site Description
	Soil Sampling, Total Carbon Analysis and Spectral Measurement
	 Spectral Pre-Processing and Reflectance Analysis
	Cross-Validation and Partial Least Squares Regression 

	Results and Discussion
	Soil Total Carbon
	Spectral Pre-Processing 
	Effect of Soil TC on Reflectance
	Cross-Validation (CV) and Partial Least Squares Regression 
	Cross-Validation
	PLSR Calibration


	Conclusions

