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Abstract: A timing recovery algorithm is introduced that operates with less than two samples per
symbol and provides an enormous complexity reduction. The complexity reduction is due to a
synergy with the already existing Fourier transforms in a coherent receiver, an avoidance of terms
that are dominated by noise, and a complete elimination of multiplications. A simulation and an
experiment with a single carrier modulation format show that the inherent timing jitter is, despite
of the significant complexity reduction, comparable with the state of the art, and in particular
outperforms the Godard algorithm for low roll-off factors. In addition, it is one of the few algorithms
that operates with less than two samples per symbol in the frequency domain, and thus enables the
lowest complexity in a receiver.

Keywords: optical communication; timing recovery; sampling phase estimation; field-programmable
gate array (FPGA)-based real-time processing

1. Introduction

Timing recovery estimates and corrects the sampling phase in a receiver. As transmitters and
receivers usually operate using different clock sources, sampling points at the receiver will not be
aligned to the incoming data symbols. This corresponds to small sampling frequency offsets and
drifting sampling phase relations. A timing recovery then estimates the sampling phase and resamples
the signal to align the symbols and samples.

The synchronization of the receiver clock can be achieved in the analog or the digital domain.

e  Most analog receivers rely on a phase locked loop (PLL). Here, the received signal is multiplied
with a reference clock and the low pass filtered product is used to drive a voltage-controlled
oscillator (VCO). This way, the reference clock, which is the output of the VCO, is converging to
the transmitter clock. This synchronized clock is used to process the signal. The concept of the
PLL can be extended to a Costas loop, which has increased sensitivity and therefore reduced jitter
in the estimate.

e Next generation receivers mainly operate in the digital domain. A number of digital processing
techniques have been developed. These techniques can be classified into three categories: pure
time domain, combined time and frequency domain, and pure frequency domain. Pure time
domain techniques typically observe the shape of the received waveform. These techniques
process the time domain signal and shift the sampling time towards the maximum eye opening.
The most common candidate of this group is the Gardner method [1]. Here, two samples per
symbol are acquired, and the samples are shifted in such a way that the zero crossings occur
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right in between the samples that correspond to the symbols. Another common technique is the
early-late gate synchronization (also called the Alexander phase detector) [2]. Three samples
are acquired and compared. The correct sampling phase is reached when the early and the late
samples have a similar amplitude and the optimum sample in between is located at the maximum
of the pulse. In addition, techniques that use symbol decisions in a decision directed approach are
proposed in the literature. One example of such a structure is the Mueller and Miiller algorithm [3].
Combined time and frequency domain techniques process a time signal and calculate a frequency
domain coefficient corresponding to the clock tone of the signal. This clock tone then contains
the sampling phase information. Two commonly known examples are the Order and Meyer
technique [4] and the Lee technique [5]. Both are flexible with respect to oversampling (the Order
and Meyer technique requires more than two samples per symbol), but are rather computationally
heavy. In the pure frequency domain technique, the domain coefficients of the signal can be used
to calculate the clock tone directly with the Godard [6] algorithm. Here, a twofold oversampled
signal is processed in the frequency domain.

These techniques are designed to operate with a single carrier modulation format, such as pulse
amplitude modulation (PAM) or quadrature amplitude modulation (QAM) with different pulse shapes.
It is interesting to note that most of the techniques mentioned above are approximately equivalent, and
can be converted into each other [7]. Therefore, the main question is which implementation is most
versatile for a variety of signals, symbol rates, and oversampling factors, while still allowing for a low
complexity implementation. The ideal timing recovery technique would fulfill two conditions. First, it
should operate with less than two samples per symbol to reduce the total amount of samples that have
to be processed. Second, it should operate in the frequency domain to benefit from the already existing
Fourier transform blocks for chromatic dispersion compensation and filtering. However, none of the
shown state-of-the-art techniques meets both conditions.

In this paper, we present our real-time capable modified Godard timing recovery [8]. It operates
with non-integer oversampling and less than two samples per symbol. The timing estimate is obtained
from the frequency domain coefficients. It is designed for single carrier modulation formats, and
benefits especially from a coherent system of the already existing Fourier transformation blocks. The
modified Godard algorithm shows reduced jitter when compared to the Godard algorithm, especially
for low roll-off factors. A further optimization permits the elimination of all multiplications for the
actual implementation. Our hardware implementation shows a significant reduction in resource
requirements and proves to be practical for real-time applications. The simulations are supported by
an experiment using 32 GBd 16QAM signals.

The remainder of the paper is organized as follows. Section 2 proposes an architecture of a
coherent optical receiver with frequency domain processing. Here, the timing synchronization is
realized in the frequency domain. Section 3 derives the modified Godard algorithm, and shows how
all multiplications can be removed. Section 4 shows the jitter of the Gardner algorithms and gives
detail to the resulting bit error ratio (BER) for a certain timing jitter. Section 5 presents the real-time
implementation of the multiplier-free modified Godard algorithm and its resource occupation. The
capability of the modified Godard algorithm is substantiated with experimental results in Section 6.

2. Non-Integer Oversampling Receiver Architecture in the Frequency Domain

The proposed coherent signal processing structure is shown in Figure 1. Four analog-to-digital
converters (ADC) convert the analog output of the coherent receiver’s front-end to the digital domain.
The four signals correspond to in-phase and quadrature components of x- and y-polarization. These
four channels are converted to the frequency domain by a discrete Fourier transform (DFT). For a
reliable timing recovery, we apply the following synchronization algorithms beforehand: chromatic
dispersion compensation, coarse polarization alignment, coarse carrier frequency offset correction [9],
and matched filtering. Then, the timing recovery operates in a feedback loop. The timing recovery
consists of the modified Godard estimator and the timing correction block. The timing correction block
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performs a frequency domain resampling of the signal. After the timing correction, the signal can be
downsampled to one sample per symbol. Then an inverse discrete Fourier transform (IDFT) converts
the signal back to the time domain. A 2x2 equalizer equalizes the signal and does fine polarization
demultiplexing. The carrier recovery corrects the frequency and phase offsets of the signal. Finally,
demapping converts the complex symbols back to binary information.
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Figure 1. Overview of the receiver signal processing chain with the timing synchronization in the
frequency domain. Four analog-to-digital converters (ADC) sample the analog input. A discrete Fourier
transform (DFT) converts the signal to the frequency domain. Subsequently, the synchronization
blocks for chromatic dispersion (CD) compensation, coarse (crs) polarization alignment, coarse
carrier frequency offset (CFO) synchronization, and matched filtering are applied. Then, the timing
synchronization feedback loop estimates and corrects the sampling phase offset. An inverse discrete
Fourier transform (IDFT) converts the signal back to the time domain. A 2 x 2 equalizer separates
the two polarizations and equalizes the signal. A carrier recovery corrects for frequency and phase
offsets. Finally, demapping converts the complex symbols to binary information. DFT: discrete Fourier
transform, IDFT: inverse discrete Fourier transform.

The advantage of frequency domain processing for the timing correction becomes clear when
looking at the mathematical operations required for resampling. While resampling in the time domain
requires a convolution with a sinc-function, frequency domain processing is much simpler. Here, a
time shift corresponds to applying a linearly increasing phase shift as a function of frequency. The
phase slope describes the strength of the timing shift. This is explained by Equation (1).

Fy(t—10))(f) = Fy(t)(f) - exp(—j27fto) 1)

Here, 7 (y(t))(f) = y(f) is the Fourier transform of the time domain signal y(¢), and ¢ is the time shift.

The implementation complexity of Equation (1) is influenced by two aspects. First, a variable
digital filter is needed to handle the varying time shift. Second, downsampling to one sample per
symbol is needed for the final symbol decision. When performing the timing recovery in the time
domain, an efficient implementation for the variable digital filter is the Farrow structure [10]. Here,
a change in ¢y results in an update of only one scalar value, whereas in the general case, all finite
impulse response (FIR) filter coefficients have to be adapted with respect to the time shift. The filter
coefficients could be determined with the Lagrange interpolation, however this brings in some band
limitation [11]. Additionally, when the conversion factor for the downsampling to one sample per
symbol is a ratio of very large integers, fractional delay filters become difficult to implement and
computationally expensive [12]. The increased complexity results out of the higher amount of filter
coefficients that are needed to sustain a desired performance.

However, in the frequency domain, oversampling factors consisting of large integers can be
efficiently handled by adapting the ratio of DFT to IDFT size. The delay with a certain time shift is
done by manipulating the phase according to Equation (1).
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Further insights on the tracking of chromatic dispersion (CD), polarization, and coarse carrier
frequency offset (CFO) can be found in [13]. Here, we observed that the clock tone gives insight on
how to synchronize these impairments.

3. Multiplier-Free Modified Godard Timing Recovery

The Godard algorithm is a technique that estimates the timing error of a signal with at least two
samples per symbol based on frequency domain coefficients [6]. Equation (2) shows an adaption of the
discretized representation as used in [14].

N
N1

k=0

Here, 7y is the discrete Fourier transform of the received time domain signal r,,, N is the size of
the DFT, and (.)" is the complex conjugate.

By calculating the imaginary part of this CT (as shown in Equation (3)), the Godard technique
is realized.

N
2

fs,Godard = Z Im{7k7li<+N/2} (3)
k=0

The estimate f; Gogard follows a sinusoidal shape, which is commonly referred to as an s-curve
(see Section 4 for further details). For positive estimates, the samples were taken too late with respect
to the symbols, while for negative estimates, the samples were taken too early. Due to the sinusoidal
shape, there is no unique correspondence between the timing error and the value of the estimate. As a
result, this scheme cannot be used for feedforward structures. For feedback structures, the sign of the
estimate can be used to control a feedback loop. The loop operates towards the zero crossing of the
estimate between too late and too early and therefore the ideal sampling phase. When calculating the
angle instead of the imaginary part, a linear dependence between the timing error and the estimate
can be observed. A normalization by 1/27t provides the estimate for a feedforward timing correction.

3.1. Modified Godard Algorithm for Simplified Clock Tone Calculation

The clock tone calculation can be simplified. To illustrate the necessary steps, we start with
Figure 2 that shows a graphical representation of the DFT coefficients used to calculate the Godard
estimate. The Godard algorithm multiplies the positive frequency components (upper sideband, red
part in Figure 2) with the complex conjugate of the negative frequency components (lower sideband,
green part in Figure 2). Note that the DFT spectrum is N periodic, so that the coefficients 74 5 /> and
Tx_N/2 are equal.

Alf]

—N ~N/2 0 N/2

Figure 2. Illustration of the magnitude of typical DFT coefficients needed to calculate the Godard
timing error estimate. The DFT spectrum is N periodic. The upper sideband is colored in red and the
lower sideband is colored in green.

Figure 2 displays a spectrum from —N to N. Commonly, a spectrum is displayed from —N /2 to
N/2. In the following derivations, we will display the spectrum from 0 to N for explanatory reasons.
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The Godard algorithm can be improved in two steps, resulting in the modified Godard technique.
In the first step, terms that do not contribute to the timing estimate are neglected. In the second step,
the algorithm is adapted to arbitrary oversampling, which allows for operation with less than two
samples per symbol.

For the first step, we simplify Equation (3) by dropping terms in the summation that only give
negligible contributions. To illustrate this process, we show it graphically in Figure 3. Here, the
magnitude of 7y and 7y, /2 is displayed in Figure 3a,b, respectively. Figure 3c shows the overlap of
both spectral parts and their multiplication according to Equation (3) in blue. This illustrates that only
some elements provide meaningful contributions to the timing estimate. The other elements are zero
in magnitude and only contaminate the estimate with additional noise. Moreover, it can be seen that it
is sufficient to calculate the sum from 0 to N/2 — 1, because the sum from N/2 to N — 1 would only
add a factor of two.
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Figure 3. First adaption towards the modified Godard algorithm by neglecting unnecessary terms.
(a) Shows the magnitude of the coefficients Ty of a twofold oversampled, raised-cosine spectrum with
roll-off factor 1/3. (b) Shows the spectrum shifted by N /2. (c) Shows the overlap of Ty and T, /2 and
in blue their multiplication. It can be seen that elements of the multiplication are zero and so negligible.

With the first adaption of neglecting the terms without information, the estimation of the timing
error changes to Equation (4).

4 N_q
2 2
A ~ ~x
Te = Im {7 N2} 4)
=1 N
2 2

Consequently, the size of the area (see the blue in Figure 3c) depends on the roll-off factor and
therefore the excess bandwidth. It is interesting to note that Godard has already discussed band-pass
filtering of the signal sidebands for a practical implementation. Such a band-pass filtering corresponds
to a reduction of the summation limits as elaborated above. Limiting the summation by the excess
bandwidth was also discussed in [15].

To evaluate the influence of the adaption on performance, we use the variance ¢ of the timing
estimation error in logarithmic scale. This so-called jitter is calculated from the fluctuations of the
estimate around the actual value. The calculated jitter is displayed in Figure 4. The red curve shows
the jitter over roll-off factor for the original Godard technique, and the green curve shows that for
the modified Godard technique. It can be seen that the modified Godard technique has a reduced
jitter, especially for smaller roll-off factors. For larger roll-off factors, the modified Godard algorithm
converges to the original Godard algorithm. Therefore, it can be summarized that neglecting the outer
elements reduces the amount of computational steps, but nevertheless improves the performance of
the estimate.
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Figure 4. Simulation results for the jitter over roll-off factor. The results of the Godard algorithm (red)
and modified Godard algorithm (green) are shown. (M = 16QAM quadrature amplitude modulation,
amount of evaluated symbols per roll-off factor equals 51.2 million, random data, DFT size 1024,
oversampling of 2, SNR = 16.5 dB); QAM: quadrature amplitude modulation; SNR: signal-to-noise ratio.

The second step takes the amount of oversampling of the processed signal into account. This is
illustrated in Figure 5, where the oversampling # is reduced from 2 to 4/3. The original Godard
technique would fail in this situation because it requires two samples per symbol. However, when
overlapping the red and green half of the spectrum as displayed in Figure 5c, the estimate for the
timing error can still be calculated.
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Figure 5. Second simplification towards the modified Godard algorithm by adapting the shift to the
amount of oversampling. (a) Shows the coefficients 7} of an 4/3 oversampled, raised-cosine (RC)
spectrum with roll-off factor 1/3. (b) Shows the spectrum shifted by N /4. (c) Shows the overlap of |7y
and |7y n/4|- The multiplication is only calculated in the area of N/4 to N/2 — 1. Even though the
oversampling is reduced to below two, the estimate can still be calculated.
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This adaption brings us to:

N1
21

Ty = 12‘;; Im {77 (1_1/yn ), Withyp 2 p+1and 0 < p < 1. (5)
kZZ_TN

B, 17, and N should be chosen in a way such that the lower and upper bound of the summation results
in an integer number.

Without oversampling (7 = 1), the roll-off factor would have to be zero and so the sum would no
longer contain any elements. Therefore, # > 1 and B > 0 is required for timing error estimation in
the frequency domain. The same limitation occurs for a duobinary signal [16]; here too, no elements
would be left in the summation.

3.2. Multiplier-Free Modified Godard Algorithm

Reducing the number of required multiplications typically leads to a reduced computational
complexity. So far, Equation (5) has BN /# complex multiplications per timing error estimate. Now, we
substitute these multiplications with an approximation. For this, we adapt to Equation (6) were we
perform the calculation in polar coordinates.

=), Im{|7k|‘7k+(1—1/f7>N"eXP(i(arg(7k)_arg(7k+<1—1/'7)N))>} (©)

Calculating the imaginary part results in:

LEN-1
2

Te= ), |7k|‘7k+(171/r])N"Sin(arg(?k)_arg(7k+(171/;7)N))' ?)
k=1EN

In a hardware implementation, the multiplier-free CORDIC algorithm performs the
transformation from Cartesian to polar coordinates [17].

Our investigations revealed that neglecting the magnitude of Equation (7) does not significantly
decrease the performance of the modified Godard algorithm, but simplifies the calculation. Therefore,
we can calculate the timing estimate as described in Equation (8).

1+
SEN-1

= 7% sin(ans() - as(era i) ) ®
k=%EN

The influence of neglecting the amplitude can be seen in Figure 6. Neglecting the amplitude
results in a severe performance decrease for the original Godard (see red dashed curve). The reason for
this is that the elements with zero magnitude, which we neglected for the modified Godard algorithm,
now have the same influence as the elements that contain the phase information. This clearly decreases
performance. Since, for the modified Godard, we only consider elements that are of interest, the

amplitude neglect does not have a big influence.
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Figure 6. Simulation results for the jitter over roll-off factor for Godard and modified Godard and
the multiplier-free version. (Signals with an oversampling of two, 16QAM, and SNR = 16.5 dB
were simulated).

For the feedback loop, we are only interested in the zero crossing of the estimate. For this reason,
the first Taylor expansion of the sine function can be used (see Equation (9)). This adaption eliminates
the last computationally heavy calculation, and we are only left with additions.

=), arg('fk)—arg(?kﬂlfl/ﬂ)l\’) ©

4. Comparison of the Modified Godard Algorithm to the Gardner Algorithm

In this section, the timing estimation algorithms are extended to include the Gardner algorithms.
For this, we first comment on how timing jitter can be determined, and then compare the different
versions of the Godard algorithm from above with the two versions of the Gardner algorithm.
Timing jitter can be calculated from the statistics of the zero crossing of the s-curve (see Figure 7) [7,18].
This can be achieved in four steps. First, we resample the signal to several sets with a different timing
offset. Second, we evaluate the timing estimate with a feedback algorithm. Third, we fit a sinusoidal to
the estimates. Fourth, we determine the zero crossing of the sinusoidal. This zero crossing will have
zero mean, and its variance gives a quantitative estimate of the timing jitter. The timing jitter can be
calculated with Equation (10):
Jitterqg = 10log;,(var(%e)). (10)

The Gardner algorithm can be used in two ways. It can be applied to the signal amplitude [1]
as well as the signal power [18]. Figure 8 shows the jitter over roll-off factor of six different timing
estimation algorithms for a 16QAM signal with an SNR of 16.5 dB. The six different algorithms consist
of different versions of the Godard algorithm as well as the two Gardner algorithms. It can be seen
that the Gardner algorithm with the signal amplitude lies in the range of the Godard and modified
Godard algorithms. The Gardner algorithm applied to the signal power provides the lowest jitter for
signals with roll-off factors smaller than 0.05.
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Figure 7. S-curve for a signal with 16QAM, SNR = 16.5 dB, and roll-off factor of 0.1, 6 million symbols
were simulated. The s-curve shows the response of a feedback timing estimation algorithm (Gardner

algorithm in this case) to a signal with a timing error varying between —0.5 and 0.5. The color indicates

the probability of occurrence. The jitter corresponds to the distribution of the zero crossing.
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Figure 8. Jitter over roll-off factor for a signal with 16QAM with an SNR of 16.5 dB (BER = 10~%). BER:

bit-error ratio

Our simulations show that the result of Figure 8 applies to a wide range of modulation formats
and SNRs, and will only result in an increased timing jitter for the Gardner algorithm applied to the
signal power when switching to more advanced modulation formats or decreasing the SNR.

Next, we will determine the BER for a certain timing jitter. To simulate the timing jitter, we
used a normal distribution with zero mean and a variance according to the desired timing jitter. This
distribution was used to resample the signal and measure the resulting BER afterwards. Figure 9
shows the resulting BER for different timing jitter values. A 16QAM signal with a roll-off factor of 1,
0.5, and 0.01 is simulated. The signals are evaluated with an SNR of 100 dB and an SNR of 16.5 dB. It
can be seen that a signal with a roll-off factor of 1 is most resilient to timing jitter. When operating at a
BER of 103, the signal quality below a timing jitter of —20 dB is dominated by the SNR. Therefore,
a timing jitter below —20 dB does not bring benefit to the signal quality.
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Figure 9. BER over jitter for a signal with 16QAM with different roll-off factors. The results for an SNR

of 100 dB and 16.5 dB are shown.

The timing jitter has a different impact on signals with different modulation formats. The higher
the order of the modulation format, the stronger the impact of the timing jitter. Figure 10 shows the
BER over timing jitter for a signal with roll-off factor of 0.1 and quadrature phase-shift keying (QPSK),
16QAM, and 64QAM as modulation formats. As expected, it can be seen that QPSK is more robust to

timing jitter than 16QAM and 64QAM.
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—_—

SNR = 100dB u
\

\

[}

\
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- 16QAM
— 64QAM

-

Jitter [dB]

-25 -30

Figure 10. BER over roll-off factor for a signal with roll-off factor 0.1 and modulation formats of QPSK
(blue), 16QAM (red), and 64QAM (yellow) are shown. The results are plotted for an SNR of 100 dB and
9.8 dB, 16.5 dB, 22.5 dB, respectively; QPSK: quadrature phase-shift keying.

The values in Figures 9 and 10 were obtained without averaging the timing jitter. Since the
estimates are unbiased and the drift of the timing estimate over time is rather small, averaging the
estimates will reduce the jitter significantly. With these considerations, timing jitters above —20 dB

will also allow an operation at a BER of 1073.

5. Realization of Multiplier-Free Modified Godard on Real-Time Platform

To estimate the complexity of a hardware implementation, the multiplier-free modified Godard
algorithm derived above was implemented in very high speed integrated circuit (VHSIC) hardware
description language (VHDL) and tested with Xilinx Vivado and Mentor Graphics ModelSim. For



Appl. Sci. 2017, 7, 655 11 of 14

comparison to a pure time domain algorithm, we implemented the Gardner algorithm. The Gardner
algorithm is seen as a candidate for next-generation receivers [19].

The hardware design is realized for an oversampling of 4/3, a clock frequency of 250 MHz,
96 symbols per clock cycle (=24 GBd), and 6 bit resolution. Table 1 compares the modified Godard
hardware requirements of the implementation in Xilinx Vivado with a Gardner synchronization in the
time domain.

Table 1. Hardware requirements for Gardner and modified Godard algorithms (Percentages are given
with respect to the Xilinx Virtex 7 xc7vx690t board).

. Gardner Modified Godard
Algorithm
Estimation Correction Estimation Correction
Lookup tables 1435 (<1%) 35,652 (8%) 694 (<1%) 1612 (<1%)
Flip-flops 1932 (<1%) 78,280 (9%) 871 (<1%) 11,641 (1%)
DSP 97 (3%) 2016 (56%) 0 (0%) 0 (0%)

When compared to the frequency domain, the time domain adaptive FIR filter for timing correction
requires 22 times more lookup tables, 6 times more flip-flops, and an additional 2016 DSP slices for
multiplications. Additionally, to the estimate and correction, as listed in Table 1, roughly 36% of the
lookup tables (LUT) and 18% of the flip-flops (FF) would be required for the transformation to the
frequency domain and the transformation to polar coordinates. However, the DFT transformation
is needed for CD compensation and other equalization stages anyway, and the polar transformation
greatly simplifies the CD compensation as well.

To test the performance of the timing synchronization loop, a signal with a certain timing error
was generated in Matlab and sent to the test bench in ModelSim. To test the dynamic and the static
response of the loop, the test signal was impaired for the first 8 ps with a sampling frequency offset
of 50 kHz, and for the following 8 us the sampling frequency offset was set to zero (red curve in
Figure 11). From the line plotted in green, one can see how the modified Godard algorithm corrects
the timing error. After 2 ps settling time, the 50 kHz sampling frequency offset is tracked successfully.
The offset between introduced and corrected error results from the latency between error estimation
and correction. For all tested modulation formats (QPSK, 8QAM, and 16QAM, depicted as insets
in Figure 11), the same synchronization loop behavior was observed. Therefore, the performance is
independent of the modulation format.

05
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= 025¢ | 0.0 28
. 1O
9 (o]
= 0 ¢ 1 | | oggo |
2 )
£
=
025 —| - 0000|-
—introduced emor 8888
comrected emor 0000
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Figure 11. ModelSim analysis of the timing correction (SNR = 10 dB, 16QAM, n = 4/3, p =1/3,
sampling frequency offset 50 kHz). Insets show constellation diagrams with timing error and QPSK,
8QAM, and 16QAM after timing synchronization for a BER of 1073.
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6. Performance Evaluation in Experiment

Finally, we show the performance difference between the six timing estimation algorithms
(see Figure 8) for signals with different roll-off factors based on experimental results. To this end, a
DP-16QAM signal with 32 GBd and a varying roll-off factor was measured. To enable a roll-off factor
between 0.01 and 1, an oversampling of two was used for all of the evaluated signals.

Figure 12 shows the experimental setup. DP-16QAM signals with the desired pulse-shape (roll-off
factor 0.01-1.0) and random data with a length of 2!° bits were generated offline. The in-phase and
quadrature parts for both polarizations of the signal were converted to the analog domain by four
digital-to-analog converters (DAC) with a sampling rate of 64 GSa/s and 20 GHz electrical bandwidth.
The output of the DACs was used to modulate the signal laser with a dual-polarization in-phase and
quadrature (IQ) modulator. Noise was added to reach the desired BER of 1073. A coherent receiver
consisting of a 90° hybrid with four balanced detectors and four analog-to-digital converters (ADC)
with 32 GHz electrical bandwidth received the optical signal. Finally, offline processing was used to
evaluate the signal and determine the roll-off dependence of the compared algorithms.
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% ¥7l |_ 3dB -§-| >-§-:I?->N¥->[ADC}>85

) 2 ol o

e & Py ADC b

5 > vl &
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Figure 12. Overview of measurement setup. The transmitter consists of offline signal generation, four
digital-to-analog converters (DAC), and a laser being modulated with a dual-polarization in-phase and
quadrature (IQ) modulator. Noise was added to reach the desired BER. A coherent receiver with a local
oscillator (LO) and four channels with balanced detectors and analog-to-digital converters is used to
receive the signal. The detected signal is evaluated in offline digital signal processing (DSP).

The frequency domain signal processing chain described in Figure 1 was used to evaluate the
received signal. Since a transmission over a longer distance would not give further insight to the
comparison of the timing estimation algorithms, the CD correction step could be skipped for our
comparison. Figure 13 shows the jitter over roll-off factor for the two versions of Godard, modified
Godard, and Gardner timing estimation algorithms. These findings match our simulations that were
presented before (see Figure 4).
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Figure 13. Measurement results for timing jitter over roll-off factor. (M = 16QAM, 32 GBd, amount of
symbols per roll-off factor 0.5 million, fast Fourier transform (FFT) size 1024).

7. Conclusions

A modified Godard timing estimation algorithm that allows for fast and efficient timing estimation
has been introduced. It enables operation with less than two samples per symbol, which is not possible
with the original Godard technique. The algorithm outperforms the multiplier-free Godard by, e.g.,
showing an improvement of more than 10 dB in jitter tolerance for a roll-off of 0.1. When compared to
an implementation of the Gardner algorithm with the signal power, the newly introduced algorithm
comes at the price of a slightly higher jitter for small roll-off factors, but pays off by allowing operation
without any multiplications, an overall complexity reduction by more than a factor of two, and a factor
of 22 and 6 times less LUTs and flip-flop operations, respectively.
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