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Abstract: In dry turning operation, various parameters influence the cutting force and contribute in
machining precision. Generally, the numerical cutting models are adopted to establish the optimum
cutting parameters and results are substantiated with the experimental findings. In this paper,
the optimal turning parameters of AA2024-T351 alloy are determined through Abaqus/Explicit
numerical cutting simulations by employing the Johnson-Cook thermo-viscoplastic-damage material
model. Turning simulations were verified with published experimental data. Considering the
constrained and nonlinear optimization problem, the artificial neural networks (ANN) were executed
for training, testing, and performance evaluation of the numerical simulations data. Two feedforward
backpropagation neural networks were developed with ten hidden neutrons in each hidden layer.
The Log-Sigmoid transfer function and the Levenberg-Marquardt algorithm were applied in the
model. The ANN models were studied with four input parameters: the cutting speed (200, 400,
and 800 m/min), tool rake angle (5◦, 10◦, 14.8◦, and 17.5◦), cutting feed (0.3 and 0.4 mm), and the
contact friction coefficients (0.1 and 0.15).The two target parameters include the tool-chip interface
temperature and the cutting reaction force. The performance of the trained data was evaluated using
root-mean-square error and correlation coefficients. The ANN predicted values were compared both
with the Abaqus simulations and the published experimental findings. All of the results are found in
good approximation to each other. The performance of the ANN models demonstrated the fidelity of
solving and predicting the optimum process parameters.

Keywords: AA2024-T351; cutting simulation; Johnson-Cook material model; artificial neural networks

1. Introduction

The aluminum alloys have gained the prime significance in diverse engineering applications.
Machining characteristics of these alloys depend upon the appropriate cutting parameters, such as the
cutting speed, cutting feed, cutting tool geometry, clamping scheme, and the tool wear rate. Because of
the costly experimentation, assessment of the appropriate cutting parameters implies the application
of numerical cutting simulations. However, the execution of numerical cutting simulations implicates
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a detailed understanding of different engineering processes that involve during the machining cutting
action. Likewise, the material damage at a high strain rate makes it difficult to comprehend the
tool-chip interaction [1,2]. Generally, the crack and material damage behavior are elaborated with the
Johson-Cook (JC) plasticity material model and damage evolution law [3] which undertakes the large
deformations, high strain rates, and temperature-dependent viscoplasticity.

In the turning operation, cutting tool geometry plays a dynamic role in influential cutting force
and the chip temperature. Recently, different research efforts have been conducted to describe the
behavior of material cutting during the turning operation. Lo [4] described the effect of tool rake angle
on the chip morphology by using an elastic-plastic model. Sutter [5] studied the interaction of cutting
speed and the chip morphology with high-speed cameras. Dahlman et al. [6] investigated the effect
of tool rake angle on material residual stresses during the turning process. Attanasio et al. [7] also
described the behavior of material residual stresses in the orthogonal cutting process. Yanda et al. [8]
and Axinte et al. [9] worked on the experimental investigations of cutting forces. Saglam et al. [10]
conducted some experiments to study the cutting forces and tool-tip temperature at different feeds
and rake angles. Shi et al. [11] performed the numerical cutting simulations to explain the influence of
contact friction and tool rake angles upon the thermo-mechanical properties. Zhang et al. [12] studied
the effect of shear stresses on chip morphology. Neseli et al. [13] carried out a detailed study on surface
finish during the turning operation. Dogu et al. [14] performed a detailed study to identify the cutting
temperature by estimating the sensible heat energy.

Many researchers have employed the heuristic optimization techniques to identify the optimal
cutting parameters of aluminum alloys. D’Addona and Teti [15] used the genetic algorithm to identify
the optimized turning parameters. Marko et al. [16] identified the optimized turning parameters
by applying the particle swarm optimization. Prasanth and Raj [17] estimated the optimal cutting
parameters of a cylindrical turning process by using the artificial bee colony algorithm. Amer et al. [18]
studied the optimized turning parameters by integrating the genetic algorithm with support vector
regression and the artificial neural networks. D’Addona et al. [15] investigated the tool wear and its
pattern by applying the DNA-based computing. Bruni et al. [19] worked on the surface roughness
modeling of finish face milling under dry cutting conditions by applying the artificial neural networks.
Researchers have also identified the efficient use of ANN models in other metal machining processes;
for example, the prediction of cutting forces, machining vibrations, tool wear rate [20], milling and
drilling [21–23], the skin pass rolling [24], etc. Similarly, ANNs have been applied effectively to
determine the machining surface roughness [25–27] and the optimal cutting conditions [28,29].

In this study, the ANN is considered because of the complex nonlinear optimization problem.
As compared to the traditional approaches, the ANN can learn the solutions and predict the complex
interactions of the input and output data with significant accuracy [30]. The ANN function was
inspired by the natural biological neurons, which act as parallel distributed processors [31]. Neurons
have the capability for sorting and storing the empirical knowledge, and to generate the output from a
series of the inputs. The basic components of a neural network comprise neutrons (nodes or processing
element) and the synaptic weights (connections). The synaptic weights with a positive and negative
value represent the excitatory and inhibitory connection. Inputs weighted by the respective synaptic
weights are accumulated together, which represent the accumulating function. The summation result
is passed on to an activation function (non-linear) which determines the neutron response.

Hopfield [32] and Kohonen [33] triggered a new interest in artificial neural networks. Now, the
ANNs are believed to be effective machine learning tools for predictive modeling and optimization. The
architecture of neural networks (ANN) consist of three discrete layers: the input layer, data processing
or hidden layers and the output layer. Activation functions produce the outputs when a weighted
sum of the input neurons is provided. Conversely, when data are presented as the input vector, the
output is generated by computing the dot products of the input vector and the weight vector. Different
activation functions are used to analyze different ANN studies. The most common are the Sigmoid
function, the logistic, and the hyperbolic tangent. Based upon the direction of flow signals, the neural
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networks are classified into feedforward and recurrent. In the feedforward network, signals propagate
from the input into the output, while in the recurrent network; signals may propagate backward from
any neuron. With the feedforward network, weights are optimized by a gradient-descent method, and
the performance is evaluated by mean-square-error. Mostly, the output is obtained by employing the
sigmoid function. The back propagation neural networks (multi-layered) work through the procedure
of error back-propagation and assume a sigmoid logistic function. Neural networks may also be
classified according to the learning process in which networks evaluate and adjust the weight of the
nodes of each layer in an iterative procedure. Supervised learning networks employ the delta rule
for error minimization. The supervised feedforward network includes the perceptron [34], Boltzman
machine [35], Hamming networks [36], linear associative memory [37], and counter propagation
network [38]. The back-propagation learning algorithm for multilayer perceptron was introduced
by Werbos and rediscovered independently by other researchers. It is common among the networks
in which learning process is carried from known examples [39,40]. In the artificial network design,
determination of the number of hidden layers and the number of nodes in each layer are most
decisive tasks. Generally, one hidden layer is used for the networks that involve some approximate
functions [41] and two layers are used for the networks involving some learning functions.

2. Problem Statement

Identification of the optimal turning parameters is a challenging task. This meticulous effort can
be substituted by performing the parametric sensitivity analysis of a representative numerical cutting
model. Normally, the fidelity of numerical simulations is evaluated by comparing with the standard
experimental results. Subsequently, reliable simulation data can further be optimized by employing
some heuristic optimization technique. This concept is implemented in this research by performing the
numerical cutting simulations through Abaqus/Explicit (Abaqus, 6.16, Dassault Systemes, Johnston,
RI, USA, 2016). Simulation results were compared and verified with published experimental data [42]
The artificial neural networks (ANN) were employed to identify the optimized parameters.

3. Numerical Framework

3.1. Cutting Simulations

In this study, Johnson-Cook (JC) material damage model is applied for numerical cutting
simulation of AA2024. The constitutive equation describing the von Mises stress due to chipped
off material is described as [3]:

σ =
(
σy + Bεn)︸ ︷︷ ︸
Plastic term

1 + C ln

 •
ε
•
ε0


︸ ︷︷ ︸

Viscosity term

[
1−

(
T − Troom

Tmelt − Troom

)m]
︸ ︷︷ ︸

Softening term

, (1)

where σ represents the equivalent stress, A is the material yield strength (MPa); B is the hardening
modulus; n shows the work hardening exponent; C is the material constant for strain hardening rate;
m is the thermal softening coefficient; Troom is the reference ambient temperature.

The damage evolution of an element can be expressed by using the classical damage law:

D = ∑
∆ε

ε f
, (2)

where ∆ε is the increment of equivalent plastic strain and ε f is the equivalent strain to fracture. Fracture

occurs when D is equal to 1. The plastic strain at damage initiation
.

εo is expressed as [3]:
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ε0i =

[
D1 + D2 exp

(
D3

P
σ

)]
X

1 + D4 ln

 •
ε
•
ε0

[1 + D5

(
T − Troom

Tmelt − Troom

)]
, (3)

where D1 represents the initial failure strain; D2 gives the exponential factor; D3 deals with triaxiality
factor; D4 is the strain rate factor; D5 is the temperature factor; P is the average normal stress; and σ is
the von Mises equivalent stress.

Generally, D1 to D5 values are determined through experiments [43]. The equivalent plastic strain
with a scalar damage parameter ω can be expressed by [44,45]:

ω =
∑ ∆ε

ε0i
, (4)

Hillerborg et al. [46] proposed the fracture energy (Gf) per unit area of the crack [6]:

G f =
∫ ε f

ε0i

Lσydε =
∫ u f

0
σydu, (5)

where L is the characteristic length of an element and U f is the equivalent plastic displacement at
failure. U f is computed by the following equation [47]:

u f =
2G f

σf
, (6)

Under the applied force, damage evolution laws can be expressed as [42]:

D =
Lε

u f
=

u
u f

, (7)

D = 1− exp

(
−
∫ u

0

σ

G f
du

)
, (8)

In dry turning operation, heat is generated due to the plastic deformation, which can be
expressed as:

.
qp = ηpσ

.
ε, (9)

where qp is the heat generation rate and ηp is the inelastic heat fraction.
Heat generated due to the contact friction is expressed as:

q f = η f Jτf γ, (10)

where τf is the shear stress given by Coulomb friction law and γ is the slip strain rate.

3.2. Artificial Neural Network

The backpropagation neural network was applied due to the complex optimization problem.
Back-prop algorithm executes iteratively, so the change in weights is carried out incrementally. Figure 1
explains the basic architecture of ANN model adopted in this research. There are three essential
operations of the neutron. The synaptic weights w with a positive value make an excitatory connection
and negative value an inhibitory connection. The summation function sums up the entire input
signals y. The subscript a denotes the output layer; b is the hidden layer; and c is the input layer. wba
represents the weight from the hidden to the output layer; wcb is the weight from the input to the
hidden layer; y is the actual activation value; t is the targeted value (desired activation); and xb is the
net input. In a multi-layered feedforward network, the accuracy of a solution is measured by taking
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the mean-square-error which is the difference between targeted output and the actual output. Let, bth

be the output layer, then the error is calculated as [31]:

E =
1
2

B

∑
b=1

(tb − yb)
2, (11)

where b {0,1, . . . ,B} means the bth layer has a total B nodes, yb is the actual activation of the output
nodes, and tb is the desired activation (target). The error E propagates backward towards the input
layer. Since the mean square error (E) generates a two-dimensional surface, the gradient descent
approach is applied to explore the grand minima. A change in weight for a node connecting the layer
c to the layer b is given by [48]:

∆Wcb = −α ∂E
∂Wcb

, (12)

where α represents the learning rate. By applying the chain rule, a derivative of the mean square error
E with respect to w can be expanded as [48]:

∂E
∂Wcb

=
∂E
∂yb

∂yb
∂xb

∂xb
∂Wcb

, (13)

Derivative of the net input with respect to the weight is given by:

xb =
C

∑
c=1

wcbyc ⇒
xb

wcb
= yc, (14)

where c {0,1, . . . ,C}, yc is the actual activation of nodes, and wcb is the weight from input to the hidden
layer. The first two terms of Equation (13) are replaced with:

βb =
∂E
∂yb

∂yb
∂xb

, (15)
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The output is obtained by employing the sigmoid function, which is expressed as [41]:

yb =
1

1 + e−xb
, (16)

Change in weight is calculated by considering the nodes connecting the input layer c to the layer b:

∆wcb(N) = αβbyc + η∆wcb(N − 1), (17)

where yc is the activation of the node at layer c, N and (N − 1) are the iterations (epoch), η represents
the momentum (a real value 0, 1), and βb is the error term. The momentum was introduced by
Rumelhart [48] to incorporate the influence of past iterations in updating the weight.

4. Methodology

4.1. Turning Simulation—2024-T351

The 2D numerical model developed for the cutting simulations is shown in Figure 2. The work
piece was developed into three sections: the chipped off material, the damage zone at tool-chip
interface, and the uncut material. The configuration of the work piece into three different sections was
essential to define different material properties, constitutive relationships, contact conditions, and the
material damage laws. For example, JC material damage model and the damage evolution law were
applied in the damage zone with a specific fracture energy; JC material damage model with a different
fracture energy and the contact conditions were defined in the chipped off material; and the uncut
material section was defined without JC damage parameters. The assembly of three parts was done by
applying the standard join constraint (tie constraint) available in Abaqus. A tie constraint fuses the
model surfaces with different mesh sizes and element types. Due to tie condition, each node at the slave
surface attains the same displacement, stress, temperature, pressure, etc. corresponding to its closest
node at the master surface. Tie condition makes the model computationally expensive and requires a
compatible mesh between the part instances. Generally, Abaqus picks the slave surface with a finer
mesh. For fidelity of the results of a multi-parts model assembled with the standard tie constraint,
interested readers may refer to the online Abaqus documentation (tie constraints, Section 34.3.1,
Abaqus Analysis User’s Manual) [49].

The model comprises 4134 four nodes quadrilateral continuum elements with plane strain
(CPE4RT) and coupled temperature-displacement conditions. Cutting tool geometry consists of a nose
radius (Rn) of 0.02 mm and a clearance angle 7◦. A parametric sensitivity analysis was performed with
different rake angles, cutting speeds, chip thickness, and the contact conditions to study the effect of
tool rake angle on the chip temperature, the effect of contact friction on the cutting reaction force, the
effect of cutting speeds on the equivalent plastic strain, the effect of feed upon the chip temperature, and
the effect of friction coefficients on chip temperature. The cutting tool was constrained in y-direction
and a self-contact was defined over the chip surface to avoid the penetration of deformed chip elements
into the uncut chip and cutting tool. Contact conditions were established between the contact interfaces
of the cutting tool, chip, damage zone, and the uncut material [50]. Selection of the proper friction
coefficient and governing law is a critical and sensitive task in numerical cutting simulations. The
friction characteristic at the tool-chip interface is difficult to determine since it is influenced by many
factors; such as, the local cutting speed, contact pressure, temperature, cutting tool, work piece material,
etc. [51]. An improper selection of the friction coefficient affects the results and findings. Extensive
studies have been reported on the interaction of the tool-chip interface during the dry turning process.
Several models have also been proposed to determine the contact friction. The most widely used
method to determine the contact friction is Zorev’s stick-slip friction model [52] which is also known
as an extended Columb’s law. In the present numerical simulations, the interaction between AA2024
material and the tungsten carbide tool insert, two different values of the friction coefficients (0.1 and
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0.15) are used considering the similar experimental conditions [42] and also investigated by Zorev’s
friction model.

Different properties and parameters used in the model are given in Table 1 [42]. The outcomes
of turning simulations were compared with the available experimental results, given in Table 2 [42].
Cutting force evolution and its comparison with the experimental results is shown in Figure 3. A
summary of 64 cutting simulations is given in Table 3, where V is the cutting force (m/min); C is the
feed (0.4 mm); F is the contact friction; RF (N) is the cutting reaction force; R (degrees) is the tool rake
angle; and T is the temperature of the tool-chip interface. For further details, interested readers may
consult the published work in Saleem et al. [42].
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Table 1. Work piece and cutting tool properties.

Physical Parameters

Property Work Piece (A2024-T351) Tool (Tungsten Carbide)

Density, ρ (Kg/m3) 2700 11,900
Elastic modulus, E (Gpa) 73 534

Poisson ratio, ν 0.33 0.22
Specific heat, Cp (J·Kg−1·◦C−1) Cp = 0.557T + 877.6 400

Thermal conductivity, λ (W·m−1·C−1)
25 ≤ T ≤ 300: λ = 0.247T + 114.4

300≤ T ≤ Tmelt: λ =−0.125T + 226.0 50

Expansion, α (µmm−1·◦C−1) α + 8.9 × 10−3T + 22.2 -
Tmelt (◦C) 520 -
Troom (◦C) 25 25

Johnson-Cook Material Parameters (Identified for A2024-T351)

A (MPa) B (Mpa) n C m D1 D2 D3 D4 D5
352 440 0.42 0.0083 1 0.13 0.13 −1.5 0.011 0
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Table 2. Experimental results—Turning AA2024 [42].

Feed, f (mm) Parameter
Cutting Speed, V (m/min)

200 400 800

0.3
Force 778 N 769 N 769 N

Frequency 128 Hz 290 Hz/37.8 kHz 500 Hz/90.7 kHz

0.4
Force 988 N 978 N 976 N

Frequency 120 Hz/10.3 kHz 351 Hz/32.4 kHz 889 Hz/64.8 kHz

0.5
Force 1216 N 1196 N 1192 N

Frequency 256 Hz/16.2 kHz 476 Hz/22.7 kHz 1026 Hz/45.3 kHz
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Table 3. Parametric sensitivity analysis (turning simulations).

S No. V C F R RF T S No. V C F R RF T

1 200 0.4 0.1 5 500 226 33 200 0.3 0.1 10 790 236
2 400 0.4 0.1 5 600 256 34 400 0.3 0.1 10 800 262
3 600 0.4 0.1 5 650 269 35 600 0.3 0.1 10 990 273
4 800 0.4 0.1 5 700 288 36 800 0.3 0.1 10 1000 302
5 200 0.4 0.1 10 800 232 37 200 0.3 0.15 10 800 232
6 400 0.4 0.1 10 700 262 38 400 0.3 0.15 10 870 258
7 600 0.4 0.1 10 650 276 39 600 0.3 0.15 10 590 285
8 800 0.4 0.1 10 490 292 40 800 0.3 0.15 10 780 306
9 200 0.4 0.1 14.8 700 246 41 200 0.4 0.15 14.8 750 246
10 400 0.4 0.1 14.8 800 267 42 400 0.4 0.15 14.8 775 275
11 600 0.4 0.1 14.8 600 279 43 600 0.4 0.15 14.8 870 289
12 800 0.4 0.1 14.8 550 307 44 800 0.4 0.15 14.8 900 317
13 200 0.4 0.1 17.5 790 248 45 200 0.3 0.1 14.8 790 238
14 400 0.4 0.1 17.5 795 279 46 400 0.3 0.1 14.8 800 269
15 600 0.4 0.1 17.5 870 292 47 600 0.3 0.1 14.8 990 274
16 800 0.4 0.1 17.5 895 324 48 800 0.3 0.1 14.8 1000 310
17 200 0.4 0.15 5 750 232 49 200 0.3 0.15 14.8 800 258
18 400 0.4 0.15 5 775 254 50 400 0.3 0.15 14.8 870 283
19 600 0.4 0.15 5 870 292 51 600 0.3 0.15 14.8 590 302
20 800 0.4 0.15 5 900 308 52 800 0.3 0.15 14.8 780 317
21 200 0.3 0.1 5 790 221 53 200 0.4 0.15 17.5 750 268
22 400 0.3 0.1 5 800 254 54 400 0.4 0.15 17.5 775 278
23 600 0.3 0.1 5 990 267 55 600 0.4 0.15 17.5 870 298
24 800 0.3 0.1 5 1000 288 56 800 0.4 0.15 17.5 900 329
25 200 0.3 0.15 5 800 212 57 200 0.3 0.1 17.5 790 260
26 400 0.3 0.15 5 870 242 58 400 0.3 0.1 17.5 800 282
27 600 0.3 0.15 5 590 273 59 600 0.3 0.1 17.5 990 295
28 800 0.3 0.15 5 780 295 60 800 0.3 0.1 17.5 1000 324
29 200 0.4 0.15 10 750 238 61 200 0.3 0.15 17.5 800 272
30 400 0.4 0.15 10 775 268 62 400 0.3 0.15 17.5 870 297
31 600 0.4 0.15 10 870 276 63 600 0.3 0.15 17.5 590 314
32 800 0.4 0.15 10 900 306 64 800 0.3 0.15 17.5 780 335

4.2. Artificial Neural Network (Modeling and Analysis)

The artificial neural network model adopted for this study is shown in Figure 4. The model
consists of three layers; the input layer, the hidden layer, and the output layer. The input parameters to
the ANN model consist of the cutting parameters studied during the numerical simulations, and the
outputs are the corresponding cutting reaction force and tool-chip interface temperature. The four
input parameters consist of cutting force (V in m/min), cutting feed (C in 0.4 mm), contact friction (F),
cutting reaction force (RF in Newtons), tool rake angle (R in degree), and the temperature at tool chip
interface (T in ◦C). The output layer consists of two neurons: the cutting reaction force RF (N) and
tool–chip interface temperature T (◦C).

The MATLAB (R2013, The MathWorks, Natick, MA, USA, 2013), neural network toolbox was
used for training and testing of the simulations data. Training of the network was accomplished by
considering the 64 numerical simulations. The output (cutting reaction force and tool-chip interface
temperature) and the corresponding input parameters of these simulations are given in Table 3.
Design of the numerical experiments could also be accomplished with some standard technique
(such as Taguchi’s configuration). In this research, different combinations of the input parameters
were selected by considering the range of each parameter used in actual machining experiments.
With four input parameters, all the possible combinations result into 4 × 4 × 2 × 2 = 64 design of
numerical experiments.
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Considering the available experimental data [42], the Abaqus simulations run at serial 13, 14, 16,
57, 58, and 60 were used for validation of the ANN model. The input parameters of these simulations
are similar to the corresponding cutting conditions in actual experiments. The standard feedforward
backpropagation neural network was studied by considering the Log-Sigmoid transfer function
(LOGSIG). The Log-sigmoid transfer function is used for training the data in multi-layer networks with
back-propagation algorithm [54–56]. The selection of optimal number of hidden layers is a difficult task.
The optimal numbers of hidden layers are determined by training several networks and estimating the
error. A few hidden layers may cause a high training error due to under-fitting and too many hidden
layers may cause a high generalization error due to over-fitting. Selection also depends upon the
numbers of input and output layers, learning function, the ANN architecture, the activation function,
and the training algorithm. For the proposed ANN architecture, the numbers of neurons in the hidden
layers were determined through a trial-and-error method. The best configuration was observed with
two hidden layers and 10 neurons in each layer. The ANNs predicted outcomes and properties were
evaluated by considering the mean-square-error and regression analysis. The predicted outcomes
were validated with the published experimental results [42]. Details of the machining experiments,
testing scheme, and the measurement techniques are described in the published article. The ANN
parameters for training and testing are given in Table 4.

The default Levenberg-Marquardt algorithm was used for training the network. The maximum
validation checks (max_fail) function was taken as 6. This parameter (max_fail) serves as a training
function parameter and ensures the maximum number of validation checks before the training is
stopped. Therefore, it must be a positive integer. The validation fails are total successive iterations that
the validation performance fails to decrease or when the validation MSE (mean-square-error) increases
the max_fail value. This criterion can be changed by setting the parameter net.trainParam.max_fail. A
large number of trainings show the over training and Matlab tries to stop the training after 6 failed
in a row. In the back-propagation, the learning rate and the momentum factor are very significant to
determine the learning speed and accuracy [57]. The learning rate controls the changes in the weights
during the training process. The momentum factor manages the speed of network training. It defines
the fraction of preceding weight changes to be included in the current weight changes. Termination of
the training depends upon the magnitude of the gradient and the number of validation checks. In case,
when the training reaches the minimum of the performance, the gradient becomes very small. For
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example, the training stops when the magnitude of the gradient is less than 1 × 10−5. This limit can be
adjusted by setting the parameter net.trainParam.min_grad.

Table 4. ANN network and training parameters.

Function Value Description

Training function - TRAINLM
Adaptation learning function - LEARNGDM

Network type - Feed-forward backprop
Transfer function - LOGSIG

net.trainParam.epochs 1000 Maximum number of epochs to train
net.trainParam.goal 0 Performance goal

net.trainParam.showCommandLine false Generate command-line output
net.trainParam.showWindow true Show training GUI

net.trainParam.lr 0.01 Learning rate
net.trainParam.max_fail 6 Maximum validation failures

net.trainParam.min_grad 1 × 10−7 Minimum performance gradient
net.trainParam.show 25 Epochs between displays
net.trainParam.time inf Maximum time to train in seconds

Figure 5a shows the performance, training statistics, and the convergence plots for testing and
training networks of tool-chip interface temperature. The performance plot (mean square error of all
data sets) is shown on a logarithmic scale. The training mean square error must show a decreasing
trend. Here, the training plot shows a perfect training. The other two plots explain the network
simulation results after the training. The training was terminated when the validation error increased
to 16 epochs, and the best validation performance was obtained as 16.58 at 10th epoch. The test set
error and the validations set error have also shown the similar characteristics. Figure 5b shows the
coefficients of regression. The R-plots explain the significance between the target (desired output)
and the ANN output (actual output). The dashed line in each plot represents the targeted values
(the difference between the perfect result and outputs). The best-fit linear regression line between the
outputs and targets is represented by a solid line. The correlation coefficient (R) gives the relationship
between the outputs and the targets.

The maximum value of the correlation coefficient (R2) and a minimum value of the root mean
square error defines a good ANN model. For an exact linear relationship, R must be closer or equal
to one. The values of coefficients for training and testing data are founded to be 0.996 and 0.953,
respectively. For a perfect fit, the distribution of data should be along a 45◦ line, which shows that the
network outputs are equal to the targets. From Figure 5b, it was observed that the targeted output R
for training is 0.99695, validation is 0.98939), and testing is 0.95314. The corresponding total response
is 0.999018. R = 0.999018 verifies that the ANN output perfectly matches with the target (precise linear
relevance). The overall response verifies that the training has produced the optimal results, and the
model can entertain the new inputs. Values of all the coefficients are very close to 1, so the training
value is highly acceptable. Figure 5d is a caption window that shows the validation of ANN model
and also explains the output of the neural network during the training and training developments.
Figure 5c shows the model evolution, validation, and the corresponding gradient of epochs. For the
temperature prediction model, the gradient of epochs was attained as 31.548.

The second ANN model for cutting reaction force was developed by keeping the same input
parameters, as shown in Figure 4. The ANN parameters for training and testing are presented in
Table 4. The training and performance evaluation of the network was accomplished with 64 data
sets, given in Table 3. The standard feedforward backpropagation neural network was considered
with Log-Sigmoid transfer function (LOGSIG) and Levenberg-Marquardt algorithm. The optimized
network was detected with 10 neurons in the hidden layers. The ANN predicted outcomes were
evaluated by comparing with the published experimental results [42]. The ANN predicted values and
the performance curves of cutting reaction force are shown in Figure 6a–d. Figure 6a illustrates the
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performance, training statistics, and the convergence plots for training the network. The performance
curve shown in Figure 6a demonstrates a perfect training; the test set error, and the validation set
error plots also interpret the similar characteristics. Training was completed when the validation error
increased to 16 epochs, and the best validation performance was attained as 57.4402 at 10th epoch. The
regression analysis is shown in Figure 6b. The coefficients of regression value for training and testing
data were attained as 0.99801 and 0.96738, respectively. The targeted output value of the validation and
corresponding total response are 0.99512 and 0.98768, respectively. The overall results demonstrate a
precise linear relevance and validate the model for accommodating the new inputs and simulating the
final results. Figure 5c illustrates the model validation and the corresponding gradient of epochs. The
gradient of epochs was attained as 97.3974. The network configuration, the optimization scheme, and
the validation of ANN model are shown as a caption window in Figure 6d.
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Figure 5. (a) Neural network performance plot for tool-chip interface temperature (T); (b) Neural
network regression plots for chip-tool interface temperature (T); (c) Neural network performance and
gradient epochs (chip-tool interface temperature); (d) Neural training and the output window for
chip-tool interface temperature (T).

A comparison of the numerical simulation results with the ANN predicted values is presented in
Table 5. The term RF_Pd gives the predicted reaction force, Err is the error, % Err is the percent error,
T is the chip-tool interface temperature, and T_Pd is the chip-tool interface predicted temperature.
The performance of the ANN model elaborates the deviation (error) between the actual and predicted
values. In Table 5, the maximum percentage errors of the cutting reaction force and the chip-tool
interface temperature are found to be 2.55 and 3.34, respectively. The calculated errors are found
reasonable and demonstrate the conformance of ANN predicted results.
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Figure 6. (a) Neural network performance plot for cutting reaction force (RF); (b) Neural network
regression plots for cutting reaction force (RF); (c) Neural network performance and gradient epochs
for cutting reaction force (RF); (d) Neural training and output window for cutting reaction force (RF).

The ANN predicted values of tool-chip interface temperatures and reaction forces were compared
with the experimental results [42,58]. Values are presented in Table 6, where the term % Err shows
the percent error; ANN_Sim RF is the ANN simulated reaction force; Exp_RF is the experimental
value of the reaction force; ANN_Sim T is the ANN simulated temperature; and Abq Sim_T is the
Abaqus simulated chip–tool interface temperature. The ANN simulated values of cutting reaction
force and tool–chip interface temperatures are found in good approximation with the experimental
results [42]. This shows that the ANN models developed for the temperature and reaction force can
be used effectively for predicting the optimal parameters. The maximum percentage errors for ANN
predicted reaction force and the chip–tool interface temperatures are 3.4 and 3.2, respectively. Figure 7
implies a good agreement between experimental and ANN simulated outcomes.
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Table 5. ANN predicted results for cutting reaction force and tool-chip interface temperature.

Sr RF RF_Pd Err % Err T T_Pd Err % Err Sr RF RF_Pd Err % Err T T_Pd Err % Err

1 894 895.142 −1.142 0.13 226 223.742 2.258 1.01 33 759 765.873 −6.873 0.90 236 235.283 0.717 0.30
2 897 895.548 1.452 0.16 253 244.829 8.171 3.34 34 763 768.117 −5.117 0.67 262 262.117 −0.117 0.04
3 889 890.221 −1.221 0.14 269 267.909 1.091 0.41 35 758 766.854 −8.854 1.15 273 280.794 −7.794 2.78
4 902 901.591 0.409 0.05 288 288.045 −0.045 0.02 36 766 759.777 6.223 0.82 302 302.936 −0.936 0.31
5 932 930.203 1.797 0.19 232 232.349 −0.349 0.15 37 749 750.858 −1.858 0.25 232 229.872 2.128 0.93
6 916 917.691 −1.691 0.18 262 257.464 4.536 1.76 38 747 751.467 −4.467 0.59 258 258.786 −0.786 0.30
7 940 943.037 −24.037 2.55 276 275.471 0.529 0.19 39 755 749.117 5.883 0.79 285 286.262 −1.262 0.44
8 927 927.464 −0.464 0.05 292 300.272 −8.272 2.75 40 761 761.831 −0.831 0.11 306 298.731 7.27 2.43
9 941 947.089 −6.089 0.64 246 246.158 −0.158 0.06 41 782 784.039 −2.039 0.26 246 250.562 −4.562 1.82

10 961 967.501 −6.501 0.67 267 264.683 2.317 0.88 42 788 786.756 1.244 0.16 275 271.851 3.149 1.16
11 966 967.813 −1.813 0.19 279 279.071 −0.071 0.03 43 802 793.798 8.202 1.03 289 288.391 0.609 0.21
12 961 961.414 −0.414 0.04 307 308.542 −1.542 0.50 44 795 792.96 2.04 0.26 317 316.946 0.054 0.02
13 972 965.348 6.652 0.69 248 249.811 −1.811 0.72 45 769 766.923 2.077 0.27 243 248.703 −5.703 2.29
14 963 967.893 −4.893 0.51 279 269.815 9.185 3.40 46 766 768.563 −2.563 0.33 269 265.957 3.043 1.14
15 969 966.936 2.064 0.21 292 292.275 −0.275 0.09 47 772 768.587 3.414 0.44 274 278.352 −4.352 1.56
16 968 961.213 6.787 0.71 324 322.473 1.527 0.47 48 771 766.894 4.106 0.54 310 308.193 1.807 0.59
17 809 808.894 0.106 0.01 232 230.953 1.047 0.45 49 769 760.925 8.075 1.06 258 258.4 −0.4 0.15
18 793 794.405 −1.405 0.18 254 254.239 −0.238 0.09 50 764 760.161 3.839 0.51 283 281.565 1.435 0.51
19 789 797.68 −8.68 1.09 292 292.763 −0.763 0.26 51 769 772.293 −3.293 0.43 302 306.103 −4.103 1.34
20 803 808.702 −5.702 0.71 308 311.076 −3.076 0.99 52 777 772.493 4.507 0.58 317 320.696 −3.696 1.15
21 791 789.775 1.225 0.16 221 220.145 0.855 0.39 53 758 757.214 0.786 0.10 268 263.894 4.106 1.56
22 807 812.016 −5.016 0.62 250 243.514 6.486 2.66 54 749 751.408 −2.408 0.32 278 283.013 −5.013 1.77
23 812 813.088 −1.088 0.13 267 268.369 −1.369 0.51 55 757 752.948 4.052 0.54 298 301.925 −3.925 1.30
24 802 802.765 −0.765 0.10 288 286.363 1.637 0.57 56 753 755.523 −2.523 0.33 329 326.994 2.006 0.61
25 770 767.839 2.161 0.28 212 216.614 −4.614 2.13 57 777 767.369 9.631 1.26 260 260.84 −0.84 0.32
26 778 774.318 3.682 0.48 242 240.884 1.117 0.46 58 769 768.689 0.311 0.04 282 280.904 1.096 0.39
27 771 773.548 −2.548 0.33 273 274.535 −1.535 0.56 59 770 768.827 1.173 0.15 295 297.827 −2.827 0.95
28 773 774.605 −1.605 0.21 295 293.259 1.741 0.59 60 773 768.391 4.609 0.60 324 323.903 0.097 0.03
29 811 817.177 −6.177 0.76 238 236.89 1.111 0.47 61 761 761.483 −0.483 0.06 272 274.182 −2.182 0.80
30 765 767.603 −2.603 0.34 268 261.441 6.56 2.51 62 789 786.054 2.946 0.37 297 293.622 3.378 1.15
31 762 755.355 6.645 0.88 276 282.471 −6.471 2.29 63 777 775.854 1.146 0.15 314 316.673 −2.673 0.84
32 748 756.486 −8.486 1.12 306 303.79 2.21 0.73 64 765 764.144 0.856 0.11 335 328.871 6.129 1.86
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Table 6. Comparisons of experimental [42] and ANN simulated results.

Sample_RF

V 200 400 800 200 400 800
C 0.4 0.4 0.4 0.3 0.3 0.3
F 0.1 0.1 0.1 0.1 0.1 0.1
R 17.5 17.5 17.5 17.5 17.5 17.5

ANN_Sim
RF 965.348 907.893 961.213 767.369 768.689 768.391

Exp_RF 988 878 976 778 769 769
% Error 2.346511 3.292569 1.538411 1.385383 0.040445 0.079257

Sample_T

V 200 400 800 200 400 800
C 0.4 0.4 0.4 0.3 0.3 0.3
F 0.1 0.1 0.1 0.1 0.1 0.1
R 17.5 17.5 17.5 17.5 17.5 17.5

ANN_Sim
T 249.811 269.815 322.473 257.711 279.899 320.662

Abq Sim T 248 279 324 260 282 324
% Error 0.724869 3.404223 0.473621 0.888087 0.75052 1.041003
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5. Conclusions

In this study, the dry turning process parameters (cutting speed, feed rate, tool rake angle,
and contact friction coefficient) were investigated through Abaqus/Explicit numerical simulations
and optimized with ANN models. The ANN predicted outcomes demonstrated that the designed
intelligence models produced the reliable training data. Subsequently, training data were used to
simulate the optimum cutting parameters. The maximum percentage errors between the ANN
predicted and experimental results for the cutting reaction force and temperature are found to be 2.55
and 3.34, respectively. The small errors validate the conformance of ANN predictive models. The
coefficients of regression for training, testing, and validation data showed a perfect linear relationship
and closer to one. The performance curves and regression analysis of both models represent the
consistency of the solution. The presented research demonstrates that an integrated ANN-FEM
approach can be applied effectively to predict the reliable turning process parameters.
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Nomenclature

γ tool rake angle
Vc cutting velocity
f cutting feed
µ contact friction coefficient
σ equivalent stress
A material yield strength (MPa) at room temperature
B material hardening modulus
n work hardening exponent
C material constant for strain hardening rate
m thermal softening coefficient
Troom reference ambient temperature
Tmelt melting temperature
ε equivalent plastic strain
∆ε increment of equivalent plastic strain during damage evolution
ε f equivalent strain to fracture
D1 initial failure strain
D2 exponential factor
D3 triaxiality factor
D4 strain rate factor
D5 temperature factor
P average normal stress
E modulus of elasticity of material
υ Poisson ratio
qp heat generation rate
ηp inelastic heat fraction
τf shear stress by Coulomb friction law
ε plastic strain rate
εo reference strain rate
W synaptic weights
y input signals to the respective neutron’s
a output layer of ANN
b hidden layer of ANN
t represents a target value (desired activation)
E error
A learning rate
N iteration (epoch)
H momentum
RF reaction force
RF_Pd predicted reaction force
Err error
% Err percent error
T chip-tool interface temperature
T_Pd chip-tool interface predicted temperature
ANN_Sim RF ANN simulated reaction force
Exp_RF Experimental value of reaction force
ANN_Sim T ANN simulated temperature
Abq Sim T Abaqus simulated chip-tool interface temperature
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