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Abstract: A short-term schedule for crude oil operations in a refinery should define and sequence
the activities in detail. Each activity involves both discrete-event and continuous variables.
The combinatorial nature of the scheduling problem makes it difficult to solve. For such a scheduling
problem, charging tanks are a type of critical resources. If the number of charging tanks is not
sufficient, the scheduling problem is further complicated. This work conducts a study on the
scheduling problem of crude oil operations without sufficient charging tanks. In this case, to make a
refinery able to operate, a charging tank has to be in simultaneous charging and feeding to a distiller
for some time, called simultaneously-charging-and-feeding (SCF) mode, leading to disturbance to
the oil distillation in distillers. A hybrid Petri net model is developed to describe the behavior of
the system. Then, a scheduling method is proposed to find a schedule such that the SCF mode is
minimally used. It is computationally efficient. An industrial case study is given to demonstrate the
obtained results.
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1. Introduction

With the increasing importance of oil, the development of effective operations of an oil refinery
has attracted wide attention. If an oil refinery is operated properly, one can reduce production and
inventory cost [1], and may even increase profit $10 per ton of products or more [2]. A refinery is
operated hierarchically with three levels: production planning, production scheduling, and process
control. With mature planning techniques [3,4], optimal production plans can be obtained by using
linear programming-based commercial software [5]. Meanwhile, the efficiency of process control
is improved by the installation of advanced control systems [6]. Production scheduling is at the
middle level and should fulfill planning demands and instruct process control. A schedule defines and
sequences detailed operation activities for the whole scheduling horizon, which makes the problem
highly challenging [7]. Because of the extreme complexity of short-term scheduling, we find no
effective techniques and software tools to deal with it. This scheduling job is still done manually in
practice. To bridge the gap between the production planning and process control, the development of
effective short-term scheduling techniques is of paramount importance.

Mathematical programming models are applied to solve the crude oil scheduling problem. They
can be categorized as discrete-time and continuous-time ones. The models in [8–11] are representative
of the former. They are formulated by dividing the scheduling horizon into a number of time intervals
with uniform time durations. An event, such as the start or end of an operation, should happen at
the boundary of a time interval. Such a model has a major defect in that the time interval must be
sufficiently small to describe the scheduling problem with acceptable accuracy. As a result, a model for
real-life applications usually contains a computationally infeasible number of binary variables and
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constraints. To overcome this disadvantage, some researchers choose continuous-time models [12–14].
Although their use reduces the number of discrete variables, nonlinear constraints are introduced
such that the problem is extremely difficult to solve. Moreover, to make the problem solvable, most
discrete-time and continuous-time models make special assumptions that, unfortunately, lead to a
low-quality or unrealistic solution for real-world cases [15].

With a very detailed schedule being required, the scheduling problem of crude oil operations
becomes incredibly difficult [7]. To reduce the computational complexity, this problem is studied in
the viewpoint of control theory by extending the Petri net models applied in discrete manufacturing
systems [16–20]. By this approach, a two-level operational architecture for the short-term scheduling
problem of crude oil operations is proposed to decompose the problem into two sub-problems [21–24].
At the upper level, a refining schedule is specified for distillers without involving detailed operations
to optimize some objectives, such as maximizing production rate. It determines the types, amount,
processing rate and sequence of crude oil to be processed for each distiller. At the lower level, a detailed
operation schedule is provided, such as charging tank charging/discharging and oil transportation
via a pipeline, to realize a refining schedule. Based on this architecture, to ensure the feasibility of an
obtained schedule, the dynamic behavior of crude oil operations is modeled by a hybrid Petri net (PN)
and schedulability conditions are derived for different cases [21,22,25–28]. With the schedulability
conditions as constraints, an optimal and realizable refining schedule can be efficiently found [29,30],
while a detailed schedule is obtained recursively. Note that these studies are conducted under the
assumption that there are enough charging tanks in the system.

For crude oil operations, after a storage/charging tank is charged, the crude oil should stay in the
tank for a certain time before it can be discharged. This time duration is called oil residency time (ORT)
and this requirement is called an oil residency time constraint. It is the oil residency time constraint
that makes the scheduling problem difficult and requires enough charging tanks to obtain a feasible
schedule. With such a constraint, to find a feasible schedule with maximal production rate, generally
three charging tanks are required for each distiller [21]. Although such a requirement is satisfied for
many refineries, there are refineries without sufficient charging tanks to meet this requirement. Due to
the market demand increase, some refineries in China install more distillers to increase their capacity
without installing any more charging tanks. In this case, to keep a refinery operation, the refinery
has to ignore the oil residency time constraint in feeding distillers for some time. By ignoring the
oil residency time constraint, a charging tank is charged and used to feed a distiller simultaneously,
and this operation mode is called simultaneously-charging-and-feeding (SCF). However, by doing
so, the oil distillation process for the feeding distiller would be disturbed to some extent. Thus, it is
desired that the SCF is minimally used.

Up to now, there is no study on this issue, which motivates this study. Since the architecture
proposed in [21,22,24] is shown to be effective to the scheduling problem, it is adopted as a basis of
this work. To conduct this study, a model should be developed to describe the dynamic behavior of
the system. For crude oil operations, there are discrete events, such as the start and end of the charging
and discharging of tanks. However, oil flows continuously. Thus, the process of crude oil operations is
characterized as a hybrid system containing both discrete-event and continuous variables. A hybrid
model is necessary. There are hybrid Petri net models such as fluid stochastic Petri nets [31,32] and
stochastic activity networks [33]. These models can describe the stochastic properties of many systems
well, but they are not developed to describe the flows of continuous materials in a system. Note that,
the scheduling process of crude oil operations addressed here is not a stochastic one, while continuous
flows of crude oil are essential. Thus, we extend the hybrid PN models in [24,29,30] to model the
system, since they can describe such a system well.

The next section briefly introduces the process of crude oil operations and its short-term
scheduling problem. Then, a hybrid PN model is presented for such a process in Section 3. With the
model, Section 4 presents the methods for the short-term scheduling problem of systems with multiple
distillers to minimize the usage of the SCF mode. Section 5 extends the results obtained in Section 4
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to general systems with K distillers. An industrial case study is given to show the application of the
proposed methods in Section 6. Finally, Section 7 draws the conclusions.

2. Refinery Process and Short-Term Scheduling

2.1. Crude Oil Operations in Refinery

A general oil refinery process contains three stages: (1) crude oil operations; (2) production;
and (3) product delivery. Since the whole refinery process is very complex, this paper addresses the
short-term scheduling problem for crude oil operations only, which is one of the most challenging
scheduling problems in operating a refinery. At the stage of crude oil operations, crude oil is carried to
a port by crude oil tankers and is unloaded into storage tanks there. Oil in storage tanks is transported
to charging tanks in the refinery plant through a pipeline. Then, from charging tanks, oil is fed into
distillers for distillation.

During crude oil operations, crude oil can only be discharged into an empty storage or charging
tank or one that holds the same type of crude oil. To obtain suitable components for distillation,
different types of crude oil may be mixed when oil is transported from storage tanks to charging tanks
or fed into distillers. If oil is mixed during oil feeding, at least two charging tanks are required to feed a
distiller at the same time. As charging tanks are a critical resource and are limited, in general, only one
charging tank is used to feed a distiller at a time and crude oil mixing is done during its transportation
via a pipeline. Therefore, this paper only considers the case in which only one charging tank is used to
feed a distiller at any one time. Moreover, crude oil mixing is not considered here, since a mixture can
be simply treated as a new type of oil.

The brine in crude oil disturbs the distillation process. Thus, crude oil needs to be pretreated to
separate brine from oil to ensure the stability, which is implemented by making oil stay in a tank for
some time after a storage or charging tank is charged, leading to an oil residency time constraint in
both storage and charging tanks. When a tank is required to satisfy such a constraint, we say that the
tank operates under the normal mode. Under the normal mode for both storage and charging tanks,
it is shown that generally a feasible schedule with maximal production rate can be found if there are
three charging tanks for each distiller at any time [21,22,25–28]. Considering that crude oil has already
been pretreated in storage tanks, when a refinery does not have enough charging tanks it has to adopt
the SCF mode to keep the system in operation. Nevertheless, the SCF is not a desired mode and its use
should be minimized to reduce the disturbance to the distillation process. Note that, by the SCF mode,
before a charging tank can be used to feed a distiller, the tank should be charged with a certain amount
of oil first; this is called the safety stock, also known as the SCF mode constraint.

Based on the above discussion, we summarize the constraints for scheduling crude oil operations
as follows. We have resource constraints: (1) the limited number of storage and charging tanks and
their capacities; (2) the limited flow rate of oil unloading and pipeline transportation; and (3) the
available volume of various crude oil types in tanks and incoming tankers. We also have process
constraints: (1) a distiller should be kept in working uninterruptedly unless a maintenance is needed;
(2) at least one charging tank is dedicated to feed a distiller at any time; (3) oil residency time constraint
for all storage and charging tanks under the normal mode; and (4) when SCF is applied, the SCF mode
constraint should be met.

2.2. The Scheduling Problem

A crude oil operation process is composed of a series of operations. The short-term scheduling
problem is to make decisions on what an operation should do and when and how it should be executed.
To describe a short-term schedule, we first define an operation decision (OD).

Definition 1. An operation is defined as OD = (COT, ζ, S, D, INT), where COT = the crude oil type;
ζ = the volume of crude oil to be unloaded from a tanker to a storage tank, or transported from a storage tank to a
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charging tank, or fed from a charging tank to a distiller; S = the source from which the crude oil is to be delivered;
D = the destination to which the crude oil is to be delivered; and INT = [a, b] a time interval, where a and b are
the start and end time points of the operation, respectively.

The flow rate in delivering crude oil in [a, b] may be variable. However, it is scheduled as a
constant for a single operation in practice for the sake of stability and simplification. Thus, given
volume ζ and time interval [a, b] in an OD, ζ/(b − a) is its flow rate. Each OD is a control command
that transfers the system from a state to another.

There are three types of ODs: OD of crude oil unloading (ODU), OD of transportation (ODT),
and OD of feeding to a distiller (ODF), and their time intervals are denoted as [α, β], [λ, µ], and [ω, π],
respectively. For ODU, S is a tanker and D is a storage tank. For ODT, S is a storage tank and D is a
charging tank, and the transportation is performed through a pipeline. For ODF, S is a charging tank
and D is a distiller. We use ODFki to denote the ith OD for feeding distiller k during the scheduling
horizon. Let Γ = [τs, τe] be the scheduling horizon that often lasts for a week or ten days and
g = ζ/(β − α), f = ζ/(µ − λ), and h = ζ/(π − ω) denote flow rates for tanker unloading, pipeline
transportation, and distiller feeding decided by ODs, respectively. Let K be the set of distillers. Given
the initial state at τs, i.e., the inventory of crude oil and state of all devices, and information of tanker
arrival, the short-term scheduling problem is to find a series of ODs described as follows:

SCHD = {ODU1, ..., ODUW, ODT1, ..., ODTZ, ODF1, ..., ODFK}, (1)

subjected to
ωk1 = τs, πk1 = ωk2, ..., πk(i-1) = ωki, ..., and πkn = τe for ∀k ∈ K (2)

and the constraints given in Section 2.1.
Constraint (2) requires that the schedule should cover the entire scheduling horizon and a distiller

cannot be stopped. Also, different objectives can be selected to optimize. Essentially, in the view of
control theory, an OD is a control command that transfers the system state from one to another. If a
state is reached such that any constraint is violated, this state is said to be infeasible. If not infeasible,
it must be feasible. There may be a state that is feasible itself, but no matter what ODs are applied
thereafter the system would eventually enter an infeasible state; such a state is called an unsafe one,
and otherwise it is safe. A safe state guarantees the existence of a feasible schedule.

3. System Modeling with Petri Nets

With an OD being viewed as a control command, this work develops a method to schedule the
system from a control perspective as done in [21,22]. Although the PN models in [31–33] are hybrid
ones with both discrete and continuous places, they are not developed to describe the continuous
material flows as required by the ODs. Thus, we modify the hybrid Petri net model presented in [21,22],
due to the fact that they can describe the continuous material flows well. We first present models for
devices including tanks and pipeline, then integrate them to develop the model for the whole system.
A reader is referred to [34,35] for the basic knowledge of PN.

The above scheduling problem involves discrete-event variables, such as the source and
destination of an OD, and continuous variables, such as volumes of crude oil and flow rates. Hence,
both discrete and continuous places, and discrete and continuous transitions are needed to model the
system. In the proposed PN model, a discrete place with a discrete token in it is used to implement
the control logic of the system. A token in a continuous place can be treated as both discrete and
continuous ones. When treated as a discrete one, it is used to describe some attributes such as if there
is oil in a tank, and if the oil in a tank is ready to be discharged. When it is treated as a continuous one,
it is used to describe the volume of oil in a tank. Note that a token in a continuous place indicates that
there is oil in the tank modeled by the place. Also, a tank can hold one type of oil at a time. Thus, in the
model, a continuous place can hold at most one token. If a token is sent to a continuous place that
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holds one token in it, the two tokens are merged into one with the volume being the sum. The flow
rate of oil is described by the firing rate of a continuous transition. Moreover, colors are introduced to
identify different types of crude oil, and time is also needed to describe the scheduling problem.

The proposed PN model is a kind of continuous-colored-timed PN (CCTPN) defined as CCTPN
= (PD∪PC∪PE, TD∪TT∪TC, I, O, Φ, M0), where PD, PC, and PE are sets of discrete, continuous,
and enforcing places, respectively; TD, TT, and TC are sets of discrete, timed, and continuous transitions,
respectively; I and O are input and output functions, respectively; Φ represents the color sets defined
on tokens in places; and M0 is the initial marking. The icons for the model are shown in Figure 1.Appl. Sci. 2017, 7, 564 5 of 25 
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3.1. Device Modeling

The devices involved in crude oil operations include tanks (storage and charging tanks) and a
pipeline. While scheduling a refinery without sufficient charging tanks, the crude oil must stay in
storage tanks for ORT, but charging tanks may adopt the SCF mode during the execution of a schedule.
Hence, the models for charging and storage tanks are different.

The PN model in Figure 2 describes the behavior of a storage tank and is the same as that in [21,22].
A storage tank is modeled by two continuous places ps and pc to describe its state. In the PN model,
a token in a discrete place is treated as a discrete one and acts just as that in a general PN. For example,
a token in p4 is just a discrete one. A token in a continuous place can be treated as both discrete and
continuous one. When it is treated as a discrete one, it indicates that there is oil in a tank. For example,
one token in ps or pc or both denotes that there is oil in it. Also, when t2 fires, the token in ps is
removed just like a discrete one. When the token in a continuous place is treated as a continuous one,
it represents the crude oil in the device with a real number volume, which is called the token volume.
If there is a token in an enforcing place, it enforces the output transitions to fire until it is empty.
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A discrete transition behaves the same as in a general PN. When a timed transition fires, it moves
a token from an input place to an output place with a constant time delay, which is used to model
the oil residency time constraint. When a continuous transition fires, oil is delivered from one place
to another with a flow rate for a time duration, which is determined by an OD. Hence, crude oil
unloading, transportation or feeding to distillers can be modeled by continuous transitions.

One token in ps indicates that the oil stays in the tank for less than ORT and is not ready for
discharging. Only if there is a token in pc, and ps is empty, can the oil in the tank be discharged.
Continuous place p3 models the capacity of the tank available at the current marking. Continuous
transitions t1 and t3 model the processing of charging to and discharging from a tank. Timed transition
t2 models the ORT constraint. When t2 completes its firing with a given time delay, the token in ps

moves to pc, indicating that the oil in the tank is ready for discharging. Notice that a non-emptied tank
can be charged when the type of oil to be charged to the tank is same as that in the tank. In this case,
when the firing of t1 ends, both ps and pc hold a token such that both t2 and t3 are enabled. However,
in this case, the firing of t3 results in the violation of oil residency time constraint. Hence, inhibitor arc
(ps, t3) guarantees that t3 can fire only when ps is emptied, which implies that the oil stays in the tank
for ORT. If transition t1 (t2, t3) fires, one token in place p4 is consumed at the beginning, and one token
is put into place p4 when its firing ends. Since there is only one token in p4, during the firing of one of
transitions t1, t2, and t3, the others are disabled, which ensures that a storage tank cannot be filled and
discharged simultaneously. Thus, a storage tank can only be operated under the normal mode and its
behavior is well described.

A charging tank should operate under the normal mode if possible. However, when the charging
tanks in the system are not enough, the SCF mode has to be adopted to keep the distillers in operation.
Thus, a charging tank should be modeled such that the behavior of both modes is described; the obtained
PN model is shown in Figure 3. In this model, ps, pc, t1, t2, and t3 are the same as for the storage tank
shown in Figure 2. Transitions t4 and t5, and place p5 are added to model the behavior of the SCF mode.
Enforcing place p5 that can hold at most one token at a time is a control place that decides the operation
mode of a tank. If a charging tank starts to adopt the SCF mode, one token is created and put into p5 such
that t2 and t3 are disabled, and t5 is forced to fire to move the token in pc back to ps immediately if pc is
not empty. At the same time, t4 is forced to fire for feeding a distiller and t1 can fire to charge the tank,
i.e., the SCF mode is applied. When an instruction is received to end the SCF mode and switch to the
normal mode, the token in p5 is removed away. Then, t4 is not enabled and cannot fire, and the tank goes
back to the normal mode. Note that a charging tank can start to operate under the SCF mode, but the
crude oil in it is no less than the safety stock, i.e., one token can be put into p5 only if the sum of the volume
associated with the token in ps and pc is greater than or equal to the safety stock. This can be decided by a
schedule. In this way, the behavior of a charging tank is well modeled.

Appl. Sci. 2017, 7, 564 6 of 25 

t2 models the ORT constraint. When t2 completes its firing with a given time delay, the token in ps moves 
to pc, indicating that the oil in the tank is ready for discharging. Notice that a non-emptied tank can be 
charged when the type of oil to be charged to the tank is same as that in the tank. In this case, when 
the firing of t1 ends, both ps and pc hold a token such that both t2 and t3 are enabled. However, in this 
case, the firing of t3 results in the violation of oil residency time constraint. Hence, inhibitor arc (ps, t3) 
guarantees that t3 can fire only when ps is emptied, which implies that the oil stays in the tank for 
ORT. If transition t1 (t2, t3) fires, one token in place p4 is consumed at the beginning, and one token is 
put into place p4 when its firing ends. Since there is only one token in p4, during the firing of one of 
transitions t1, t2, and t3, the others are disabled, which ensures that a storage tank cannot be filled and 
discharged simultaneously. Thus, a storage tank can only be operated under the normal mode and 
its behavior is well described. 

A charging tank should operate under the normal mode if possible. However, when the charging 
tanks in the system are not enough, the SCF mode has to be adopted to keep the distillers in operation. 
Thus, a charging tank should be modeled such that the behavior of both modes is described; the 
obtained PN model is shown in Figure 3. In this model, ps, pc, t1, t2, and t3 are the same as for the 
storage tank shown in Figure 2. Transitions t4 and t5, and place p5 are added to model the behavior of 
the SCF mode. Enforcing place p5 that can hold at most one token at a time is a control place that 
decides the operation mode of a tank. If a charging tank starts to adopt the SCF mode, one token is 
created and put into p5 such that t2 and t3 are disabled, and t5 is forced to fire to move the token in pc 
back to ps immediately if pc is not empty. At the same time, t4 is forced to fire for feeding a distiller 
and t1 can fire to charge the tank, i.e., the SCF mode is applied. When an instruction is received to end 
the SCF mode and switch to the normal mode, the token in p5 is removed away. Then, t4 is not enabled 
and cannot fire, and the tank goes back to the normal mode. Note that a charging tank can start to 
operate under the SCF mode, but the crude oil in it is no less than the safety stock, i.e., one token can 
be put into p5 only if the sum of the volume associated with the token in ps and pc is greater than or 
equal to the safety stock. This can be decided by a schedule. In this way, the behavior of a charging 
tank is well modeled. 

 
Figure 3. PN model for charging tanks. 

The PN model for a pipeline that can hold three different segments of crude oil is shown in 
Figure 4 and is the same as that in [21,22]. Places p1–p3 represent different oil segments in the pipeline. 
When discrete transitions t1 and t2 are enabled and fire, one token is moved from an input place into 
an output place immediately. Let TI = {tI1, …, tIk} and TO = {tO1, …, tOk}. As crude oil mixing is not 
considered here, the pipeline receives crude oil from only one storage tank and feeds only one charging 
tank with the same rate at a time. Hence, only one transition in TI and one in TO can fire with the same 
rate at a time. To simplify the PN model for the entire system, the pipeline is modeled in a hierarchical 
way and a macro transition y is used to describe the behavior of the pipeline when there is no confusion. 

Figure 3. PN model for charging tanks.



Appl. Sci. 2017, 7, 564 7 of 26

The PN model for a pipeline that can hold three different segments of crude oil is shown in Figure 4
and is the same as that in [21,22]. Places p1–p3 represent different oil segments in the pipeline. When
discrete transitions t1 and t2 are enabled and fire, one token is moved from an input place into an output
place immediately. Let TI = {tI1, . . . , tIk} and TO = {tO1, . . . , tOk}. As crude oil mixing is not considered
here, the pipeline receives crude oil from only one storage tank and feeds only one charging tank with the
same rate at a time. Hence, only one transition in TI and one in TO can fire with the same rate at a time.
To simplify the PN model for the entire system, the pipeline is modeled in a hierarchical way and a macro
transition y is used to describe the behavior of the pipeline when there is no confusion. In other words,
when y fires, it implies that one transition in TI and one in TO fires at the same rate at the same time, which
models the crude oil’s transport from storage tank to charging tank via a pipeline.
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3.2. PN Model for the Whole System

The PN in Figure 5 models the whole system with two storage tanks, two charging tanks, and
two distillers, where the discrete places, enforcing places, and their associated arcs, and the inhibitor
arcs are omitted for concision. Crude oil is transported from storage tanks to charging tanks through
a pipeline. Thus, y models both the discharging of storage tanks and the charging of charging tanks
at the same time. In the model, {t11, t12, y, p1s, p1c, p13} and {t21, t22, y, p2s, p2c, p23} model the two
storage tanks, while {y, t32, t33, t34, t35, p3s, p3c, p33} and {y, t42, t43, t44, t45, p4s, p4c, p43} model the two
charging tanks.
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Place p0 with F tokens in it models a tanker carrying F types of crude oil when it arrives. Transition
t1 can fire to move one token from p0 to p1 only if p1 is empty, and models that only one type of oil
can be unloaded at a time. At the right part, places p3 and p4 model two distillers, and t5 and t6
represent distillation. However, it should be noted that the PN model just describes the structure of the
system, not the detailed dynamics of the crude oil flow. From the definition of a short-term schedule,
the firing of a continuous transition is triggered by an OD. Thus, with the flow rate given by ODs
and the transition enabling and firing rules, the dynamics of the crude oil flow in the PN model can
be defined.

The set of input places of transition t (input transitions of place p) is denoted as •t (•p). Similarly,
the set of output places of t (output transitions of p) is denoted as t• (p•). Furthermore, colors are
introduced into the PN model to distinguish different types of crude oil and we let φi ∈ Φ denote the
crude oil type i, i.e., the color of a token in a place. At marking M, the number of tokens with color φi
in p is denoted as M(p, φi) and the associated volume is denoted as V(M(p, φi)). It should be pointed
out that V(M(p, φi)) = 0 implies M(p, φi) = 0. With the above symbols, readers are referred to [21,22] for
the transition enabling and firing rules. Then, we can discuss the scheduling problem by using the
developed model.

4. Scheduling Method

To obtain a feasible short-term schedule, the most difficult step is to decide on ODTs and ODFs.
In this paper, we assume that a refining schedule is given, as can be found in the methods in [28,30].
Given a refining schedule that is set according to the crude oil availability during the scheduling
horizon, the feeding rate to the distillers is known, which implies that there is enough crude oil in the
storage tanks to be processed. Hence, finding a detailed schedule to realize a given refining schedule
is independent of the number of storage tanks and their capacity, and the storage tanks in the system
are ignored when a PN model is presented in the discussion thereafter.

According to Wu et al. [21,22], the existence of a feasible short-term schedule is the key to finding
a schedule under the normal mode. With the SCF mode, a schedule should be available. Nevertheless,
since the SCF mode is undesirable, its use should be minimized and the normal mode should be applied
if possible. Thus, to schedule the system, we adopt both modes and the SCF mode is adopted only
for some charging tanks during some periods when necessary. Under the normal mode, the system
with initial state M0 is said to be schedulable if there exists a feasible short-term schedule for a horizon
(0, ∞) [21,22]. A state M is said to be safe if, with M as its initial state, the system is schedulable. Based
on this safety concept, we discuss the scheduling problem to minimize the use of the SCF mode.

To minimize the use of the SCF mode, we need to measure such usage. When the SCF is applied
for a charging tank by starting at time τ1, this mode is applied without interruption until time τ2. Then
we say that, during time slot from τ1 to τ2, the SCF is applied to the charging tank. For a system with H
charging tanks and K distillers, assume that charging tank CTKi adopts the SCF mode for Ni time slots
during the scheduling horizon. Let τsin and τein denote the start and end time of the nth slot of applying
the SCF mode for charging tank CTKi, respectively. Then the total time during which the charging
tanks adopt the SCF mode is defined as Π = ∑H

i=1 ∑Ni
n=1 (τein − τsin). Furthermore, let Γ = (τs, τe) be the

scheduling horizon. Then the usage of the SCF mode can be measured by δ = Π/K(τe − τs), which
gives the ratio of time during which the distillers are fed under the SCF mode. Hence, to minimize the
usage of the SCF, we have to minimize δ. As the charging tanks are an important and limited resource,
a utilization ratio is introduced to the charging tanks. A charging tank is at a working state if it is being
charged, discharged, or t2 in Figure 2 fires; otherwise it is at an idle state. Let Ni denote the number
of time slots during which charging tank CTKi is at a working state during the scheduling horizon,
and ςsin and ςein denote the start and end time of the nth working slot of CTKi, respectively. Then,
the utilization ratio of CTKi is defined as ρi = ∑Ni

n=1 (ςein − ςsin)/(τe − τs), and the utilization ratio for
the whole system is defined as ρ = ∑H

i=1 ρi/H. We develop scheduling methods to find a schedule to
minimize δ and increase ρ.
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We use fdsi, fpmax, Ψ, and σ to denote the feeding rate to distiller DSi, the maximal oil transportation
rate of the pipeline, the ORT, and the safety stock, respectively. Places pis and pic are used for
charging tank CTKi in the PN model. As a scheduling method, it is meaningful only if the production
rate of the system can reach the maximum since productivity is a very important criterion. Hence,
in the following discussion, for a refinery with K distillers, we assume that the system operates at the
maximal production rate, or ∑K

k=1 fdsk = fpmax, where fdsk is the feeding rate to distiller DSk.
For a refinery with only one distiller at the maximal production rate, as proven in [21], three

charging tanks are necessary to schedule the operation under the normal mode, which can usually be
satisfied in practice. Hence, we focus on analyzing a system with multiple distillers. For a system with
K distillers, all the distillers have to process crude oil concurrently and uninterruptedly. Hence, at least
one charging tank must be dedicated to a distiller, which implies that no schedule can be found even if
the SCF mode is adopted if the number of charging tanks is less than K. Based on practical scenarios
without sufficient charging tanks, for a refinery with K distillers and N charging tanks, we discuss the
scheduling problem for cases with K ≤ N < 2K. Also, in the following discussion, we assume that each
distiller processes different oil types since the obtained results in this case are applicable to cases when
some distillers process the same oil type.

4.1. Systems with Two Distillers

In [21], it is shown that, under the normal mode, no feasible schedule with maximal production
rate can be found for a refinery with one distiller and two charging tanks. Thus, it is clear that if there
are only two charging tanks for a two-distiller system, to obtain a schedule, the two distillers must be
fed by applying the SCF mode all the time, i.e., δ = 1. Then, we discuss the case with three charging
tanks. For this case, with the PN model shown in Figure 6, we have the following results.

Proposition 1. Assume that: (1) there are two distillers DS1–2 with feeding rates fds1 and fds2, respectively,
and α = Ψ × fpmax, α1 = Ψ × fds1, and α2 = Ψ × fds2; (2) there are three charging tanks CTK1–3 with capacities
ξ1, ξ2, and ξ3, respectively; (3) fpmax = fds1 + fds2; and (4) initially, the volume of oil type 1 in CTK1 is ζ1,
and the volumes of oil type 2 in CTK2 and CTK3 are ζ2 and ζ3, respectively. Then, a schedule can be found such
that δ = 0.5 if Condition (3) holds:

σ ≤ ζ1 ≤ ξ1 − µ× α2 × fds1/ fpmax

ζ2 = α2

ζ3 = µ× α2

, (3)

where µ ∈ [fpmax/fds1, min{ξ2/α2, ξ3/α2}].

Proof. See Appendix A.1.

By the proof of the proposition, a method is given to find a schedule. To schedule the system,
Condition (3) presents the necessary amount of oil that is initially in the charging tanks, which is easy
to meet. In fact, if all the charging tanks are initially empty, no schedule can be found according to
the operational requirements, no matter how many charging tanks there are. If there is more oil at the
initial state, a schedule can be obtained similarly. By the obtained schedule, in order to keep DS1 in
operation, CTK1 has to apply the SCF mode during the whole scheduling horizon due to the limited
charging tanks. For DS2, by carefully scheduling the system, it is alternately fed by two charging tanks,
CTK2 and CTK3, under the normal mode. If one of them is empty, the other can be used to feed the
distiller. Hence, both CTK2 and CTK3 operate under the normal mode during the whole scheduling
horizon. To do so, the key is that every time CTK1 (CTK2, CTK3) is charged, its volume is V1 = µ × α1

(V2 = µ × α2, V2 = µ × α2). Thus, a schedule can be found simply by using the proposed method.
Note that CTK2 is empty during [τ1, τ2], and the utilization ratio of CTK2 is ρ2 = 1 – (µ × fds1 −

fpmax)/(µ × fpmax) = 1 − fds1/fpmax + 1/µ. Hence, CTK2 is not fully utilized. If time duration [τ1, τ2]
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can be made longer than Ψ, CTK2 can be used to feed DS1 for some time under the normal mode such
that δ can be reduced by the full use of CTK2. Let v = (µ × fds1 − 2 × fpmax)/(fds1 + fpmax). We have the
following result.
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Proposition 2. Assume that: (1) there are two distillers DS1-2 with feeding rates fds1 and fds2, respectively,
and α = Ψ × fpmax, α1 = Ψ × fds1, and α2 = Ψ × fds2; (2) there are three charging tanks CTK1–3 with capacities
ξ1, ξ2, and ξ3, respectively; (3) fpmax = fds1 + fds2; and (4) initially, the volume of oil type 1 in CTK1 is ζ1,
and the volumes of oil type 2 in CTK2 and CTK3 are ζ2 and ζ3, respectively. Then, a schedule can be obtained
such that δ = (µ − v)/2µ if Condition (4) holds:

σ ≤ ζ1 ≤ ξ1 − α2

σ− α2 + v× α1 × fds1/ fpmax ≤ ζ1 ≤ ξ1 − µ× α2 × fds1/ fpmax

ζ2 = α2

ζ3 = µ× α2

, (4)

where µ ∈ [max{(v × fds1 + fpmax)/fds1, 2fpmax/fds1}, min{ξ2/α2, ξ3/α2}] and v ∈ [0, min{ξ2/α1, ξ3/α1}].

Proof. See Appendix A.2.

This schedule is obtained by modifying that created by Proposition 1. By the scheduling method
given in the proof of Proposition 2, DS2 is fed by CTK2 and CTK3 under the normal mode during
the whole scheduling horizon, which is the same as that in Proposition 1. However, since CTK2 and
CTK3 have idle time for feeding DS2, they can feed DS1 under the normal mode during their idle time
such that the usage of the SCF mode is reduced. To do so, when the charging tanks are charged with
volume V1 = µ × α1 of oil type 1, we do not charge all the crude oil into CTK1 at one time as done in
Proposition 1; instead, V1 is divided into three parcels and charged in the following order: charge
CTK1 with volume v1 = α1 → charge CTK2 or CTK3 with volume v2 = v × α1 → charge CTK1 with
volume v3 = (µ − v − 1)α1. By doing so, when the crude oil of type 1 in CTK2 or CTK3 is ready for
discharging under the normal mode, it can be used to feed DS1 until it is used up. Note that, by doing
so, DS2 is still fed under the normal mode.
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For the obtained schedule using Proposition 2, CTK2 is used to feed DS2 and DS1 during [τ0, τ1]
and [τ3, τ4] under the normal mode, respectively. In this way, the utilization ratio of CTK2 reaches
ρ2 = 1. Furthermore, CTK1 and CTK3 are occupied during the whole scheduling horizon too. Hence, δ

is minimized and cannot be reduced any more. It should be pointed out that such a schedule can be
obtained only if µ ≥max{(v × fds1 + fpmax)/fds1, 2fpmax/fds1}, otherwise, CTK2 cannot be used to feed
DS1 under the normal mode, and the system has to be scheduled using Proposition 1.

4.2. Scheduling a System with Three Distillers

For a system with three distillers, the scheduling problem is much more complicated than with
two distillers. For such a system, if there are three charging tanks, it is obvious that we can use one
tank to feed one distiller under the SCF mode and δ = 1. We then discuss cases with more than three
charging tanks.

4.2.1. Case 1: Four Charging Tanks

The PN model for the system with three distillers and four charging tanks is shown in Figure 7.
In this case, only one charging tank can be assigned to each of DS1 and DS2, and two charging tanks
are assigned to DS3. Then, we present methods to schedule the system.

Proposition 3. Assume that: (1) there are three distillers DS1–3 with feeding rates fds1, fds2, and fds3, respectively,
and α = Ψ × fpmax, α1 = Ψ × fds1, α2 = Ψ × fds2, and α3 = Ψ × fds3; (2) there are four charging tanks CTK1–4
with capacities ξ1, ξ2, ξ3, and ξ4, respectively; (3) fpmax = fds1 + fds2 + fds3; and (4) initially, the volume of oil
type 1 (2; 3; 3) in CTK1 (CTK2; CTK3; CTK4) is ζ1 (ζ2; ζ3; ζ4). Then, if Condition (5) holds, we can find a
schedule with δ = 2/3.

σ ≤ ζ1 ≤ ξ1 − µ× (α− α1)× fds1/ fpmax

σ + µ× α1 × fds2/ fpmax ≤ ζ2 ≤ ξ2 − µ× (α− α1 − α2)× fds2/ fpmax

ζ3 = α3

ζ4 = µ× α3

, (5)

where µ ∈ [fpmax/(fds1 + fds2), min{ξ3/α3, ξ4/α3}].

Proof. See Appendix A.3.

Similar to Proposition 1, if two charging tanks are assigned to a distiller, this distiller can be fed
under the normal mode during the whole scheduling horizon. For the distiller with only one charging
tank being assigned, the SCF mode has to be applied. Just as in Proposition 1, the key to the proposed
method is that every time crude oil of type 1 (2, 3) is charged, the volume of oil to be charged is
V1 = µ × α1 (V2 = µ × α2, V3 = µ × α3).

With the obtained schedule by using the method given by Proposition 3, charging tank CTK3 is
emptied at time τ0 + Ψ and it is kept to be empty until it starts to be charged at time τ1. Hence, CTK3

is not fully utilized and its utilization ratio is ρ3 = 1 − (µ × fds1 + µ × fds2 − fpmax)/(µ × fpmax) = 1 −
(fds1 + fds2)/fpmax + 1/µ. Similar to the situation in Proposition 1, CTK3 can be used to reduce the usage
of the SCF mode. Let v = (µ × fds1 + µ × fds2 − 2 × fpmax)/(fds2 + fpmax). We have the following result.

Proposition 4. Assume that: (1) there are three distillers DS1–3 with feeding rates fds1, fds2, and fds3, respectively,
and α = Ψ × fpmax, α1 = Ψ × fds1, α2 = Ψ × fds2, α3 = Ψ × fds3, and fds1 ≥ fds2; (2) there are four charging
tanks CTK1–4 with capacities ξ1, ξ2, ξ3, and ξ4, respectively; (3) fpmax = fds1 + fds2 + fds3; and (4) initially,
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the volume of oil type 1 (2; 3; 3) in CTK1 (CTK2; CTK3; CTK4) is ζ1 (ζ2; ζ3; ζ4). Then, if Condition (6) holds,
we can find a schedule with δ = (2µ − v)/3µ.

σ ≤ ζ1 ≤ ξ1 − α2 − α3

σ− α2 − α3 + v× α2 × fds1/ fpmax ≤ ζ1 ≤ ξ1 − (µ× α−v× α2 − µ× α1)× fds1/ fpmax

σ + (µ× α1 + v× α2)× fds2/ fpmax ≤ ζ2 ≤ ξ2 − (µ× α−v× α− µ× α1 − µ× α2)× fds2/ fpmax

ζ3 = α3

ζ4 = µ× α3

, (6)

where µ ∈ [max{(v×fds2 + fpmax)/(fds1 + fds2), 2fpmax/(fds1 + fds2)}, min{ξ3/α3, ξ4/α3}] and v ∈ [0, min{ξ3/α2,
ξ4/α2}].
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Proof. See Appendix A.4.

For this proposed scheduling method, CTK3 or CTK4 is used to feed DS2 under the normal mode
for some time. Similar to Proposition 2, when CTK3 or CTK4 finishes feeding DS3 and becomes empty,
it is charged with volume v = v × α2 of oil type 2. When the crude oil in it is ready for feeding under
the normal mode, it starts feeding DS2 until it is empty, resulting in the reduction of the SCF mode
operation time of CTK2.

By the above obtained schedule, all the charging tanks including CTK3, which has idle time for
the schedule obtained by using Proposition 3, are fully utilized and the utilization ratio for the system
is ρ = 1. Thus, δ cannot be reduced further and the schedule is optimal in terms of the minimization of
δ. Notice that, if CTK3 is charged with oil type 1 instead of oil type 2 with volume v’ × α1 when it is
emptied at τ1, where v’ = (µ × fds1 + µ × fds2 − 2 × fpmax)/(fds1 + fpmax), the system can be scheduled
similarly. Consequently, we have Π’ = (2µ – v’)× Ψ≤ (2µ− v)× Ψ = Π as fds1 ≥ fds2. Hence, charging
oil of type 2 into CTK3 is better than charging oil of type 1 into it at time τ1.

4.2.2. Case 2: Five Charging Tanks

Now we discuss the situation where there are five charging tanks and three distillers, and the PN
model for it is shown in Figure 8. For this system, DS1 has only one charging tank, and the other two
distillers have two charging tanks each.
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Proposition 5. Assume that: (1) there are three distillers DS1-3 with feeding rates fds1, fds2, and fds3, respectively,
and α = Ψ × fpmax, α1 = Ψ × fds1, α2 = Ψ × fds2, and α3 = Ψ × fds3; (2) there are five charging tanks CTK1–5
with capacities ξ1–5, respectively; (3) fpmax = fds1 + fds2 + fds3; and (4) initially, the volume of oil type 1 (2; 2; 3;
3) in CTK1 (CTK2; CTK3; CTK4; CTK5) is ζ1 (ζ2; ζ3; ζ4; ζ5). Then, if Condition (7) holds, a schedule can be
found with δ = 1/3. 

σ ≤ ζ1 ≤ ξ1 − µ× (α− α1)× fds1/ fpmax

ζ2 = α2

ζ3 = µ× α2

ζ4 = α3

ζ5 = µ× α3

, (7)

where µ ∈ [fpmax/fds1, min {ξ2/α2, ξ3/α2, ξ4/α3, ξ5/α3}].

Proof. See Appendix A.5.

By the obtained schedule for this case, the system is operated similarly to Propositions 1 and 3.
CTK2 and CTK4 are empty and idle during [τ1, τ2] and [τ1, τ2 + (µ × α2)/fpmax], respectively, and their
utilization ratios for these two charging tanks are ρ2 = 1 − (µ × fds1 − fpmax)/(µ × fpmax) and ρ4 = 1 −
(µ × fds1 + µ × fds2 − fpmax)/(µ × fpmax), respectively. Thus, it is possible to use CTK2 and/or CTK4 to
feed DS1 under the normal mode so as to reduce δ. By following this idea, we schedule the system as
follows. Let v = (µ × fds1 + µ × fds2 − 2 × fpmax)/(fds1 + fpmax). We have the following result.

Proposition 6. Assume that: (1) there are three distillers DS1–3 with feeding rates fds1, fds2, and fds3, respectively,
and α = Ψ × fpmax, α1 = Ψ × fds1, α2 = Ψ × fds2, α3 = Ψ × fds3, and fds2 ≥ fds3; (2) there are five charging
tanks CTK1–5 with capacities ξ1–5, respectively; (3) fpmax = fds1 + fds2 + fds3; and (4) initially, the volume of oil
type 1 (2; 2; 3; 3) in CTK1 (CTK2; CTK3; CTK4; CTK5) is ζ1 (ζ2; ζ3; ζ4; ζ5). Then, if Condition (8) holds,
a schedule can be found with δ = (µ − v)/3µ.

σ ≤ ζ1 ≤ ξ1 − α2 − α3

σ− α2 − α3 + v× α1 × fds1/ fpmax ≤ ζ1 ≤ ξ1 − (µ× α−v× α− µ× α1)× fds1/ fpmax

ζ2 = α2

ζ3 = µ× α2

ζ4 = α3

ζ5 = µ× α3

, (8)

where µ ∈ [max{(v × fds1 + fpmax)/fds1, 2fpmax/(fds1 + fds2)}, min{ξ2/α2, ξ3/α2, ξ4/α3, ξ5/α3}] and v ∈ [0,
min{ξ4/α1, ξ5/α1}].
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Proof. See Appendix A.6.

The schedule generated by Proposition 6 is based on that obtained by Proposition 5. The difference
is that CTK4 is used to feed DS1 under the normal mode for some time due to that CTK4 has idle
time for the schedule obtained by Proposition 5. Thus, by using the scheduling method given in
Proposition 6, CTK4 is fully utilized, but CTK2 is empty and idle during [τ0 + Ψ, τ0 + (µ × α1)/fpmax],
i.e., the utilization ratio for CTK2 and CTK4 is ρ2 = 1 − (µ × fds1 − fpmax)/(µ × fpmax) and ρ4 = 1,
respectively. In this case, we cannot make ρ = 1 for the entire system, since both CTK2 and CTK4 are
emptied at time τ0 + Ψ but only one of them can be charged at a time. Moreover, if we charge CTK2

with oil type 3 instead of oil type 2 at time τ0 + (µ × α1)/fpmax, the system can be scheduled similarly
and the time taken for CTK1 to feed DS1 under the SCF mode is reduced to v’ ×Ψ = (µ × fds1 + µ ×
fds3 − 2 × fpmax)/(fds1 + fpmax) × Ψ ≤ v × Ψ as fds2 ≥ fds3 holds. Note that the charging of CTK1 is
completed at time τ0 + (µ × α1)/fpmax and does not feed DS1 during [τ2 − v × Ψ, τ2]. If τ2 − max{τ0

+ (µ × α1)/fpmax, τ2 − v × Ψ} ≥ Ψ holds, CTK1 can feed DS1 under the normal mode during [τ2, τ3],
which implies δ = (µ − v)/3µ − fds3/3fpmax. Moreover, we can further reduce δ by increasing the
utilization of both CTK2 and CTK4 rather than just one of them. By doing so, a more complex schedule
with a large number of charging tank switches may be obtained. However, δ is reduced slightly such
that the obtained schedule is not meaningful in practice. Nevertheless, it is applicable for a system
with more than three distillers, which is discussed in the next section.

5. Scheduling for General Systems

In the last section, we discussed the scheduling problem for different cases. In this section, we
extend these results to a general system with K distillers. For a system with K distillers and K charging
tanks, it is obvious that a schedule with one tank feeding one distiller under the SCF mode can be
found such that δ = 1. Then, we discuss the case with 2K − N charging tanks, where N < K.

Case 1: 2K − N Charging Tanks

For a system with K distillers and 2K − N charging tanks, where N < K, only one charging tank is
assigned to each of distiller DS1-N, and the other distillers have two charging tanks. Let charging tank
CTKi be represented by {pis, pic, ti2, ti3, ti4, ti5} and distiller DSi be represented by pi in a PN model.
Then, we present the following results.

Proposition 7. Assume that: (1) there are K ≥ 3 distillers DS1-K with feeding rates fds1–fdsK, and α = Ψ
× fpmax, α1 = Ψ × fds1, α2 = Ψ × fds2, . . . , αK = Ψ × fdsK; (2) there are 2K − N (N < K) charging tanks
CTK1–(2K − N) with capacities ξ1–(2K−N); (3) fpmax = fds1 + fds2 + . . . + fdsK; and (4) initially, the volume of oil
type 1 (i; j; j) in CTK1 (CTKi; CTK(2j−N−1); CTK(2j−N)) is ζ1 (ζi; ζ(2j−N−1); ζ(2j−N)), i ∈ {2, 3, . . . , N} and j ∈
{N + 1, N + 2, . . . , K}. Then, if Condition (9) holds, a schedule can be found with δ = N/K.



σ ≤ ζ1 ≤ ξ1 − µ× (α− α1)× fds1/ fpmax

. . .

σ + µ×∑i−1
k=1 αk × fdsi/ fpmax ≤ ζi ≤ ξi − µ×

(
α−∑i

k=1 αk

)
× fdsi/ fpmax

. . .

σ + µ×∑N−1
k=1 αk × fdsN/ fpmax ≤ ζN ≤ ξN − µ×

(
α−∑N

k=1 αk

)
× fdsN/ fpmax

ζ(N+1) = α(N+1)
ζ(N+2) = µ× α(N+1)
. . .
ζ(2j−N−1) = αj

ζ(2j−N) = µ× αj

. . .
ζ(2K−N−1) = αK

ζ(2K−N) = µ× αK

, (9)
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where µ ∈ [fpmax/(fds1 + fds2 + . . . + fdsN), min{ξ(N+1)/α(N+1), ξ(N+2)/α(N+1), . . . , ξ(2j−N−1)/αj, ξ(2j−N)/αj, . . . ,
ξ(2K−N−1)/αK, ξ(2K−N)/αK}].

Proof. See Appendix A.7.

Proposition 7 extends Propositions 1, 3, and 5 and presents a scheduling method for a general
system with K distillers and 2K − N charging tanks. By the method given in Proposition 7, every time
a charging tank for feeding distiller DSi, i ∈ {1, 3, . . . , K}, is charged, µ × αi of oil is charged no matter
what the operation mode of the charging tank is. Also, if the normal mode is applied, a charging tank
is emptied after feeding a distiller. Thus, a schedule is easily found.

Note that charging tanks CTK2j−N are empty during [τ0 + Ψ, τ0 + µ× (α1 + α2 + . . . + αj−1)/fpmax],
j ∈ {N + 1, N + 2, . . . , K}, and can be used to reduce δ. Hence, among these charging tanks, Q tanks with
1 ≤ Q ≤ min{N, K − N} can be used to feed DS(N−Q+1)−N under the normal mode. Let v1 = (µ × fds1 +
µ × fds2 + . . . + µ × fds(K−Q) − 2 × fpmax)/(fds(N−Q+1) + fpmax), and vq = (µ × fds1 + µ × fds2 + . . . + µ ×
fds(q+K−Q−1) – 2× fpmax − v1 × fds(N−Q+1) − v2 × fds(N−Q+2) − . . . − v(q−1) × fds(q+N−Q−1))/(fds(q+N−Q)
+ fpmax), q ∈ {2, 3, . . . , Q}, v = v1 + v2 + . . . + vQ and Ωq = (v1 × α(N−Q+1) + v2 × α(N−Q+2) + . . . + vq

× α(q+N−Q))/fpmax. Further, let εi = µ × αi/fpmax if 1 ≤ i ≤ N − Q + 1 and εi = (µ − v(i−N+Q))×αi/fpmax

if N − Q + 1 < i ≤ N. Then, there exists an integer L such that ε1 + ε2 + . . . + ε(L−1) ≤ Ψ ≤ ε1 + ε2 + . . . +
εL and 1 ≤ L ≤ N hold. We present the following results.

Proposition 8. Assume that: (1) there are K ≥ 3 distillers DS1–K with feeding rates fds1-fdsK, and α = Ψ ×
fpmax, α1 = Ψ × fds1, α2 = Ψ × fds2, . . . , αK = Ψ × fdsK, fds1 ≥ fds2 ≥ . . . ≥ fdsN and fds(N + 1) ≥ fds(N + 2) ≥
. . . ≥ fdsK; (2) there are 2K − N (N < K) charging tanks CTK1–(2K−N) with capacities ξ1-(2K−N); (3) fpmax =
fds1 + fds2 + . . . + fdsK; and (4) initially, the volume of oil type 1 (i; L; l; j; j) in CTK1 (CTKi; CTKL; CTKl;
CTK(2j−N−1); CTK(2j−N)) is ζ1 (ζi; ζL; ζl; ζ(2j−N−1); ζ(2j−N)), where i ∈ {2, 3, . . . , L − 1}, l ∈ { L + 1, L + 2,
. . . , N}, and j ∈ {N + 1, N + 2, . . . , K}. Then, if Condition (10) holds, a schedule can be found with δ = (N × µ

− v)/(K × µ).

σ ≤ ζ1 ≤ ξ1 − ε1 × fpmax + ε1 × fds1
. . .
σ + ∑i−1

k=1 εk × fdsi ≤ ζi ≤ ξi − εi × fpmax + ∑i
k=1 εk × fdsi

. . .
σ + ∑L−1

k=1 εk × fdsL ≤ ζL ≤ ξL − α + ∑L−1
k=1 εk × fpmax + αL

σ− α + ∑L−1
k=1 εk × fpmax + Ω× fdsL ≤ ζL ≤ ξL − εL × fpmax + ∑L

k=1 εk × fdsL + ΩL × fdsL
. . .
σ + ∑l−1

k=1 εk × fdsl + Ω× fdsl ≤ ζl ≤ ξl − ε l × fpmax + ∑l
k=1 εk × fdsl + Ωl × fdsl

. . .
σ + ∑N−1

k=1 εk × fdsN + Ω× fdsN ≤ ζN ≤ ξN − εN × fpmax + ∑l
k=1 εN × fdsl + ΩN × fdsN

ζ(N+1) = α(N+1)
ζ(N+2) = µ× α(N+1)
. . .
ζ(2j−N−1) = αj

ζ(2j−N) = µ× αj

. . .
ζ(2K−N−1) = αK

ζ(2K−N) = µ× αK

(10)

where µ ∈ [max{(v1 × fds(N−Q+1) + v2 × fds(N−Q+2) + . . . + vQ × fdsN + fpmax)/(fds1 + fds2 + . . . +
fdsN), 2fpmax/(fds1 + fds2 + . . . + fds(K−Q))}, min{ξ(N+1)/α(N+1), ξ(N+2)/α(N+1), . . . , ξ(2j−N−1)/αj, ξ(2j−N)/αj,
. . . , ξ(2K−N−1)/αK, ξ(2K–N)/αK}], v1 ∈ [0, min{ξ(2K−2Q−N+1)/α(N−Q+1), ξ(2K−2Q−N+2)/α(N−Q+1)}], v2 ∈ [0,
min{ξ(2K−2M−Q+3)/α(N−Q+2), ξ(2K−2M−Q+4)/α(N−Q+2)}], . . . , and vQ ∈ [0, min{ξ(2K−N−1)/αN, ξ(2K−N)/αN}].
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Proof. See Appendix A.8.

Proposition 8 is the extension of Propositions 2, 4, and 6 and presents a method to find a schedule
for a general situation with 2K − N charging tanks. The method given by Proposition 8 improves the
one given by Proposition 7 by using the idle time of charging tanks to feed distillers under the normal
mode. Thus, one needs to examine the idle time of such charging tanks and schedule the idle time by
the method given in Proposition 8. The key is that, during the idle time of charging tank CTK(2q+2K−2Q

N−1) or CTK(2q+2K−2Q−N), q ∈ {1, 2, . . . , Q}, for feeding DS(q+K−Q), it is charged with volume vq ×
α(q+N–Q) of oil type (q + N − Q), and feed DS(q+N−Q) under the normal mode for some time. However,
the total volume of oil type k, k ∈ {1, 2, . . . , K} that is charged into charging tanks remains Vk = µ × αk,
which is the same as that in Proposition 7. However, for oil of type i, i ∈ {1, 2, . . . , N}, it may be divided
into several parts and charged into the charging tanks sequentially according to the proposed method.

Note that, in order to reduce the number of switches in feeding distillers, we usually take the
maximal value of µ. While adopting Proposition 8, the maximal µ is calculated first. Then, this value is
used to calculate the corresponding v. By examining the upper and lower bounds of µ and v, we can
decide Q and obtain the corresponding schedule. Note that the charging of CTKq is completed at time
τq = τ0 + ε1 + ε2 + . . . + εq if q < L and τq = τ0 + ε1 + ε2 + . . . + εq + ΩQ if q ≥ L. If (τ1 + Ωq + (1 + vq) ×
Ψ) −max{τq, τ1 + Ωq + Ψ} ≥ Ψ holds, CTKq can feed DSq under the normal mode during [τ1 + Ωq +
(1 + vq) × Ψ, τ2], which further reduces δ.

In the proposed scheduling method, the initial crude oil in the charging tanks should meet the
given requirement. For charging tanks CTK1−N, the lower bound can be easily satisfied as σ is not
large and there is usually crude oil in the charging tanks initially in practice. If the volume of initial
crude oil exceeds the upper bounds, the pipeline can be set as idle for some time such that a charging
tank keeps feeding without being charged until the crude oil in it is less than the upper bounds. For
charging tanks CTK(N+1)−(2K−N), the key is that the charging tank should be empty when the charging
starts, which can be done if the pipeline is appropriately scheduled.

By the proposed scheduling methods, it is assumed that each distiller processes one type of crude
oil only during the entire scheduling horizon. In practice, a distiller has to switch from processing one
type of crude oil to another, which is not considered to ease the presentation of the proposed results.
If a distiller has to process a new type of crude oil under the SCF mode, the crude oil with a volume
larger than the safety stock should be charged into an empty charging tank first to satisfy the SCF
constraint. Then, this charging tank can be used to feed the distiller under the SCF mode after the
charging tank that is previously feeding the distiller finishes its discharging. For a charging tank that
feeds DSi, i ∈ {N + 1, N + 2, . . . , K}, under the normal mode, it is charged with volume µ × αi every
time. However, in some circumstances, the distiller has to process a new type of crude oil after ς < µ ×
αi of oil is processed. If ρ = 1 is not reached, an empty charging tank can be found and temporarily
used for crude oil type switches. Then, the system is scheduled in the same way. Otherwise, it cannot
be realized with the proposed method. In this case, we can use a charging tank in the system for oil
type switches. Note that, as Q increases, ρ increases as well, resulting in δ being reduced; this, however,
makes it harder to find an empty tank for the new type of crude oil. Hence, it is important to choose a
suitable Q for the schedule.

It should be pointed out that, according to existing studies [21,22,27], three charging tanks for a
distiller are generally required to find a feasible schedule with maximal production rate if only the
normal mode is applied. Note that, in this paper, by carefully scheduling the system, we use two
charging tanks for a distiller to realize the operation under the normal mode, and the SCF mode is
adopted only when the number of charging tanks for a distiller is less than two. Thus, we minimize
the number of charging tanks to find a schedule. When there are more charging tanks, a schedule can
be more easily found.

Furthermore, with the proposed method, the SCF mode is avoided if it is possible when there
are not enough charging tanks to allow for finding a feasible schedule under the normal mode. Also,
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by the proposed method, a schedule can be found to realize a given refining schedule with simple
calculation, and we generate the detailed schedule step by step. Hence, it provides an efficient way to
solve the scheduling problem for a refinery without sufficient charging tanks.

6. Industrial Case Study

This section presents a practical scenario of a refinery in China to show the application of the
proposed method. The refinery has four distillers DS1-DS4 with 10 charging tanks. A short-term
schedule with 10-day scheduling horizon should be created three times a month to realize a target
refining schedule. In this case, the refining schedule is shown in Figure 9, where #i denotes crude oil
type #i, i ∈ {1, 2, . . . , 9}. The oil feeding rates for the distillers and maximal flow rate of the pipeline
are fds1 = 323 tons/h, fds2 = 302 tons/h, fds3 = 625 tons/h, fds4 = 400 tons/h, and fpmax = 1650 tons/h,
respectively, which indicates fpmax = fds1 + fds2 + fds3 + fds4. Note that distillers DS1–DS3 operate
normally, while DS4 is under maintenance at the beginning and will be put into operation at the
beginning of the fifth day. The oil residency time for charging tanks is Ψ = 6 h, and the safety stock is
σ = 1000 tons.Appl. Sci. 2017, 7, 564 17 of 25 
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The initial state for the 10 charging tanks is shown in Table 1. Initially, CTK1, CTK4, and CTK8 are
feeding DS1, DS2, and DS3, respectively. Note that, according to the refining schedule, the crude oil
in CTK10 is not to be processed during the scheduling horizon, and CTK2 is under maintenance and
cannot be used. Hence, there are three charging tanks ready for charging at the initial time. By checking
the crude oil in the charging tanks and the refining schedule, we find that: (1) the pipeline needs to
deliver 22,000 tons of oil type #1 from the storage tanks to the charging tanks for feeding DS1 after
the oil initially in CTK1 and CTK3 is used up; (2) DS2 first processes the crude oil in CTK4 and CTK5,
then these two charging tanks are ready for charging; (3) CTK8 will be ready for charging after the
oil initially in it is used up by feeding DS3; and (4) CTK9 is empty and free to be charged. Therefore,
when DS4 starts its operation at the beginning of the fifth day, the system has four distillers operating
concurrently but only eight charging tanks are usable, i.e., there are not sufficient charging tanks in
the refinery. Hence, the SCF mode has to be adopted for some time, and the system is scheduled
with CTK1 and CTK3 being assigned to DS1, CTK4, and CTK5 to DS2, CTK8, and CTK9 to DS3, CTK6,
to DS4, and CTK7 is used for the oil type switch if necessary. The PN model for this system is shown in
Figure 10. Note that we do not model the charging tanks that are not available because they have no
effect on finding a schedule. Also, in the model, CTK7, which is used for oil type switches, is ignored
for concision. In the model, {y, ti2, ti3, ti4, ti5, pis, pic, pi3}, i ∈ {1, 2, . . . , 10}, model CTKi, while pk and tk,
k ∈ {1, 2, 3, 4}, model DSk and its distillation, respectively.

Based on the PN model shown in Figure 10, we code the scheduling method given by Proposition
8 and the evolution rules of the model to verify the proposed method. For this case study, we have
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µ ≤min{ξ1/α1, ξ3/α1, ξ4/α2, ξ5/α2, ξ8/α3, ξ9/α3, ξ6/α4, ξ5/α1} = 8. To fully utilize the charging
tanks, we set µ = 8. As fds2 < fds1 < fds3 holds, we have v1 = (µ × fds1 + µ × fds3 + µ × fds4 − 2fpmax)/(fds4

+ fpmax) = 3.65. It can be verified that µ ≥ (v1 × fds4 + fpmax)/fds4 = 7.78 and µ ≥ 2fpmax/(fds1 + fds3 +
fds4) = 2.45 hold. As the conditions in Proposition 8 are satisfied, we set Q = 1 and use the idle time of
CTK4 and CTK5 to feed DS4 under the normal mode for some time.
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Table 1. Initial state for the charging tanks.

Tank Capacity (Ton) Type of Oil Filled Volume (Ton)

CTK1 16,000 Oil #1 9000
CTK2 16,000
CTK3 16,000 Oil #1 16,000
CTK4 16,000 Oil #3 5000
CTK5 16,000 Oil #3 16,000
CTK6 20,000
CTK7 20,000
CTK8 30,000 Oil #5 30,000
CTK9 30,000
CTK10 30,000 Oil #9 30,000

As the initial state is not exactly the same as required by Proposition 8, we can adjust the crude oil
in the charging tanks by properly scheduling the oil delivering via the pipeline. Let τs = 0 h. According
to Proposition 8, we schedule the pipeline as follows. When DS4 starts its operation at time τ1 = 96 h,
one can use CTK4 to feed DS4 under the normal mode for some time. Thus, CTK4 must be emptied at
time τ2 = τ1 + Ψ = 102 h. Hence, we charge it with volume v4 = (τ2 − τ0)×fds2 − 21,000 = 9804 tons of
oil #4 only for feeding DS2 when it is charged the first time. For this case, DS1 has to process oil type
#2 after 38,000 tons of oil type #1. We charge CTK1 with 13,000 tons of oil type #1 and charge CTK7

with 2504 tons of oil type #2 to realize the oil type switches.
To ensure the safety stock, we start charging CTK6 with volume 1000 tons of oil #7 at time

τ3 = 95.4 h. By the above pipeline transportation schedule, at τ1, the initial crude oil in charging tanks
satisfies Condition (10). By following the scheduling method given by Proposition 8, the volumes of
crude oil that should be transported from storage tanks to charging tanks for feeding distillers DS1,
DS2, DS3, and DS4 are V1 = µ × α1 = 15,504 tons, V2 = µ × α2 = 14,496 tons, V3 = µ × α3 = 30,000 tons
and V4 = µ × α4 = 19,200 tons, respectively. When oil type #7 is transported, it should first be charged
into CTK6 with volume v1 = Ψ × fpmax = 9900 tons, then into CTK4 or CTK5 with volume v2 = v1 ×
fds1 = 8762 tons, and CTK6 again with volume v3 = V4 − v1 − v2 = 538 tons. As DS4 has to switch for
processing different oil types, we charge CTK6 with v4 = 25,000 − V4 = 4800 tons of oil type #7 and
charge CTK7 with v5 = v1 − v4 = 5100 tons of oil type #8. When the oil #7 in CTK6 for feeding DS4 is
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used up at time τ5 = 158.5 h and CTK6 is emptied, CTK7 starts feeding DS4 with oil type #7 under the
SCF mode. The sequence of charging the charging tanks and the time point for each event are shown
in Figure 11.
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Therefore, a schedule that realizes the refining schedule is obtained and the Gantt charts in Figures 11
and 12 present the oil transportation from storage tanks to charging tanks and the detailed schedules of
distiller feeding. Furthermore, the detailed schedule of charging tanks CTK4, CTK5, CTK6, and CTK7 for
being charged and feeding distillers is presented in Figure 13, which clearly shows how the method given
by Proposition 8 schedules the system to reduce the time during which DS4 is fed by the charging tanks
under the SCF mode. Since CTK6 or CTK7 is not charged or used to feed a distiller while CTK4 or CTK5

is feeding DS4 for v1 × Ψ = 21.9 h > Ψ, CTK6 or CTK7 can feed DS4 under the normal mode until it is
charged by the pipeline again. Thus, we have Π = 3× (2Ψ + v1 × α4/fpmax) = 51.9 h and δ = 51.9÷ (4× 3
× 8× 6) = 9% for the obtained schedule.Appl. Sci. 2017, 7, 564 19 of 25 
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For this case, a detailed schedule that realizes the given refining schedule with all constraints
considered is efficiently found. As pointed out in [21], if a mixed integer programming model is
applied, the number of binary variables is huge and makes it extremely difficult or even impossible to
solve such a large problem. Furthermore, the scheduling situation without sufficient charging tanks
has not been discussed before, and the method proposed in [21,22] cannot be applied here as the
number of charging tanks is much less than that required by the methods there. With the proposed
method in this paper, a schedule can be easily created for a refinery without sufficient charging tanks
such that the SCF mode is minimally used.

7. Discussion and Conclusions

Short-term scheduling for crude oil operations is a complex problem since a schedule needs to
provide detailed activities such that all resource and process constraints are satisfied. Because of its
NP-hard nature, there are no efficient techniques and software tools, and the scheduling job is still
done manually. While scheduling a refinery without sufficient charging tanks, the limited number
of charging tanks further complicates the problem. It is more challenging than a scheduling problem
with sufficient charging tanks as the operational constraints and costs must be considered.

Instead of mathematical programming models, this paper studies the scheduling problem of
crude oil operations by following a two-level architecture that solves the problem based on control
theory. By this method, a detailed schedule is provided at the lower level to realize a refining schedule
that is generated at the upper level. With this idea in mind, Wu et al. [21,22,24–28] built a hybrid PN
model for the system to obtain a feasible schedule for crude oil operations. In these studies, generally,
three charging tanks are needed for each distiller to find a schedule with the maximal production rate.
Although their charging tank requirement can be satisfied for many refineries, there are refineries
for which such a requirement is impossible. This is often the case when some charging tanks have
to be maintained, or more distillers are installed without enough charging tanks being built. Hence,
this work focuses on scheduling a refinery without sufficient charging tanks to solve such a practical
problem. We build a new PN model for the system to describe the process accurately. Based on this
model, a method that can schedule the system is proposed, and a schedule with the minimal usage of
the SCF mode can be efficiently obtained via simple calculation.

This paper focuses on finding a schedule to realize a given refining schedule. When there are
not sufficient charging tanks, it is better to create a refining schedule with the conditions given in this
paper as constraints such that the obtained refining schedule is easy to realize. Our future work will
take up this challenge.
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Appendix A

Appendix A.1. Proof of Proposition 1

Consider the PN model shown in Figure 6. By assumption, initially at M0 (time τ0), we have
M0(p1s) = M0(p2c) = M0(p3s) = 1, V(M0(p1s, φ1)) = ζ1, V(M0(p2c, φ2)) = α2, and V(M0(p3s, φ2)) = µ × α2.
At this marking, t23 fires with color φ2 to feed p2 (DS2), but t13 cannot fire to feed p1 (DS1). As ζ1 ≥
σ holds, we fire t14 (or SCF is adopted) with color φ1 to feed p1 and fire y with color φ1 to charge p1s
simultaneously. At time τ1 = τ0 + Ψ, M1 is reached such that M1(p1s) = M1(p3c) = 1, V(M1(p1s, φ1)) = ζ1

+ α2, and V(M1(p3c, φ2)) = µ × α2. At this marking, we fire t33 with color φ2 to feed p2 and t14 continues
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its firing, and y fires with color φ1 and volume µ × α1 − α to charge p1s as µ ≥ fpmax/fds1. At time τ2 =
τ1 + (µ × α1 − α)/fpmax = τ0 + (µ × α1)/fpmax, M2 is reached such that M2(p1s) = M2(p3c) = 1, V(M2(p1s,
φ1)) = ζ1 + (µ × α1 × fds2)/fpmax ≤ ξ1, and V(M2(p3c, φ2)) = (µ + 1) × α2 − (µ × α1 × fds2)/fpmax. Then,
t14 and t33 continue their firing with color φ1 and φ2 to feed p1 and p2, respectively, and y fires with
color φ2 and volume µ × α2 to charge p2s. At τ3 = τ2 + (µ × α2)/fpmax = τ0 + µ × Ψ, M3 is reached
such that M3(p1s) = M3(p2s) = M3(p3c) = 1, V(M3(p1s, φ1)) = ζ1, V(M3(p2s, φ2)) = µ × α2, and V(M3(p3c,
φ2)) = α2. This marking is equivalent to M0. Hence, CTK1 is feeding DS1 under the SCF mode during
[τ0, τ3] and Π = µ × Ψ, resulting in δ = 0.5.

Appendix A.2. Proof of Proposition 2

With the PN model shown in Figure 6, at marking M0 (time τ0), we have M0(p1s) = M0(p2c) =
M0(p3s) = 1, V(M0(p1s, φ1)) = ζ1, V(M0(p2c, φ2)) = α2, and V(M0(p3s, φ2)) = µ × α2. At this marking, due
to ζ1 ≥ σ, the SCF mode is adopted for CTK1. Hence, we fire t14 with color φ1 to feed p1, at the same
time, fire y with color φ1 and volume α to charge p1s, and fire t23 with color φ2 to feed p2. At time τ1 =
τ0 + Ψ, M1 is reached such that M1(p1s) = M1(p3c) = 1, V(M1(p1s, φ1)) = ζ1 + α2 ≤ ξ1 and V(M1(p3c, φ2))
= µ × α2. At this marking, we fire t14 with color φ1 and t33 with color φ2 to feed p1 and p2 respectively.
Since CTK2 is empty, we fire y with color φ1 and volume v × α1 to charge p2s instead of p1s. At time τ2

= τ1 + (v × α1)/fpmax, M2 is reached such that M2(p1s) = M2(p2s) = M2(p3c) = 1, V(M2(p1s, φ1)) = ζ1 +
α2 − (v × α1×fds1)/fpmax ≥ σ, V(M2(p2s, φ1)) = v × α1 ≤ ξ2, and V(M2(p3c, φ2)) = µ × α2 − (v × α1 ×
fds2)/fpmax. Then, at this marking, t14 and t33 continue their firing with color φ1 and φ2 to feed p1 and
p2, respectively, and y fires with color φ1 and volume (µ − v) × α1 − α ≥ 0 to charge p1s, as µ ≥ (v
× fds1 + fpmax)/fds1 holds. At time τ3 = τ2 + Ψ, M3 is reached such that the crude oil in CTK2 is ready
for feeding under the normal mode and V(M3(p1s, φ1)) = ζ1 + 2α2 − (v × α1 × fds1)/fpmax, V(M3(p2c,
φ1)) = v × α1, and V(M3(p3c, φ2)) = (µ − 1) × α2 − (v × α1 × fds2)/fpmax. Then, we fire t23 instead of
t14 with color φ1 to feed p1 under the normal mode. Transition t33 continues its firing with color φ2

to feed p2 and transition y continues its firing with color φ1 to charge p1s. At τ4 = τ3 + v × Ψ = τ0 +
(µ × α1)/fpmax, M4 is reached such that M4(p1s) = M4(p3c) = 1, V(M4(p1s, φ1)) = ζ1 + (µ − v) × α2 −
(µ × α1 × fds1)/fpmax = ζ1 + (µ × α2 × fds1)/fpmax ≤ ξ1, and V(M4(p2s, φ2)) = (µ + 1)×α2 − (µ × α1 ×
fds2)/fpmax. Afterwards, the SCF mode is started again for CTK1 by firing transition t14 with color φ1 to
feed p1. Besides, t33 continues its firing with color φ2 to feed p2, and y starts its firing with color φ2 and
volume µ × α2 to charge p2s. At time τ5 = τ4 + (µ × α2)/fpmax = τ0 + µ × Ψ, M5 is reached such that
M5(p1s) = M5(p2s) = M5(p3c) = 1, V(M5(p1s, φ1)) = ζ1, V(M5(p2s, φ2)) = µ × α2, and V(M5(p3c, φ2)) = α2,
which is equivalent to M0. Therefore, the SCF mode is adopted for CTK1 during [τ0, τ3] and [τ4, τ5]
for feeding DS1 and Π = (µ − v) × Ψ such that δ = (µ − v)/2µ = fpmax/(2fds1 + 2fpmax) + fpmax/(µ ×
fds1 + µ × fpmax).

Appendix A.3. Proof of Proposition 3

Based on the model in Figure 7, initially, at marking M0 (time τ0), we have M0(p1s) = M0(p2s)
= M0(p3c) = M0(p4s) = 1, V(M0(p1s, φ1)) = ζ1 ≥ σ, V(M0(p2s, φ2)) = ζ2 ≥ σ, V(M0(p3c, φ3)) = α3, and
V(M0(p4s, φ3)) = µ × α3. At this marking, the SCF mode has to be used for both CTK1 and CTK2 to feed
DS1 and DS2, respectively, and we fire t14 with color φ1 to feed p1, fire t24 with color φ2 to feed p2. At
the same time, we fire y with color φ1 and volume µ × α1 to charge p1s during [τ0, τ0 + (µ × α1)/fpmax],
and with color φ2 and volume µ × α2 to charge p2s during [τ0 + (µ × α1)/fpmax, τ0 + (µ × α1 + µ ×
α2)/fpmax], respectively. Notice that, at time τ0 + (µ × α1)/fpmax, the crude oil in CTK1 is ζ1 + µ × α1 ×
(fpmax − fds1)/fpmax ≤ ξ1 and the crude oil in CTK2 is ζ1 + µ × α1 × fds2/fpmax ≥ σ, which ensures the
feasibility. Besides, in the sense of the normal mode, the crude oil in CTK4 is ready for feeding at time
τ0 + Ψ, since (µ × α1 + µ × α2)/fpmax ≥ Ψ must hold due to µ ≥ fpmax/(fds1 + fds2). Hence, we fire t33

and t43 with color φ3 to feed p3 during [τ0, τ0 + Ψ] and [τ0 + Ψ, τ0 + (µ × α1 + µ × α2)/fpmax] under
the normal mode, respectively. At time τ1 = τ0 + (µ × α1 + µ × α2)/fpmax, M1 is reached such that
M1(p1s) = M1(p2s) = M1(p4c) = 1, V(M1(p1s, φ1)) = ζ1 + µ × α1 × (fpmax − fds1 − fds2)/fpmax, V(M1(p2s,
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φ2)) = ζ2 + µ× α2 × (fpmax − fds1 − fds2)/fpmax ≤ ξ2, and V(M1(p4c, φ3)) = (µ + 1)× α3 − µ× α3 × (fds1 +
fds2)/fpmax. At this time, y fires with color φ3 to charge p3s as CTK3 is already empty, and transitions t14,
t24, and t43 continue their firing to feed p1, p2, and p3, respectively. At time τ2 = τ1 + µ × α3/fpmax = τ0

+ µ × Ψ, the system is transferred to M2 such that M2(p1s) = M2(p2s) = M2(p3s) = M2(p4c) = 1, V(M2(p1s,
φ1)) = ζ1, V(M2(p2s, φ2)) = ζ2, V(M2(p3s, φ3)) = µ × α3, and V(M2(p4c, φ3)) =α3, which is equivalent to
M0. Since both CTK1 and CTK2 have to operate under the SCF mode for feeding p1 and p2 during the
whole scheduling horizon, we have Π = 2µ × Ψ and δ = 2/3.

Appendix A.4. Proof of Proposition 4

Based on the model shown in Figure 7, the system can be scheduled as follows. At marking M0

(time τ0), M0(p1s) = M0(p2s) = M0(p3c) = M0(p4s) = 1, V(M0(p1s, φ1)) = ζ1 ≥ σ, V(M0(p2s, φ2)) = ζ2 ≥ σ,
V(M0(p3c, φ3)) = α3, and V(M0(p4s, φ3)) = µ × α3 hold. We fire t14 with color φ1, t24 with color φ2, and
t33 with color φ3 to feed p1, p2 and p3, respectively, and fire y with color φ1 and volume α to charge p1s.
At time τ1 = τ0 + Ψ, CTK3 is emptied and the oil in CTK4 is ready for feeding under the normal mode.
At this time, the system is transferred to M1 such that M1(p1s) = M1(p2s) = M1(p4c) = 1, V(M1(p1s, φ1)) =
ζ1 + α2 + α3 ≤ ξ1, V(M1(p2s, φ2)) = ζ2 − α2, and V(M1(p4c, φ3)) = µ × α3. At this marking, we continue
firing t14 with color φ1, t24 with color φ2, and t43 with color φ3 to feed p1, p2, and p3, respectively. As
CTK3 is emptied, we fire y with color φ2 and volume v × α2 to charge p3s instead of p1s to increase the
usage of CTK3. At time τ2 = τ1 + v × α2/fpmax, M2 is reached such that M2(p1s) = M2(p2s) = M2(p3s)
= M2(p4c) = 1, V(M2(p1s, φ1)) = ζ1 + α2 + α3 – (v × α2 × fds1)/fpmax ≥ σ, V(M2(p2s, φ2)) = ζ2 − α2 −
(v × α2 × fds2)/fpmax, V(M2(p3s, φ2)) = v × α2, and V(M2(p4c, φ3)) = µ × α3 − (v × α2 × fds3)/fpmax.
Then, t14, t24, and t43 continue feeding p1, p2, and p3, respectively, but transition y switches to charge
p1s with color φ1 and volume µ × α1 − α ≥ 0, as µ ≥ 2fpmax/(fds1 + fds2) and fds1 ≥ fds2 hold, during [τ2,
τ2 + (µ × α1 − α)/fpmax] and charge p2s with color φ2 and volume (µ − v) × α2 during [τ2 + (µ × α1 −
α)/fpmax, τ2 + (µ × α1 + µ × α2 − v × α2 − α)/fpmax]. Notice that, as the crude oil in CTK3 is ready for
feeding at time τ2 + Ψ under the normal mode, we fire t33 instead of t24 with color φ2 to feed p2 during
[τ2 + Ψ, τ2 + Ψ + v × Ψ]. At time τ3 = τ2 + (µ × α1 + µ × α2 − v × α2 − α)/fpmax = τ2 + Ψ + v × Ψ =
τ0 + (µ × α1 + µ × α2)/fpmax, the system is transferred to M3 such that M3(p1s) = M3(p2s) = M3(p4c) = 1,
V(M3(p1s, φ1)) = ζ1 + µ × α1 − fds1 × (µ × α1 + µ × α2)/fpmax, V(M3(p2s, φ2)) = ζ2+ µ × α2 − fds2 × (µ
× α1 + µ × α2)/fpmax ≤ ξ2, and V(M3(p4c, φ3)) = (µ + 1) × α3 − fds3 × (µ × α1 + µ × α2)/fpmax. At this
marking, CTK3 is emptied, and CTK2 is used to feed DS2 under the SCF mode. Therefore, we fire y
with color φ3 and volume µ × α3 to charge p3s, and fire t14 with color φ1, t24 with color φ2, and t43 with
color φ3 to feed p1, p2, and p3, respectively. At time τ4 = τ3 + µ × α3/fpmax = τ0 + µ × Ψ, M4 is reached
such that M4(p1s) = M4(p2s) = M4(p3s) = M4(p4c) = 1, V(M4(p1s, φ1)) = ζ1, V(M4(p2s, φ2)) = ζ2, V(M4(p3c,
φ3)) = µ × α3, and V(M4(p4s, φ3)) =α3, which is equivalent to M0. During the scheduling horizon, CTK1

is used to feed DS1 under the SCF mode during [τ0, τ4], while CTK2 is used to feed DS2 under the SCF
mode during [τ0, τ2 + Ψ] and (τ3, τ4), respectively, and DS2 is fed by CTK3 during [τ2 + Ψ, τ3] under
the normal mode. Hence, Π = (2µ − v) × Ψ and δ = (2µ − v)/3µ for the obtained schedule.

Appendix A.5. Proof of Proposition 5

Based on the PN model shown in Figure 8, we can schedule the system as follows. At the initial
marking M0 (time τ0), M0(p1s) = M0(p2c) = M0(p3s) = M0(p4c) = M0(p5s) = 1, V(M0(p1s, φ1)) = ζ1 ≥ σ,
V(M0(p2c, φ2)) = α2, V(M0(p3s, φ2)) = µ × α2, V(M0(p4c, φ3)) = α3, and V(M0(p5s, φ3)) = µ × α3 hold.
In this case, the SCF mode is used for CTK1 only. Thus, we fire t14 with color φ1, t23 with color φ2,
and t43 with color φ3 to feed p1, p2, and p3, respectively, and fire y with color φ1 to charge p1s. At time
τ1 = τ0 + Ψ, CTK2 and CTK4 are emptied, and the crude oil in CTK3 and CTK5 are ready for feeding
under the normal mode, i.e., the system is transferred into M1 such that M1(p1s) = M1(p3c) = M1(p5c) =
1, V(M1(p1s, φ1)) = ζ1 + α2 + α3, V(M1(p3c, φ2)) = µ × α2, and V(M1(p5c, φ3)) = µ × α3. At M1, we fire t33

with color φ2 and t53 with color φ3 to feed p2 and p3, respectively, and transitions t14 and y continue
their firing to feed p1 and charge p1s, respectively. At time τ2 = τ1 + (µ × α1 − α)/fpmax = τ0 + (µ ×
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α1)/fpmax, as µ ≥ fpmax/fds1 holds, M2 is reached such that M2(p1s) = M2(p3c) = M2(p5c) = 1, V(M2(p1s,
φ1)) = ζ1 + µ × α1 × (fpmax − fds1)/fpmax ≤ ξ1, V(M2(p3c, φ2)) = (µ + 1)×α2 − µ × α1 × fds2/fpmax, and
V(M2(p5c, φ3)) = (µ + 1)×α3 − µ × α1 × fds3/fpmax. At this time, t14, t33, and t53 continue their firing
with color φ1, φ2, and φ3 to feed p1, p2, and p3, respectively, and y fires with color φ2 and volume µ× α2

to charge p2s during [τ2, τ2 + (µ× α2)/fpmax] and with color φ3 and volume µ× α3 to charge p4s during
[τ2 + (µ × α2)/fpmax, τ2 + (µ × α2 + µ × α3)/fpmax]. At time τ3 = τ2 + (µ × α2 + µ × α3)/fpmax = τ0 +
µ × Ψ, the system is transferred to M3 such that M3(p1s) = M3(p2s) = M3(p3c) = M3(p4s) = M3(p5c) = 1,
V(M3(p1s, φ1)) = ζ1, V(M3(p2s, φ2)) = µ × α2, V(M3(p3c, φ2)) = α2, V(M3(p4s, φ3)) = µ × α3, and V(M3(p5c,
φ3)) = α3, which is equivalent to M0. By the obtained schedule, the SCF mode is adopted for CTK1 to
feed DS1 during [τ0, τ3]. Hence, we have Π = µ × Ψ and δ = 1/3.

Appendix A.6. Proof of Proposition 6

With the PN model shown in Figure 8, we schedule the system as follows. At marking M0 (time
τ0), M0(p1s) = M0(p2c) = M0(p3s) = M0(p4c) = M0(p5s) = 1, V(M0(p1s, φ1)) = ζ1 ≥ σ, V(M0(p2c, φ2)) = α2,
V(M0(p3s, φ2)) = µ × α2, V(M0(p4c, φ3)) = α3, and V(M0(p5s, φ3)) = µ × α3 hold. At this marking, we fire
t14 with color φ1, t23 with color φ2, and t43 with color φ3 to feed p1, p2 and p3, respectively, and at the
same time fire y with color φ1 to charge p1s. At time τ1 = τ0 + Ψ, M1 is reached such that M1(p1s) =
M1(p3c) = M1(p5c) = 1, V(M1(p1s, φ1)) = ζ1 + α2 + α3 ≤ ξ1, V(M1(p3c, φ2)) = µ × α2, and V(M1(p5c, φ3))
= µ × α3. At this marking, t14 continues its firing with color φ1 to feed p1, and t33 fires with color φ2

and t53 fires with color φ3 to feed p2 and p3, respectively. At the same time, y fires with color φ1 and
volume v × α1 to charge p4s during [τ1, τ1 + (v × α1)/fpmax], with color φ1 and volume (µ − v) ×
α1 − α ≥ 0, as µ ≥ (v × fds1 + fpmax)/fds1 holds, to charge p1s during [τ1 + (v × α1)/fpmax, τ0 + (µ ×
α1)/fpmax], and with color φ2 and volume µ× α2 to charge p2s during [τ0 + (µ× α1)/fpmax, τ0 + (µ× α1

+ µ × α2)/fpmax]. Note that, the volumes of crude oil in CTK1 at time τ1 + (v × α1)/fpmax and τ0 + (µ
× α1)/fpmax are ζ1 + α2 + α3 − (v × α1 × fds1)/fpmax ≥ σ and ζ1 + (µ − v) × α1 − (µ × α1 × fds1)/fpmax

≤ ξ1, respectively, which implies that these operations for CTK1 are feasible. Furthermore, the oil in
CTK4 is ready for feeding at time τ1 + (v × α1)/fpmax + Ψ under the normal mode. Therefore, we fire
t43 with color φ1 instead of t14 to feed p1 under the normal mode during [τ1 + (v × α1)/fpmax + Ψ, τ1 +
(v × α1)/fpmax + (1 + v) × Ψ]. At time τ2 = τ1 + (v × α1)/fpmax + (1 + v) × Ψ = τ0 + (µ × α1 + µ ×
α2)/fpmax, CTK4 is emptied and the charging of CTK2 is completed such that M2 is reached. At M2,
M2(p1s) = M2(p2s) = M2(p3c) = M2(p5c) = 1, V(M2(p1s, φ1)) = ζ1 + µ× α1 − (µ× α1 + µ× α2)× fds1/fpmax,
V(M2(p2s, φ2)) = µ × α2, V(M2(p3c, φ2)) = (µ + 1) × α2 − (µ × α1 + µ × α2) × fds2/fpmax, and V(M2(p5c,
φ3)) = (µ + 1) × α3 − (µ × α1 + µ × α2) × fds2/fpmax hold. At this time, we continue firing t14 with color
φ1, t33 with color φ2, and t53 with color φ3 to feed p1, p2 and p3, respectively. At the same time, we fire
y with color φ3 and volume µ × α3 to charge p4s. At time τ3 = τ2 + (µ × α3)/fpmax = τ0 + µ × Ψ, M3 is
reached such that M3(p1s) = M3(p2s) = M3(p3c) = M3(p4s) = M3(p5c) = 1, V(M3(p1s, φ1)) = ζ1, V(M3(p2s,
φ2)) = µ × α2, V(M3(p3c, φ2)) = α2, V(M3(p4s, φ3)) = µ × α3, and V(M3(p5c, φ3)) =α3, which is equivalent
to M0. In this way, a schedule is found and the SCF mode is applied for CTK1 only to feed DS1 during
[τ0, τ2 − v × Ψ] and [τ2, τ3]. Hence, for the obtained schedule we have Π = (µ − v) × Ψ and δ = (µ −
v)/3µ.

Appendix A.7. Proof of Proposition 7

With {pis, pic, ti2, ti3, ti4, ti5} and pi representing a charging tank and distiller DSi in a PN model
for the system, respectively, we schedule the system as follows. At the initial marking M0 (time τ0),
we have M0(p1s) = M0(pis) = M0(p(2j−N−1)c) = M0(p(2j−N)s) = 1, V(M0(p1s, φ1)) = ζ1 ≥ σ, V(M0(pis, φi))
= ζi, V(M0(p(2j−N−1)c, φj) = αj, V(M0(p(2j−N)s, φj) = µ × αj, i ∈ {2, 3, . . . , N} and j ∈ {N + 1, N + 2, . . . ,
K}. We fire t14 with color φ1 to feed p1, ti4 with color φi to feed pi, i ∈ {2, 3, . . . , N}, and t(2j−N−1)3 with
color φj to feed pj, j ∈ {N + 1, N + 2, . . . , K}, respectively. At the same time, we fire y in the following
order: with color φ1 and volume µ × α1 to charge p1s, with color φ2 and volume µ × α2 to charge p2s
→ . . . → with color φN and volume µ × αN to charge pNs. Notice that, CTKi is charged during [τ0 +
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µ × (α1 + α2 + . . . + αi−1)/fpmax, τ0 + µ × (α1 + α2 + . . . + αi)/fpmax], i ∈ {2, 3, . . . , N}, the oil in CTKi
ranges from ζi − fdsi × µ × (α1 + α2 + . . . + αi−1)/fpmax ≥ σ to ζi + fdsi × µ × (α − α1 − α2 − . . . −
αi)/fpmax ≤ ξi, which ensures the feasibility. Furthermore, when CTK(2j−N−1) is emptied at time τ0 +
Ψ, j ∈ {N + 1, N + 2, . . . , K}, the crude oil in CTK(2j−N) is ready for feeding under the normal mode.
Then, we fire t(2j−N)3 with color φj to feed pj. At time τ1 = τ0 + µ × (α1 + α2 + . . . + αN)/fpmax ≥ τ0 +
Ψ, as µ ≥ fpmax/( fds1 + fds2 + . . . + fdsN) holds, M1 is reached such that M1(p1s) = M1(pis) = M1(p(2j−N)c)
= 1, V(M1(p1s, φ1)) = ζ1 + fds1 × µ × (α − α1 − α2 − . . . − αN)/fpmax, V(M1(pis, φi)) = ζi + fdsi × µ × (α
− α1 − α2 − . . . − αN)/fpmax, V(M1(p(2j−N)c, φj) = (µ + 1)αj − fdsj × µ × (α1 + α2 + . . . + αN)/fpmax, i ∈
{2, 3, . . . , N} and j ∈ {N + 1, N + 2, . . . , K}. At this time, we continue firing t14 with color φ1 to feed
p1, ti4 with color φi to feed pi and t(2j−N)3 with color φj to feed pj, respectively, i ∈ {2, 3, . . . , N} and
j ∈ {N + 1, N + 2, . . . , K}. Transition y fires in the following order: with color φN+1 and volume µ ×
αN+1 to charge p(N+1)s → with color φN+2 and volume µ × αN+2 to charge p(N+3)s → . . . → with color
φK and volume µ × αK to charge p(2K−N−1)s. At time τ2 = τ1 + µ × (αN+1 + αN+2 + . . . + αK)/fpmax = τ0

+ µ × Ψ, the system is transferred to M2 such that M2(p1s) = M2(pis) = M2(p(2j−N−1)s) = M2(p(2j−N)c) = 1,
V(M2(p1s, φ1)) = ζ1, V(M2(pis, φi)) = ζi, V(M2(p(2j−N−1)s, φj) = µ × αj, V(M2(p(2j−N)c, φj) = αj, i ∈ {2, 3,
. . . , N} and j ∈ {N + 1, N + 2, . . . , K}, which is equivalent to M0. By the obtained schedule, CTK1-N is
used to feed DS1–N under the SCF mode during [τ0, τ2]. Hence, we have Π = µ × N × Ψ and δ = N/K.

Appendix A.8. Proof of Proposition 8

With {pis, pic, ti2, ti3, ti4, ti5} and pi representing charging tank CTKi and distiller DSi in a PN
model for the system, respectively, we schedule the system as follows. At the initial marking M0 (time
τ0), we have M0(p1s) = M0(pis) = M0(p(2j−N−1)c) = M0(p(2j−N)s) = 1, V(M0(p1s, φ1)) = ζ1 ≥ σ, V(M0(pis,
φi)) = ζi, V(M0(p(2j−N−1)c, φj) = αj, V(M0(p(2j−N)s, φj) = µ × αj, i ∈ {2, 3, . . . , N} and j ∈ {N + 1, N + 2,
. . . , K}. We fire t14 with color φ1 to feed p1, ti4 with color φi to feed pi, t(2j−N−1)3 with color φj to feed
pj, respectively. Meanwhile, we fire y in the following order: with color φ1 and volume ε1 × fpmax to
charge p1s → with color φ2 and volume ε2 × fpmax to charge p2s → . . . → with color φL and volume
α – (ε1 + ε2 + . . . + ε(L−1)) × fpmax to charge pLs. At time τ1 = τ0 + Ψ, M1 is reached such that M1(p1s)
= M1(pis) = M1(p(2j–N)c) = 1, V(M1(p1s, φ1)) = ζ1 + ε1 × fpmax − α1, V(M1(pis, φi)) = ζi + εi × fpmax − αi,
V(M1(pLs, φL)) = ζL + α − (ε1 + ε2 + . . . + ε(L−1)) × fpmax − αL, V(M1(pks, φk)) = ζk − αk, V(M1(p(2j−N)c,
φj) = µ × αj, i ∈ {2, 3, . . . , L− 1}, k ∈ {L + 1, L + 2, . . . , N}, and j ∈ {N + 1, N + 2, . . . , K}. At this marking,
we fire t14 with color φ1 to feed p1, ti4 with color φi to feed pi, i ∈ {2, 3, . . . , N}, and t(2j–N)3 with color
φj to feed pj, j ∈ {N + 1, N + 2, . . . , K}. At the same time, we fire y in the following order: with color
φ(N−Q+1) and volume v1 × α(N−Q+1) to charge p(2K−2Q−N+1)s → with color φ(N−Q+2) and volume v2 ×
α(N−Q+2) to charge p(2K−2Q−N+3)s→ . . . → with color φN and volume vQ × αN to charge p(2K−N−1)s→
with color φL and volume (ε1 + ε2 + . . . + ε(L−1) + εL) × fpmax − α to charge pLs → with color φ(L+1) and
volume ε(L+1) × fpmax to charge p(L+1)s → . . . → with color φN and volume εN × fpmax to charge pNs →
with color φ(N+1) and volume µ × α(N+1) to charge p(N+1)s → with color φ(N+2) and volume µ × α(N+2)
to charge p(N+3)s → . . . → with color φ(K−Q) and volume µ × α(K–Q) to charge p(2K−2Q−N−1)s → with
color φ(K−Q 1) and volume µ × α(K−Q+1) to charge p(2K−2Q−N+1)s → . . . → with color φK and volume
µ × αK to charge p(2K−N−1)s. Notice that, as the charging of CTK(2q+2K−2Q−N−1), q ∈ {1, 2, . . . , Q}, is
completed at time τ1 + Ωq, it can be used to feed DS(N−Q+q) during [τ1 + Ωq + Ψ, τ1 + Ωq + (1 + vq) ×
Ψ] under the normal mode. Then, it is emptied at time τ1 + Ωq + (1 + vq)×Ψ = τ0 + µ × (α1 + α2 + . . .
+ α(q+K−Q−1))/fpmax, q ∈ {1, 2, . . . , Q}and can be charged with volume µ × α(q+K–Q) of oil type q + K −
Q. Moreover, Condition (10) ensures the feasibility of the system. At time τ2 = τ0 + µ × Ψ, the system
is transferred to M2 such that M2(p1s) = M2(pis) = M2(p(2j−N −1)s) = M2(p(2j−N)c) = 1, V(M2(p1s, φ1)) =
ζ1, V(M2(pis, φi)) = ζi, V(M2(p(2j−N−1)c, φj) = µ × αj, V(M2(p(2j−N)s, φj) = αj, i ∈ {2, 3, . . . , N} and j ∈
{N + 1, N + 2, . . . , K}, which is equivalent to M0. During [τ0, τ2], CTKi is used to feed DSi under the
SCF mode, i ∈ {1, 2, . . . , N − Q}. As DS(q+N−Q), q ∈ {1, 2, . . . , Q}, is fed by CTK(q+N−Q) under the SCF
mode during [τ0, τ1 + Ωq + Ψ] and [τ1 + Ωq + (1 + vq) × Ψ, τ2], and by CTK(2q+2K−2Q−N−1) under the
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normal mode during [τ1 + Ωq + Ψ, τ1 + Ωq + (1 + vq) × Ψ]. Hence, we have Π = (N × µ − v1 − v2 −
. . . − vQ) × Ψ = (N × µ − v) × Ψ and δ = (N × µ − v)/(K × µ).
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