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Abstract: Dementia is the most prevalent degenerative disease in seniors in which progression can be
prevented or delayed by early diagnosis. In this study, we proposed a two-layer model inspired by
the method used in dementia support centers for the early diagnosis of dementia and using machine
learning techniques. Data were collected from patients who received dementia screening from 2008
to 2013 at the Gangbuk-Gu center for dementia in the Republic of Korea. The data consisted of
the patient’s gender, age, education, the Mini-Mental State Examination in the Korean version of
the CERAD Assessment Packet (MMSE-KC) for dementia screening test, and the Korean version
of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD-K) for the dementia
precise test. In the proposed model, MMSE-KC data are initially classified into normal and abnormal.
In the second stage, CERAD-K data are used to classify dementia and mild cognitive impairment.
The performance of each algorithm is compared with that of Naive Bayes, Bayes Network, Begging,
Logistic Regression, Random Forest, Support Vector Machine (SVM) and Multilayer Perceptron (MLP)
using Precision, Recall and F-measure. Comparing the F-measure values of normal, mild cognitive
impairment (MCI), and dementia, the MLP was the highest in the F-measure values of normal with
0.97, while the SVM appear to be the highest in MCI and dementia with 0.739. Using the proposed
early diagnosis model for dementia reduces the time and economic burden and can help simplify the
diagnosis method for dementia.
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1. Introduction

Quality of life has increased with the development of medical technology, and as the average
human lifespan increases the senior population is growing. Additionally, the pace of aging is
accelerating. Countries today are facing an aging society, which poses many changes and challenges
for society [1,2]. In particular, the number of dementia patients is increasing because of the
increase of the senior population. Dementia is the most prevalent degenerative disease in seniors.
There are 47.5 million people living with dementia around the world, a majority of whom (58%)
live in middle- and low-income countries. Each year brings 7.7 million new cases of dementia [1].
The number of dementia patients is expected to more than triple by 2050. As the number of dementia
patients increases dramatically, the socioeconomic, psychological, physical, and economic burdens for
dependents’ families are also increasing [2].

Dementia can be sorted into dementia caused by Alzheimer’s disease, cerebrovascular dementia,
hypothyroidism, benign brain tumors, etc. Alzheimer’s accounts for about 60% to 70% of dementia
patients; it is caused by aging, family history, and depression. However, the presence of Alzheimer’s
disease can serve to delay the progression of dementia when it leads to early diagnosis. Cerebrovascular
dementia, which affects about 20% to 30% of demented patients, is caused by diseases such as
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hypertension, heart disease, diabetes, arteriosclerosis, cerebral hemorrhage, and cerebral infarction.
Cerebrovascular dementia can be prevented through risk factor management, and can be treated
by medicine. Other dementia can be treated by surgery, such as removing the thyroid or benign
brain tumor.

Previous research on dementia was focused on treatment and care after the onset of the disease.
However, as mentioned before, early diagnosis may delay the progression of dementia [3].

Generally, there are three stages to dementia diagnosis. The first stage is a screening test for
cognitive ability using the MMSE-KC (Mini-Mental State Examination in the Korean version of the
CERAD Assessment Packet). The second stage involves performing neuropsychological assessment
using CERAD-K (the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease)
for those who are not diagnosed as normal in the screening test. The final stage is to diagnose (R/O)
for dementia or mild cognitive impairment (MCI) by doctor consultation and carer interview. After
the third stage, the suspected patients are definitively diagnosed using MRI or CT and blood tests in
hospital. As a result, patients are classified into categories of normal, MCI, and dementia.

In this paper, we propose a two-layer model for the early diagnosis of dementia, inspired by the
diagnosis approach used in dementia support centers and using machine learning methods. The first
layer is a screening test to classify subjects as normal or abnormal, while the second layer is close
examination, classifying cases as MCI or dementia.

In the first stage, data preprocessing is performed based on the MMSE-KC data. The next step
is to select the required features. Once the feature selection is completed, the data are learned by
the selected features, and classified into normal and cognitive decline groups. Finally, the first step
classifies the normal group. In the second stage, CERAD-K data are learned, using machine learning
algorithms, for classifying MCI and dementia.

Therefore, the structure of the model is similar to the existing dementia screening method, and its
effect is simplifying the dementia screening process.

The data were collected from patients who visit and are tested at the Gangbuk-Gu center
for dementia in Seoul, Republic of Korea. We collected patient information such as age, gender,
education, and test results using MMSE-KC and CERAD-K. To these data we applied machine learning
techniques, which are useful for data analysis and are used in various domains. We used supervised
learning algorithms such as Support Vector Machine (SVM), Naive Bayes, Multilayer Perceptron
(MLP), Bayesian Network, Begging, Logistic Regression, Random Forest evaluation method using
F-measure, precision and recall.

We initially examined the influence of each feature through feature selection using chi-squared
and information gain algorithms. As a result, MLP, SVM and logistic regression showed the highest
F-measure value of normal, MCI, and dementia, respectively.

This paper is organized as follows: Section 2 explains the existing diagnosis methods of dementia;
Section 3 explains the architecture of the proposed prediction model for early diagnosis of dementia;
and Section 4 explains results and discussions. Finally, Section 5 illustrates the conclusions.

2. Related Works

Dementia, an illness of the brain, attacks cognitive activities such as memory, rationality,
and thought. It is caused either by old age or traumatic injury, with approximately 60–70% of
cases attributable to Alzheimer’s disease [4]. Dementia increases in severity the longer it goes
undiagnosed. The process of diagnosis involves three steps: the first involves consulting a physician;
the second consists of completing an array of neuropsychological tests; the third involves an MRI
scan [5]. This paper addresses the early diagnosis of dementia by means of neuropsychological
testing in tandem with demographic information. Commonly used neuropsychological measures
include the Mini-Mental State Examination (MMSE), the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD), the Blessed Orientation-Memory-Concentration Test (BOMC), the
Montreal Cognitive Assessment (MoCA), a brief informant interview to detect dementia (AD8), and
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the General Practitioner Assessment of Cognition (GPCOG), with each presenting certain advantages
and limitations. MMSE and CERAD are currently most used, since they can be administered regardless
of the subject’s gender, education, culture or religion [5–8].

MMSE-KC (Mini-Mental State Examination in the Korean version of the CERAD Assessment
Packet) is used to screen and measure impairment of cognitive function. The MMSE tests and scores
six domains (1) orientation, (2) registration, (3) attention and calculation, (4) recall, (5) language and
(6) constructional ability [9,10]. Tables 1 and 2 show the contents of the neuropsychological assessment
tests used in the screening test (MMSE-KC) and the precise examination (CERAD-K) used in this paper.

Table 1. Mini-Mental State Examination in the Korean version of the CERAD (Consortium to Establish
a Registry for Alzheimer’s Disease) Assessment Packet (MMSE-KC).

Category Description

Orientation to time From broadest to most narrow. Orientation to time has been
correlated with future decline

Orientation to place From broadest to most narrow. This is sometimes narrowed
down to streets, and sometimes to floor

Registration Repeating named prompts

Recall Registration recall

Attention and calculation
Serial sevens, or spelling “world” backwards. It has been
suggested that serial sevens may be more appropriate in a
population where English is not the first language

Language Naming a pencil and a watch

Repetition Speaking back a phrase

Complex commands Draw pentagonal overlap.

Three-stage commands Give the patient a piece of plain blank paper and ask him to
follow your instructions

Understanding and decision Understanding and decision

Table 2. Neuropsychological Testing (Korean version of the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD-K)).

Category Description

Word fluency Enumerate in one minute as many instances of “animal” as
possible

Boston naming Respond to the name of the picture shown

MMSE-KC Table 1

Memory function

Trial 1 Recall after knowing 10 noun words

Trial 2 Word list (Trial 1) recall

Trial 3 Present 10 new words in a word list (Trial 1) and make sure
that they are distinguished from the old words

Visuospatial function Trial 1 Transcribe four line drawings of advancing difficulty: circle,
trapezoid, overlapping quadrilaterals, cube

Trial 2 Repeat Trial 1

Mental flexibility Number Draw a line that sequentially connects randomized numbers

Number & Letter Link numbers and letters in an alternating sequence

CERAD-K (the Korean version of the CERAD neuropsychological assessment battery) is mainly
used for scrutiny. CERAD began with researchers at sixteen major Alzheimer’s research centers in the
United States and was developed for standard diagnosis and evaluation of Alzheimer’s patients [11,12].
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CERAD can examine areas that are more intense than MMSE, such as language fluency, verbal memory
ability, time span configuration ability, and depression.

Because analysis and decision-making about the results from these sorts of tests depend on the
inclinations of the psychologist (and thus human error cannot be avoided), machine-based analysis
and data mining approaches have been widely used to alleviate inconsistencies. In this paper, machine
learning algorithms are explored to determine if the analysis of neuropsychological and demographic
data can be automated for the early diagnosis of dementia. According to Chen and Herskovits [13] in
their study of various statistical and machine learning methods, a Bayesian-network classifier and a
SVM performed best in assessing participants afflicted by little or no dementia. In a study conducted
by Joshi et al. [4], machine learning and neural network methods were used for classifying dementia
states to improve accuracy over current dementia screening tools, MMSE and the Functional Activities
Questionnaire. The findings showed that the accuracy can be optimized by combining both the tests
along with machine learning and neural network.

Trambaiolli and Lorena [3] previously used electroencephalography (EEG) data to classify patients
with normal cognition and Alzheimer’s or MCI by learning the EEG pattern of Alzheimer’s patients
using the SVM algorithm. As a result, EEG Epochs showed a high accuracy (79.9%) and the SVM result
was about 87%. Williams and Weakley [14] compared the CDR (Clinical Dementia Rating) score and
the method of screening dementia using Naive Bayes, Decision Tree, Neural Network, and SVM. The
results of the evaluation of the severity of dementia showed that Naive Bayes was the most accurate
and SVM had the lowest accuracy. Cho and Chen [15] proposed a hierarchical double layer structure
for the early diagnosis of dementia. This is a model that predicts early diagnosis of dementia using a
Bayesian network in the top-layer after diagnostic prediction with FCM and PNN algorithm in the
base-layer when a cognitive test such as MMSE and CERAD is performed. In this model, the accuracy
of FCM and PNN was 74% and 69%, respectively, but MCI and dementia were not well classified
when comparing normal, MCI, and dementia. Shanklea and Mani [16] performed CDR prediction
using machine learning method and electronic medical records. For Naive Bayes, the accuracy was the
highest, while for the other algorithms, it was lower than Bayesian, but it was about 70% accurate.

The diagnosis of dementia consists in large part of assessing different cognitive abilities. As such,
physicians frequently interpret test results in conflicting ways: this represents a major impediment
to attaining high accuracy with machine learning algorithms in the absence of a specified model.
In contrast to the aforementioned studies, we advance a two-tiered hierarchical approach for
evaluating and making distinctions between normal, MCI, and early dementia. This approach is
derived from the dementia support center’s diagnostic method (a combination of cognitive screening,
neuropsychological evaluation, and early diagnosis). In this research we aim to use neuropsychological
and demographic information in order to predict normal, MCI, and dementia within our proposed
model by applying seven frequently used machine learning models: Naive Bayes, Bayes Network,
Begging, Logistic Regression, Random Forest, SVM, and MLP. This method offers diagnostics which
are at once intuitional and also far-reaching.

3. Prediction Model for Dementia Diagnosis

3.1. Architecture of the Proposed Model

In this paper, we propose a model that learns data using a machine learning algorithm and
classifies data into normal, MCI, and dementia. The proposed model is a two-level hierarchical model
similar to the dementia diagnosis method used in the dementia support center. The structure of the
model is as follows. In the first stage, we classify a normal group and cognitive decline group. In the
second stage, we classify a MCI group and a dementia group.

In the first stage, data preprocessing is performed based on the MMSE-KC data. The data
preprocessing process removes missing or incorrectly entered data. In addition, due to differences
in data range of each attribute (which may affect machine learning algorithms), normalization is
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performed to set the range of data to 0~1. The next step is to see how each feature influences the
classification result through feature selection and select the required features. Once the feature selection
is completed, the data are learned by the selected features, and classified into normal and cognitive
decline groups. Finally, the first step classifies the normal group.

In the second stage, CERAD-K data are learned for classifying MCI and dementia.
The preprocessing process and feature selection process are the same as in the first stage. After
the completion of data preprocessing and normalization and feature selection, machine learning
algorithms are used to classify MCI and dementia.

In this paper, performance evaluation was performed by using various algorithms in data learning
and classification model generation. The proposed model is shown in Figure 1.
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Figure 1. The architecture of the proposed model.

3.2. Data Collection

The data used in the study were collected from people who visited the dementia center in
Gangbuk-Gu, Seoul, from 2008 to 2013 and received a screening test.

The data collection method is as follows. First, MMSE-KC examines the cognitive decline of the
patient. If the resulting diagnosis indicates cognitive decline, CERAD-K would be further conducted.
After the precise examination, it is decided whether or not to take a doctor’s examination, consult
with the doctor, decide whether to be confirmed at the hospital or participate in the program run by
the center.

Two types of data were used in this study. The collected data consists of 14 attributes for
Phase 1 data and 31 attributes for Phase 2 data. First, the data used in Phase 1 were gender, age,
education, and MMSE-KC scores. MMSE-KC results (normal, cognitive decline) were used as class
data for classification. When performing neuropsychiatric treatment, the age, education level, physical
condition and basic cognitive ability of the subject should be considered. In addition to MMSE-KC
score data, demographic data such as patient’s sex, age, and education level were collected. The second
data is the data used in Phase 2, which classifies the normal in Phase 1 and adds CERAD-K data to



Appl. Sci. 2017, 7, 651 6 of 17

the data, which is not classified as normal. In Phase 2, we used the data of the patients who were
confirmed (dementia or dementia high risk) visiting the hospital after the final examination.

Data from Phase 1 consisted of data from a total of 14,000 patients, 9799 in the normal group and
4201 in the cognitive decline group. The mean age of the patients was 73 years old, 72 years in the
normal group, and 74 years in the cognitive impairment group. The MMSE-KC score was 25 points for
the normal group and 18 points for the cognitive decline group, which was about 7 points different
from the normal group. The overall average was 23 points.

In Phase 2, the average age of all patients was 76 years, the difference average age gap between
MCI and dementia patients was 5 years. When measuring cognitive ability, the level of the patient’s
education also affected the results, but MCI and dementia did not show much difference. The
MMSE-KC score was 17 points out of 30 as a whole, with an average of 20 points for MCI patients and
a dementia score of 15, slightly lower than the average. Details are shown in Tables 3 and 4.

Table 3. Statistical Information for the Collected MMSE-KC (Phase1).

Variables All Patients Patients (Normal) Patients (Cognitive Decline)

Range Descriptive
statistics Range Descriptive

statistics Range Descriptive
statistics

Gender Male/Female Male: 4808
Female: 9192 Male/Female Male: 2837

Female: 6962 Male/Female Male: 1971
Female: 2230

Age 30–106 µ = 73.07
σ = 7.205 30–101 µ = 72.392

σ = 7.001 42–106 µ = 74.651
σ = 7.425

Education 0–25 µ = 6.21
σ = 4.8 0–25 µ = 5.909

σ = 4.895 0–22 µ = 6.913
σ = 4.492

MMSE-KC 0–30 µ = 23.348
σ = 4.8 14–30 µ = 25.214

σ = 3.098 0–25 µ = 18.995
σ = 5.226

Table 4. Statistical Information for the Collected CERAD-K (Phase2). MCI: mild cognitive impairment.

Variables All Patients Patients (MCI) Patients (Dementia)

Range Descriptive
statistics Range Descriptive

statistics Range Descriptive
statistics

Gender Male/Female Male: 501
Female: 735 Male/Female Male: 287

Female: 376 Male/Female Male: 214
Female: 359

Age 45–99 µ = 76.381
σ = 7.624 54–99 µ = 74.118

σ = 6.894 45–99 µ = 79
σ = 7.596

Education 0–18 µ = 5.979
σ = 4.71 0–18 µ = 6.596

σ = 4.592 0–18 µ = 5.265
σ = 4.747

MMSE-KC 0–30 µ = 17.715
σ = 6.026 0–30 µ = 20.021

σ = 4.978 0–28 µ = 15.047
σ = 6.035

3.3. Preprocessing

The collected data includes data from patients who have problems with hearing and vision or who
are unable to be examined due to anxiety, and data that is lost due to errors or omissions in the data
collection process. Because only a few machine learning algorithms ignore missing value (e.g., Bayes,
Neural Network) during data training and most algorithms can be affected by such gaps, we deleted
missing values and errors using data preprocessing. Data preprocessing is the process of detecting
and correcting (or removing) corrupt or inaccurate records from a record set, table, or database and
refers to identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then replacing,
modifying, or deleting the data. Data preprocessing involves finding erroneous, incomplete, irrelevant
or corrupt data in a record set, table, or database, and then correcting or deleting the data. The missing
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values in our data may come from patients who did not properly understand the test. The results for
this kind of patient considered cognitive decline based on family interviews and other parts of test
results. Thus, if data type is categorical, we changed missing values to abnormal and, if numeric, to 0.

Data normalization changes values in different ranges to values in the same range, preventing an
attribute with a larger range of values from having a larger weight than a smaller range of attributes.

For numeric data, there are four approaches to normalizing data: firstly, to convert to a range
between 0 and 1; secondly to use a value between −1 and 1; thirdly to find the average and standard
deviation of the attribute; and, fourthly, to normalize the data using the log value.

In the case of categorical data, algorithms using neural networks and statistical methods among
machine learning algorithms cannot process categorical data, so they are converted to binary data or
one-hot encoding [17]. For example, in regard to one-hot encoding, if there are three categorical data
such as red, blue, and green in the color attribute, they are converted to a format such as (100), (010),
(001). In this study, we use the maximum-minimum normalization method for numerical data and
one-hot encoding for categorical data among various normalization methods. Equation (1) shows the
maximum-minimum normalization formula.

Normalization Value (d) =
original Value − oldMin

oldMax − oldMin
(1)

3.4. Feature Selection

Feature selection is a method of extracting the most relevant features from data with a certain
pattern. It can be used to remove irrelevant data, eliminate redundancy, and identify what features
contribute to a model with high accuracy. When creating a model, it is important to write as few
features as possible, so that one can reduce the number of features through feature selection. In this
paper, feature selection is performed using chi square and information gain.

The chi-square test is used to analyze categories, variables, or relationships, and is useful for
studying categorical variables such as regional and political preferences, and the relationship between
food and obesity. The chi-square test can be used in two broad contexts: as a fitness test to test whether
the observed data follows a predicted distribution, and as an independence test to test whether two
random variables are independent of each other. Independence means that there is no cause or effect
relationship between them. The following Equation (2) indicates the chi-square feature selection.

chi square =
(observed − expected)2

expected
(2)

Information gain means that when an attribute is selected, the data is well distinguished because
of its attribute. Information gain is the value obtained by subtracting the entropy value of the lower
node from the entropy of the upper node. Equation (3) is used for calculating the information gain
amount when the attribute A is selected, and the entropy of the original node is obtained. This is
the result of subtracting the value divided by the smallest m nodes. The larger the value of Gain (A),
the greater the information gain and the better the discriminative power; see the study conducted by
Garrard et al. [18].

Gain (A) = I(s1, s2, . . . , sm)− E(feature A) (3)

In this study, feature selection was performed in two distinct phases, in which Phase 1 dealt with
MMSE-KC data, while Phase 2 selected features among data from both MMSE-KC and CERAD-K.

3.4.1. Phase 1

As a result of feature selection of thirteen attributes in Phase 1, both algorithms (chi-squared,
information gain) showed almost identical results. Table 5 shows the results in the order of location,
timing, order execution, and memory recall.
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Table 5. Feature Selection Using Chi-squared and Information Gain (Phase 1).

Rank Chi-Squared Information Gain

1 Orientation to place Orientation to place
2 Orientation to time Orientation to time
3 Three-stage commands Three-stage commands
4 Recall Recall
5 Attention Attention
6 Repetition Repetition
7 Registration Registration
8 Complex commands Complex commands
9 Language Education

10 Education Language
11 Understanding and decision Understanding and decision
12 Gender Gender
13 Age Age

3.4.2. Phase 2

As a result of feature selection of Phase 2 data, both algorithms showed the same results. The most
influential feature appeared to be temporal order, followed by memory function (Trial 1), place order,
and a language fluency test. Memory, Word Fluency, Boston Naming, Visuospatial. Regarding
MMSE-KC data in Phase 2, only the time and location were ranked and the rest were all at the bottom.
Details are given in Table 6. The darker color is the CERAD-K data added in Phase 2.

Table 6. Feature Selection Using Chi-squared and Information Gain (Phase 2).

Rank Chi-Squared/Information Gain

1 Orientation to time
2 Memory function (Trial 1)
3 Orientation to place
4 Word Fluency
5 Visuospatial function (Trial 2)
6 Boston Naming
7 Memory function (Trial 2)
8 Age
9 Memory function (Trial 3)

10 Visuospatial function (Trial 1)
11 Mental flexibility (number)
12 Mental flexibility (number, letter)
13 Repetition
14 Registration
15 Attention
16 Education
17 Recall
18 Three-stage commands
19 Language
20 Gender

3.5. Classifiers

Of the various uses to which machine learning is put, data mining is the most important. People
are liable to err in analyzing data or seeking to discern relationships between various features, and
these mistakes interfere with the problem-solving process. Frequently these problems are conducive
to the application of machine learning, which can thereby optimize systemic efficiency and design.
With machine learning algorithms, each instance within a dataset is represented with a consistent set
of features—continuous, categorical, or binary. Supervised learning describes cases wherein instances
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are provided with known labels of the corresponding outputs, while unsupervised learning involves
no labeling of instances. A great many applications of machine learning necessitate supervised tasks,
so we focus here on the requisite techniques for accomplishing this labeling [19].

3.5.1. Support Vector Machine

The machine learning method of Support Vector Machine (SVM) involves a mapping model for
analyzing data and recognizing patterns. Classification and regression analysis are its primary uses.
When provided with a set of data falling into one of two categories, an SVM algorithm constructs a
non-probabilistic binary linear classification model by which it can ascertain from the given data the
correct category in which to place new data. The classification model it produces is conveyed as a
boundary within the space of the mapped data. An SVM algorithm establishes the widest boundary.
It is useful for both linear and nonlinear classification. For non-linear classification, it is necessary to
map given data onto a high-dimensional feature space. In order to do this efficiently, a kernel trick
may be used [20,21].

3.5.2. Naive Bayes

Naive Bayes is a kind of probability classifier applying the Bayesian theorem, and it is one of
the most used classification methods, as in text classification and document classification [22]. Naive
Bayes learns using algorithms based on general principles rather than undergoing training through a
single algorithm. Naive Bayes is trained very efficiently in a supervised learning environment and
estimates parameters using Maximum Likelihood Estimation. The Naive Bayes classification is a
combination of the probability model and the decision rule described above, and finds the class with
the maximum probability.

3.5.3. Random Forest

The Random forest is a kind of ensemble method that randomly learns decision trees. It consists of
a learning step that constructs a large number of decision trees and a test step that classifies and predicts
when input vectors come in [23]. Random forests are used in various applications such as detection,
classification, and regression. The most important feature of the random forest is that it consists of trees
with slightly different characteristics due to randomness, and improves generalization performance
by de-correlating the prediction of each tree. In addition, the randomization characteristics can be
improved through the ensemble learning method, i.e., the invitation method and the arbitrary node
optimization method.

3.5.4. Logistic Regression

Logistic regression analysis is a stochastic model that is used when a dependent variable refers to
a binomial problem; it is a statistical technique used to predict the likelihood of an event using a linear
combination of independent variables [24]. Therefore, the relationship between the dependent variable
and the independent variable is expressed as a concrete function and used in future prediction models.
In addition, unlike linear regression analysis, logistic regression analysis is often used as a classification
and prediction model in which the results of marine data are divided into specific categories when the
input data is given to the categorical data.

3.5.5. Bagging

Bagging is an ensemble learning method designed to improve the safety and accuracy of machine
learning algorithms used in statistical classification and regression analysis [25]. Bagging also reduces
variance and avoids overfitting, and is applied not only to decision tree learning methods and random
forests, but also to other methods.
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3.5.6. Bayesian Network

A Bayesian network graphically models probabilistic relationships between pertinent variables.
In data analysis, a Bayesian model offers a number of benefits when paired with statistical techniques.
First, since the model charts dependencies between all variables, it can easily address an instance in
which there are gaps in data entries. Second, one can employ a Bayesian network to discern causal
relationships, and thus to more fully grasp a problem domain and anticipate the effects of intervention.
Third, a Bayesian model contains both probabilistic and causal semantics, making it particularly
well-suited for connecting data with prior knowledge (since the latter frequently takes shape as causal).
Lastly, Bayesian networks combined with statistical methods provide a clearly delineated and effective
way to prevent data overfitting [26].

3.5.7. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a feedforward neural network, instructed by way of a
backpropagation algorithm. Because it is a supervised network, it must have a sought-after response
for its training: what MLP learn is how to translate given data into that response. As such, they are
frequently employed in pattern classification. They are able, with a hidden layer or two, to match
almost any input-output map. In challenging problems, they have proven to be the equal of optimal
statistical classifiers. For these reasons, they are at present arguably the most widely used network
architecture: nearly all neural network applications make use of MLP. MLP is arranged so that neurons
are divided into delineated layers, and each layer’s output is conjoined with the nodular input of the
subsequent layer. Hence the first (or input) layer represents the inputs to the network, and the last
layer’s outputs represent those of the network [27].

4. Results and Discussion

In this section, we study the early diagnosis of dementia, according to results of data mining
techniques such as multilayer perceptron, random forest, bagging, SVM, logistic regression, Bayesian
network, and Naive Bayes that were explained above. We then compare them to discern which is more
accurate in the diagnosis of dementia.

As stated earlier, in Section 3.2, we used data from the Gangbuk-Gu center for dementia. Since
classification of data includes two classes—namely Phase 1, consisting of 14,000 data including the
normal class (9799 data) and cognitive decline class (4201 data), and Phase 2, consisting of 1236 data
including the MCI class (663 data) and dementia class (573 data)—we used 10-fold cross-validation.

In cross-validation, data is divided into two segments in order to statistically compare and assess
learning algorithms. One data segment (the training set) trains a model, while the other (the validation
set) validates it. Usually, these sets are required to be staggered over successive rounds, so that each
data point can be validated against the next. K-fold cross-validation is the standard cross-validation
form, providing the basis modified in special cases or repeated rounds of cross-validation [28]. For this
reason, we show the accuracy of these criteria: precision, recall and F-measure to diagnose dementia.
Each of these criteria has been obtained from Equations (4)–(6).

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F − measure = 2 × precision × recall
precision + recall

(6)

According to Equations (4)–(6), TP (True Positives) is equivalent to the number of samples that
correctly have been identified as positive. Likewise, FP (False Positives) is equivalent to the number of
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samples that have been wrongly identified as positive, and FN (False Negative) is equivalent to the
number of samples that have been wrongly identified as negative [29].

4.1. Phase 1

As mentioned in Section 3, Phase 1 classifies subjects into categories of normal and cognitive
decline. The results of any use of data mining techniques are based on Table 7. This table shows the
achieved accuracy based on normal and cognitive decline class of features in Table 5.

Table 7. The Results of Classification Based on Phase 1 (normal, cognitive decline). TP (True Positives);
FP (False Positives); FN (False Negative); Support Vector Machine (SVM).

Algorithms TP Rate FP Rate Precision Recall F-Measure

MLP 0.97 0.04 0.97 0.97 0.97
Random Forest 0.95 0.05 0.96 0.95 0.96

Bagging 0.93 0.07 0.94 0.93 0.93
SVM 0.90 0.10 0.91 0.90 0.90

Bayes Network 0.90 0.10 0.91 0.90 0.90
Logistic Regression 0.78 0.22 0.81 0.78 0.79

Naive Bayes 0.74 0.26 0.80 0.74 0.75

Given the results of Table 7, Figure 2 shows the comparison of the accuracy of these criteria:
precision, recall and F-measure. According to Figure 2, the highest precision recall and F-measure
accuracy in Phase 1 belongs to MLP with 0.97, 0.97, and 0.97, respectively, followed by random forest
and bagging.
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Figure 2. Comparison of Classification Based on the Precision, Recall and F-measure Criteria for
Diagnosis of Dementia (Phase 1).

Each algorithm has a level of error in the diagnosis of dementia; by using four criteria—Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE) and Root
Relative Squared Error (RRSE) in the Table 8—any technical errors in the diagnosis of dementia
is shown.
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Table 8. The Results of Errors Obtained from Classification to Diagnosis of Dementia (Phase 1).
Multilayer Perceptron (MLP).

Algorithms Mean Absolute
Error

Root Mean
Squared Error

Relative Absolute
Error

Root Relative
Squared Error

Logistic Regression 0.118 0.245 28.164 53.347
MLP 0.034 0.148 8.025 32.270

Naive Bayes 0.189 0.397 44.982 86.692
Random Forest 0.084 0.174 19.991 38.002

SVM 0.082 0.287 19.538 62.511
Bagging 0.097 0.204 23.120 44.573

Bayes Network 0.187 0.348 44.403 75.963

According to the results of Table 8, Figure 3 shows the comparison of the level of error for the
diagnosis of dementia by these criteria MAE, RMSE, RAE and RRSE, to decide which algorithms of
these criteria have the lowest error. According to Figure 3, concerning MAE, MLP has the lowest error
in MAE criterion compared to other algorithms. Also, the level of error with SVM is close to that of
MLP and, after MLP, it has less error than other algorithms in diagnosis of dementia. Based on Figure 3,
MLP also has the lowest error in RMSE criterion compared to other algorithms; the level of error in
random forest, bagging, and logistic regression is almost identical. In regard to RAE, Figure 3 shows
that MLP has the lowest error in RAE criterion compared to other algorithms. Furthermore, SVM
follows MLP in having less error than other algorithms in diagnosis of dementia. Finally, in regard to
RRSE, as Figure 3 shows, MLP has the lowest error in RRSE criterion compared to other algorithms.
And after MLP, random forest and bagging are closer together in level of error, with the lowest error in
the diagnosis of dementia.
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As noted, the Phase 1 data are tested and the data classification accuracy rate for diagnosis of
cognitive decline is performed by testing data according to Equation (7).

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

According to Table 9, the comparison of data classification accuracy for diagnosis of dementia is
shown in Figure 4.
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Table 9. Data Classification Accuracy of Dementia by Evaluating Experimental Data.

Algorithms Correctly Classified Instances
(%)

Incorrectly Classified Instances
(%)

MLP 97.2 2.8
Random Forest 96.3 3.7

Bagging 94.4 5.6
SVM 91.8 8.2

Logistic Regression 91.7 8.3
Bayes Net 83.3 16.7

Naive Bayes 81.3 18.6Appl. Sci. 2017, 7, 651 13 of 17 
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As the results in Table 9 and Figure 4 are clear, MLP has the highest accuracy for the diagnosis of
dementia (Phase 1) and the value of this algorithm is equal to 97.2%. Additionally, the classification
accuracy of random forest and bagging was 96.3% and 94.4%, respectively. According to Figure 4,
Bayes Network and Naive Bayes have the lowest classification accuracy in the diagnosis of dementia.
Moreover, the accuracy of SVM and logistic regression was almost equal, meaning that both algorithms
possessed the classification accuracy of 91.7%.

4.2. Phase 2

As mentioned in Section 3, Phase 2 classifies MCI and dementia. The results of any use of data
mining techniques are based on Table 10. This table shows the achieved accuracy based on the MCI
and dementia classes of feature in Table 6.

Table 10. The Results of Classification Based on Phase 2 (MCI, dementia).

Algorithms TP Rate FP Rate Precision Recall F-Measure

SVM 0.738 0.262 0.739 0.738 0.739
Logistic Regression 0.736 0.265 0.736 0.736 0.736

Random Forest 0.729 0.272 0.729 0.729 0.729
Bagging 0.724 0.276 0.724 0.724 0.724

Naive Bayes 0.712 0.289 0.713 0.712 0.712
Bayes Network 0.709 0.292 0.708 0.709 0.708

MLP 0.679 0.321 0.679 0.679 0.680

Taking the results of Table 10, Figure 5 shows the comparison of the accuracy of these criteria:
precision, recall and F-measure. According to Figure 5, the highest precision recall and F-measure
accuracy in Phase 1 belongs to SVM with 0.739, 0.738, and 0.739, respectively, followed by logistic
regression and random forest.
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the Diagnosis of Dementia (Phase 2).

Each algorithm has a level of error in the diagnosis of dementia. By using four criteria (MAE,
RMSE, RAE and RRSE, in the Table 11) any technical errors in the diagnosis of dementia are shown.

Table 11. The Results of Errors Obtained from Classification to Diagnosis of Dementia (Phase 2).

Algorithms Mean Absolute
Error

Root Mean
Squared Error

Relative Absolute
Error

Root Relative
Squared Error

Logistic Regression 0.35 0.43 70.20 85.27
MLP 0.33 0.54 65.53 107.86

Naive Bayes 0.29 0.51 57.43 101.64
Random Forest 0.37 0.43 73.54 85.29

SVM 0.26 0.51 52.87 102.83
Bagging 0.36 0.43 72.20 86.10

Bayes Net 0.29 0.50 57.83 100.72

Given the results of Table 11, Figure 6 compares the errors in the diagnosis of dementia by these
criteria MAE, RMSE, RAE and RRSE, to discern which algorithms of these criteria have the lowest error.
According to Figure 6, SVM has the lowest error in the MAE criterion compared to other algorithms.
Also, the level of error for Naive Bayes is close to the SVM and after SVM has less error than the other
algorithms in the diagnosis of dementia. Regarding RMSE, based on Figure 6, random forest and
bagging had the lowest error in RMSE criterion compared to other algorithms; the level of error in
bagging, random forest and logistic regression is very close together. Figure 6 also shows that SVM
has the lowest error in RRSE criterion compared to other algorithms. After SVM, Naive Bayes has a
level of error close to it, and the lowest error to diagnosis of heart disease. Finally, in regard to RRSE,
as Figure 6 shows, logistic regression has the lowest error by the RRSE criterion when compared to
other algorithms. After logistic regression, Bayes Network had the lowest error for the diagnosis
of dementia.

As noted, Phase 2 data have been tested and their data classification accuracy rate for diagnosis
of cognitive decline assessed according to Equation (7).

According to Table 12, the comparison of data classification accuracy for diagnosis of dementia is
shown in Figure 7.
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Table 12. Data Classification Accuracy for Dementia (Phase 2).

Algorithms Correctly Classified Instances (%) Incorrectly Classified Instances (%)

SVM 74.03 25.97
Logistic Regression 73.71 26.29

Random Forest 72.98 27.02
Bagging 72.49 27.51

Naive Bayes 71.44 28.56
Bayes Net 70.95 29.05

MLP 68.12 31.88
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As the results in Table 12 and Figure 7 clearly demonstrate, SVM has the most accuracy for the
diagnosis of dementia (Phase 2) and the value of this algorithm is equal to 74.03%. Moreover, the
classification accuracy of logistic regression and random forest were equal to 73.71% and 72.98%,
respectively. According to Figure 7, MLP had the lowest correct classification accuracy in the diagnosis
of dementia (Phase 2). The accuracy of bagging and Naive Bayes were 72.49% and 71.44%, respectively.
The classification accuracy of Bayes Network was 70.95%.

To sum up, in Phase 1, MLP showed the highest accuracy with 97.2%, followed by random forest
and bagging. The lowest accuracy was Naive Bayes at 81.3%. In Phase 2, SVM was tops among other
classifiers for MCI and dementia cases with 74.03%, followed by logistic regression and random forest.
Whereas MLP was the best in Phase 1 for predicting normal, SVM was best in Phase 2 for predicting
dementia. The results of this study are consistent with findings from several researchers (e.g., [4,18])
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showing that the machine learning approaches can be used to diagnose dementia. Our efforts in
the diagnosis of dementia may be similar to those mentioned with respect to the employed machine
learning approaches. However, inspired by the method used in dementia support centers for early
diagnosis, not only can our proposed model diagnose dementia with a data from simple tests from
patients, but also we can achieve higher accuracy in early diagnosis of dementia.

5. Conclusions

As the senior population increases due to social aging, the prevalence of dementia increases,
and the number of young dementia patients also increases. In this study, we proposed a two-layer
model inspired by the methods used in dementia support centers for the early diagnosis of dementia
and using machine learning techniques. MMSE-KC and CERAD-K data have been used in screening
and precise screening to reduce time and the economic burden on patients, and increase the accuracy
of screening with the employed machine learning algorithms. In the first stage, the patients who
need precise screening are classified by MMSE-KC data. In the second stage, MCI and dementia are
classified by adding CERAD-K data. In conclusion, we compared various classification models using
dementia diagnosis data. In Phase 1, the highest F-measure value belongs to MLP, while in Phase 2 the
highest F-measure value belongs to SVM. Our proposed model simplifies the task of interpreting test
results by constructing a set of criteria to classify the patient and therefore diagnose dementia at early
stages in a fast, inexpensive, and reliable way, which improves the current clinical practice.

In future research, we will study a model that can predict dementia more precisely by using
lifestyle or disease information of the patient and plan to improve the accuracy.
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