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Abstract: This paper addresses the problem of interactive auralization of enclosures based on a finite
superposition of plane waves. For this, room acoustic simulations are performed using the Finite
Element (FE) method. From the FE solution, a virtual microphone array is created and an inverse
method is implemented to estimate the complex amplitudes of the plane waves. The effects of
Tikhonov regularization are also considered in the formulation of the inverse problem, which leads
to a more efficient solution in terms of the energy used to reconstruct the acoustic field. Based on
this sound field representation, translation and rotation operators are derived enabling the listener
to move within the enclosure and listen to the changes in the acoustic field. An implementation
of an auralization system based on the proposed methodology is presented. The results suggest
that the plane wave expansion is a suitable approach to synthesize sound fields. Its advantage lies
in the possibility that it offers to implement several sound reproduction techniques for auralization
applications. Furthermore, features such as translation and rotation of the acoustic field make it
convenient for interactive acoustic renderings.
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1. Introduction

Auralization is a subject of great interest in different areas because it enables the generation of
an audible perception of the acoustic properties of a specific environment [1]. It is a powerful technique
because it allows the sound field to be rendered according to the characteristics of the medium,
which has applications in the evaluation and understanding of the physical phenomenon under
consideration. For room acoustics, auralization provides a convenient tool for experimental tests,
subjective evaluations, virtual reality and architectural design.

A significant feature that enhances the auralization technique is the generation of interactive
environments in which the listener can move within the enclosure. This is achieved by synthesizing
the acoustic field in real time according to the properties of the room and the source-receiver paths.
Several approaches have been proposed in the scientific literature to generate interactive auralizations
based on Geometrical Acoustics (GA) [2–6]. Nevertheless, at low frequencies, the assumptions required
for GA are not generally satisfied, which requires the use of different techniques, such as the numerical
solution of the wave equation. The Finite Element Method (FEM) [7], the Boundary Element Method
(BEM) [8] and the Finite Difference Time Domain (FDTD) method [9] are some of the techniques
commonly used to estimate room impulse responses. However, the computational cost required by
these approaches to predict the solution constrains their use for real-time applications.
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Despite the significant computational cost of the above methods, some alternatives have
been formulated to generate interactive environments based on wave propagation. Mehra et al.
proposed the use of the equivalent source method for the rendering of acoustic fields of large and
open scenes in real time [10]. Although the approach allows for the reconstruction of the sound field
in real time, limitations related to static sound sources or the inclusion of the Doppler effect have
to be overcome. The inclusion of the directivity of sound sources and listeners using a spherical
harmonic representation has also been proposed by the same author to extend the versatility of
the methodology [11]. Another approach proposed by Raghuvanshi [12] simulates the synthesis and
propagation of sound. The solution method, denoted as Adaptive Rectangular Decomposition (ARD),
permits real-time computation providing a platform for interactive auralizations. The main advantages
of the method are the use of dynamic listener/sources and its ability to simulate large complex 3D
scenes. Alternatively, Savioja presented a different strategy to predict acoustic fields in real time [13].
The numerical solver corresponds to an FDTD model running over GPUs using parallel computing
techniques. The results indicate that this methodology allows the simulation up to 1.5 kHz in moderate
size domains. Dynamic listener and multiple sources are also possible based on this processing scheme.

A different approach to interactive auralizations based on the numerical solution of the wave
equation is to encode spatial information from the predicted acoustic pressure data. Translation
and rotation of the acoustic field can be then achieved by the application of mathematical operators.
Southern et al. [14] proposed a method to obtain a spherical harmonic representation of FDTD
simulations. The approach uses the the Blumlein difference technique to create a higher order
directivity pattern from two adjacent lower orders. This is achieved by approximating the gradient of
the pressure as the difference between two neighbouring pressure points on the grid where the solution
was computed. The rotation of the acoustic field can be easily computed by a rotation matrix, whereas
the translation can be recreated by an interpolation process between spatial impulse responses [15].
Sheaffer et al. [16] suggested the formulation of an inverse problem to generate a spherical harmonic
representation of acoustic fields predicted using FDTD. A binaural rendering is achieved based on
the relation between spherical harmonics, plane waves and HRTFs.

An implementation of a Plane Wave Expansion (PWE) is carried out in the current study as
an alternative methodology to generate an interactive auralization from predicted acoustic numerical
data. The methodology has been evaluated by using FE results, but can readily be implemented using
other numerical methods. The approach is based on the concept that the acoustic pressure at each node
of the mesh can be understood as the output of a virtual omnidirectional microphone. By using the data
from the mesh, it is possible to create a virtual microphone array, which, with the implementation
of an inverse method, allows for the estimation of complex amplitudes of a set of plane waves that
synthesize the desired acoustic field. The use of an inverse method to generate a plane wave expansion
from predicted pressure data was previously studied by Støfringsdal and Svensson for 2D cases [17].
An extension of their work is presented in this paper to the 3D case.

Based on a plane wave representation, mathematical operators can be implemented to enable
interactive features for auralization applications. The translational movement of the listener can
be generated by the translation of the plane wave expansion [18,19]. In terms of the listener’s rotation,
a spherical harmonic transformation can be used to rotate the acoustic field [20]. A rotation in the plane
wave domain is achieved by the implementation of a VBAP algorithm. Nevertheless, experiments
conducted by Murillo [21] suggest that the spherical harmonic transformation is more accurate for this
specific application.

A complete framework for an interactive auralization based on a plane wave representation
is presented in this article. The processing chain involves the use of an inverse method to extract spatial
information from FE simulations, the use of translation and rotation operators, the combination of
real-time audio processing with a visual interface and binaural rendering to reproduce the acoustic field.
The proposed approach is evaluated by testing it within a real-time auralization system as a reference
case. This auralization system allows us to emulate interactively wave phenomena, such as the modal
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behaviour of the enclosure or acoustic diffraction. The remaining parts of the paper are organized
as follows: The mathematical foundations of the plane wave expansion and the derivation of
the translation and rotation operators are reviewed in Section 2. The implementation of an inverse
method to generate a plane wave representation of the predicted acoustic fields is presented in Section
3. In Section 4, a real-time auralization system is developed, which allows for the evaluation of
the proposed approach. The discussion and evaluation of the results are considered in Section 5.
Finally, conclusions of the current work are presented in Section 6.

2. Mathematical Foundations

A particular solution of the homogeneous Helmholtz equation for a singular radian frequency
ω is given by a complex pressure field q(ω)ejkx·ŷ, which corresponds to a plane wave arriving
in the direction of a unit vector ŷ with an arbitrary complex amplitude q and wavenumber k. The vector
x identifies the position where the acoustic pressure is evaluated, and the symbol “·” represents
the scalar product operation. The plane wave approximation is appropriate at a large distance from
the acoustic source, where the curvature of the wave can be ignored. In a similar way, an acoustic
field that satisfies the homogeneous Helmholtz equation can be represented by means of a Plane Wave
Expansion (PWE) as:

p(x, ω) =
∫

ŷ∈Ω
ejkx·ŷq(ŷ, ω)dΩ(ŷ), (1)

in which x is the evaluation point, ŷ indicates the different incoming directions of the plane waves,
q(ŷ, ω) is the amplitude density function and Ω is the unitary sphere [19]. The synthesis of acoustic
fields based on a plane wave representation is a common approach [16,17] being adaptable to
several audio reproduction techniques. Binaural reproduction is performed by the convolution
of the plane waves with the HRTFs according to the direction of arrival [22]. The relation and
transformation between the PWE, Ambisonics and wave field synthesis are presented in [23].
Furthermore, mathematical operators to translate [18,19] and rotate [20] the acoustic field are available,
which makes this sound field representation convenient for interactive applications. The disadvantage
of this method is that the assumption of plane waves makes the approach suitable for sound fields
generated by sources located at a large distance from the listener. In addition, the implementation of
an infinite number of plane waves is not feasible, and the use of discrete wave directions generates
artefacts in the sound field reconstruction.

2.1. Translation of the Acoustic Field

Figure 1 shows the vector x
′
, which identifies the origin of a relative coordinate system

corresponding to the centre of the listener’s head. The vector xrel defines the same point in space
in the relative coordinate system as is identified by the vector x in absolute coordinates.

Figure 1. Vector x is represented as xrel in the relative coordinate system x
′
.
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The sound field translation operator is derived by considering two plane wave expansions of
the same sound field, but centred at different points in space, specifically at the origin of the absolute
and relative coordinate systems. In this case, the difference between the two plane wave expansions
is given by the plane wave amplitude densities q(ŷ, ω) and qrel(ŷ, ω), respectively. Therefore,
the objective is to express one density in terms of the other. This is achieved by expanding xrel
as x− x

′
, leading to:

qrel(ŷ, ω) = q(ŷ, ω)ejkx
′ ·ŷ. (2)

Equation (2) indicates that ejkx
′ ·ŷ is the translation operator for the plane wave expansion from

the origin to x
′
. Its equivalence in the time domain can be easily found by using the shifting property

of the Fourier transform:

Qrel(ŷ, t) = Q

(
ŷ, t− x

′ · ŷ
c

)
. (3)

2.2. Rotation of the Acoustic Field

A spherical harmonic transformation of the plane wave expansion can be performed based
on the Jacobi–Anger relation [24]. From the spherical harmonic representation, the rotation can
be generated by the implementation of a rotation matrix. The derivation of a sound field rotation
operator in the spherical harmonic domain proceeds as follows. A rotation in the azimuthal plane by
φ0 can be expressed as:

p(r, θ, φ− φ0, ω) =
∞

∑
n=0

n

∑
m=−n

Anm(ω)jn(kr)Ym
n (θ, φ− φ0). (4)

Expanding the right-hand side of Equation (4) gives:

p(r, θ, φ− φ0, ω) =
∞

∑
n=0

n

∑
m=−n

Anm(ω)jn(kr)

√
(2n + 1)

4π

(n−m)!
(n + m)!

Pm
n (cos θ)ejmφe−jmφ0 , (5)

which yields:

p(r, θ, φ− φ0, ω) =
∞

∑
n=0

n

∑
m=−n

jn(kr)Ym
n (θ, φ)Aφ0nm(ω), (6)

in which:
Aφ0nm(ω) = Anm(ω)e−jmφ0 . (7)

Equation (7) indicates that the azimuthal rotation of the sound field can be performed by taking
the product of the complex spherical harmonic coefficients and a complex exponential whose argument
depends on the angle of rotation. An inverse spherical harmonic transformation can be implemented
to return to the plane wave domain after the rotation has been carried out.

3. Plane Wave Expansion from Finite Element Data

Although the plane wave expansion is an integral representation, for the implementation of
the method, Equation (1) is discretized into a finite number of L plane waves, namely:

p(x, ω) =
L

∑
l=1

ejkx·ŷl ql(ω)∆Ωl , (8)

where ∆Ωl corresponds to the portion of the unit sphere that is associated with the plane wave
l. The discretization of Equation (1) is performed by using a predefined uniform distribution of L
plane waves over a unit sphere [25]. Based on a finite plane wave expansion, an inverse method
can be implemented to estimate a discrete set of plane waves whose complex amplitudes synthesize
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the target acoustic field. To that end, the acoustic pressure calculated with the FEM at a specific
location of the domain can be understood as corresponding to the output of an omnidirectional
microphone. The combination of acoustic pressures at discrete points generates a virtual microphone
array that is used to extract spatial information of the sound field. Based on that information,
the amplitude ql of each plane wave is determined by the inversion of the transfer function matrix
between the microphones and the plane waves [26]. This principle is explained as follows: the complex
acoustic pressure predicted with the FE model at M virtual microphone positions is denoted in vector
notation as:

p(ω) = [p1(ω), pm(ω), . . . , pM(ω)]T , (9)

where pm is the acoustic pressure at the m-th virtual microphone. Likewise, the complex amplitudes of
L plane waves used to reconstruct the sound field are represented by the vector:

q(ω) = [q1(ω), ql(ω), . . . , qL(ω)]T . (10)

Finally, the transfer function that describes the sound propagation from each plane wave to each
virtual microphone is arranged in matrix notation as:

H(ω) =

∣∣∣∣∣∣∣
h11(ω) · · · h1L(ω)

... hml(ω)
...

hM1(ω) · · · hML(ω)

∣∣∣∣∣∣∣
in which hml = ejkxm ·ŷl . Consequently, the relationship between the plane wave amplitudes and
the virtual microphone signals is:

p(ω) = H(ω)q(ω). (11)

The amplitude of the plane waves is calculated by solving Equation (11) for q(ω). This is carried
out in terms of a least squares solution, which minimizes the sum of the squared errors between
the reconstructed and the target sound field [26]. In the case of an overdetermined problem (more
virtual microphones than plane waves), the error vector can be expressed as:

e(ω) = p̃(ω)− p(ω), (12)

where p̃(ω) is the pressure reconstructed by the plane wave expansion and p(ω) is the target pressure
from the FE model. The least squares solution is achieved by the minimization of a cost function
J(ω) = eH(ω)e(ω) in which (·)H indicates the Hermitian transpose. The minimization of the cost
function J(ω) is given by [26]:

q(ω) = H†(ω)p(ω), (13)

in which H†(ω) is the Moore–Penrose pseudo-inverse of the propagation matrix H(ω) [26].
The use of a finite number of plane waves leads to artefacts in the sound field reconstruction.

Ward and Abhayapala [27] proposed the following relation between the area of accurate reconstruction,
the number of plane waves and the frequency of the field:

L =

(⌈
2π

R
λ

⌉
+ 1
)2

, (14)

in which L is the number of plane waves, d·e indicates the round operator, λ is the wavelength and
R is the radius of a sphere within which the reconstruction is accurate. Numerical simulations have
been performed to evaluate the effects of discretizing the plane wave expansion. Figure 2 shows
the real part of the target and the reconstructed acoustic pressure (Pa) in a cross-section of the domain
using 36, 64 and 144 plane waves in the expansion. The frequency of the field corresponds to 250 Hz.
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The black circle displayed in the figure represents the area of accurate reconstruction predicted by
solving Equation (14) for R.

Figure 2. Reconstructed acoustic field using different numbers of plane waves in the expansion. (a)
target field, (b) reconstructed field L = 36, (c) reconstructed field L = 64, (d) reconstructed field
L = 144.

Figure 2 indicates that the region in which the reconstruction is accurate increases when a higher
number of uniformly-distributed plane waves is considered in the expansion. Good agreement
was found between the radius predicted by Equation (14) and the area where the reconstruction
is correct. A preliminary analysis was performed to establish the size of the microphone array and
the number of plane waves required to generate an inverse matrix whose condition number is smaller
than 106. The condition number is defined as the ratio between the largest and the smallest singular
value of the propagation matrix H(ω). It has been shown in [26] that the stability of the solution
provided by the inverse method is determined by the condition number; therefore, high values of this
parameter indicate that errors in the model, such as noise or non-linearity of the system, will affect
the result for q(ω) significantly. The criterion of a condition number smaller than 106 was motivated
due to the fact that the data come from numerical simulations, which are free from measurement noise.
Although the model is still affected by numerical inaccuracies, the level of this type of noise is expected
to be much lower than in the case of measured noise.

Firstly, a simple incoming plane wave of 63 Hz (θ = 90◦, φ = 45◦) in free field was selected as
a target. The sound field was analytically calculated in a rectangular domain of dimensions (5 m, 10 m,
3 m) and captured by four different virtual cube arrays with linear dimensions of 1.2 m, 1.6 m, 2 m and
2.4 m, respectively. The spatial resolution between microphones corresponded to 0.2 m. A frequency
of 63 Hz was selected as a reference since the condition number decreases with frequency, and 63 Hz
therefore provides a reasonable lower threshold. Table 1 shows the condition number of matrix H(ω)

for different sizes of the array and numbers of planes waves uniformly distributed over a unit sphere
[25].

Table 1. Condition number of the matrix H(ω) as a function of the size of the microphone array and
the number of plane waves.

Length of the Array L = 64 L = 144 L = 324

1.2 m (343 mics) 2.39× 107 2.86× 1013 2.13× 1018

1.6 m (729 mics) 3.09× 106 8.88× 1011 1.32× 1017

2 m (1331 mics) 6.11× 105 6.13× 1010 7.65× 1016

2.4 m (2197 mics) 1.56× 105 6.89× 109 3.01× 1016
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As expected, the condition number decreases as the size of the array increases. The reason for
that may be attributed to the wavelength of the plane wave, which is approximately 5.4 m at this
frequency, and a larger array captures more information of the sound field. Regarding the number of
plane waves, the results suggest that increasing its number does not improve the situation, instead
it increases the condition number significantly. This can be explained because at 63 Hz, there is not
enough information in the sound field that is captured by the virtual microphone array; therefore,
additional plane waves only make the inversion of the propagation matrix H(ω) more difficult.
In addition, the use of a higher number of plane waves makes the method computational expensive
due to the number of convolutions that must be performed in real time. An optimal relation of
64 plane waves, a microphone array of 1.6 m in length with virtual microphone spacing of 0.2 m
(729 microphone positions) was found at 63 Hz. This spatial resolution (0.2 m) yields an aliasing
frequency of ≈850 Hz, which is sufficient for the range of the FE simulations. This high frequency
limit is calculated based on the Nyquist theorem for sampling signals [28].

3.1. Reference Case

A typical meeting room (No. 4079 in Building 13 at the Highfield Campus of the University of
Southampton) was selected as a reference case. It is an L-shaped room with a volume of approximately
88 m3. FE simulations were conducted using the commercial package COMSOL v5.1 (COMSOL
Inc., Stockholm, Sweden). The reader is referred to [21] for a detailed description of the simulation
procedure, i.e., the characterization of the acoustic source, the geometric model of the enclosure, the
boundary conditions and the measurements carried out to validate the predictions. Figure 3 shows a
model of the enclosure identifying the location of the virtual microphone array.

Figure 3. Model of the reference room model.

Two types of figures are presented to assess the performance of the inverse method. The first
shows a comparison between the real parts of the target (numerical) and reconstructed acoustic
pressures (Pa) over a cross-section of the domain (1.6 m). The second type of figure plots the absolute
and phase components of the error between the target and reconstructed pressure fields, defined as:

amplitude error:

Epa(x) = 20 log10

(
| p̃(x)|
|p(x)|

)
. (15)

phase error:
Epp(x) = ∠ (p(x) p̃(x)∗) , (16)

where p̃(x) is the reconstructed pressure, p(x) is the target pressure, (·)∗ indicates the complex
conjugate operator and ∠ represents the phase of a complex number. The amplitude error gives
insight about whether the reconstructed acoustic field is louder or quieter compared to the target
one. The phase error indicates the phase differences between the reconstructed and target acoustic
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fields. Figures 4 and 5 show the synthesized acoustic pressure at two frequencies (63 Hz and 250 Hz).
The dotted black square represents the position of the microphone array.

Figure 4. Target (a) and reconstructed (b) field of the reference room, 63 Hz.

Figure 5. Target (a) and reconstructed (b) field of the reference room, 250 Hz.

Figures 4 and 5 indicate that the inverse method is able to predict quite well a plane wave
expansion whose complex amplitudes synthesize the computed sound field even in small rooms
and at low frequencies where the plane wave propagation assumption is not completely satisfied.
As expected, the reconstruction is accurate around the virtual microphone array. The corresponding
acoustic errors are presented in Figures 6 and 7, respectively.

Figure 6. Amplitude error of the reference room at 63 Hz (a) and 250 Hz (b).
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Figure 7. Phase error of the reference room at 63 Hz (a) and 250 Hz (b).

These indicate that the area of accurate reconstruction depends on the frequency of the acoustic
field, being more extensive at low frequencies. In terms of defining a radius within which
the reconstruction is accurate, the acoustic errors show good agreement with Equation (14), represented
by the circular arc in Figures 6 and 7, only for the higher frequency of 250 Hz. At the lower frequency,
63 Hz, the area is overestimated. This relates to the presence of the walls. At the lower frequency,
the homogeneous Helmholtz equation is not satisfied within the radius predicted by Equation (14)
since the walls of the room intrude into this region acting as reflective boundaries and playing a role
similar to acoustic sources.

3.1.1. Regularization in the Formulation of the Inverse Problem

A well-established technique to improve the stability of the solutions of inverse methods is the use
of regularization in the inversion of the propagation matrix H(ω) [29,30]. Tikhonov regularization
is used for this purpose. It is based on the concept of changing the cost function J(ω) by the inclusion
of an additional term [26], that is:

J(ω) = eH(ω)e(ω) + β(ω)qH(ω)q(ω), (17)

where β(ω) is the regularization parameter. The minimization of the cost function J(ω) of Equation (17)
is given by [26]:

q(ω) =
[
HH(ω)H(ω) + β(ω)I

]−1
HH(ω)p(ω). (18)

Equation (17) indicates that the minimization of the cost function takes into account the sum of
the squared errors between the reconstructed and target acoustic pressure and, in addition, the sum
of the squared norm of plane wave amplitude vector. Figures 8–11 show the results obtained for
the reference problem when Tikhonov regularization is applied. The value of β, which is given in each
case, was calculated as:

β = ‖H(ω)‖2 Γ, (19)

in which ‖·‖ is the spectral norm (the largest singular value) of the propagation matrix H(ω) and Γ
is an arbitrary constant whose value is selected between 1× 10−3 and 1× 10−6.

Figure 8. Target (a) and reconstructed (b) field of the reference room, regularized β = 0.33.
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Figure 9. Target (a) and reconstructed (b) field of the reference room, regularized β = 0.33.

Figure 10. Amplitude error of the reference room at 63 Hz (a) and 250 Hz (b), regularized β = 0.33.

Figure 11. Phase error of the reference room at 63 Hz (a) and 250 Hz (b), regularized β = 0.33.

Figures 8–11 indicate that the implementation of regularization reduces the area of accurate
reconstruction at 63 Hz compared to the non-regularized case. In contrast, regularization does not
have a significant effect in the sound field reconstruction at 250 Hz. This can be explained because
the condition number at this frequency is low (45.9), and regularization therefore has little effect
on the inversion of the matrix H(ω). Nevertheless, according to Figures 6 and 10, the amplitude
of the acoustic field tends to be quieter for the regularized case at 63 Hz. This particular result
is convenient for an interactive auralization system because the translation operator can lead to a zone
with high acoustic pressure if no regularization is applied, which affects the stability and robustness of
the implementation.

An additional analysis of the energy distribution of the plane wave density ql was conducted
to evaluate the effects of regularization in the formulation of the inverse problem. Figures 12 and 13
show an interpolated distribution of the complex amplitude of the plane waves. This is plotted
in two dimensions by unwrapping the unit sphere onto a 2D plane whose axes represent the elevation
and azimuth angle in degrees. The total energy of the plane wave expansion is calculated from
the expression:

qtotal(ω) =
L

∑
l=1
|ql(ω)|2 (20)
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in which ql is the complex amplitude of the l-th plane wave. This value is noted in the figure captions.
These figures indicate that regularization has an important effect on the spatial distribution of

the energy of the plane wave density at 63 Hz. For this frequency, a more concentrated directional
representation was found when regularization is implemented. Figure 14 shows the energy of each
plane wave component for the regularized and non-regularized solution. A significant reduction
in the energy of the plane waves is evident in the regularized case (up to four orders of magnitude).
This result suggest that the use of regularization leads to a more efficient solution in terms of the energy
used to reconstruct the acoustic field.

Figure 12. Normalized amplitude PWE at 63 Hz (a) and 250 Hz (b), non-regularized, qtotal(63) = 26.11,
qtotal(250) = 7× 10−4.

Figure 13. Normalized amplitude PWE at 63 Hz (a) and 250 Hz (b), regularized β = 0.33, qtotal(63) =
2.6× 10−3, qtotal(250) = 7× 10−4.

Figure 14. Comparison of the complex amplitude of the plane wave expansion.

4. Real-Time Implementation of an Auralization System

An interactive auralization system based on the plane wave expansion was developed. The system
allows for real-time acoustic rendering of enclosures by using synthesized directional impulse
responses calculated in advance. Due to the pre-computation of the PWE, the proposed auralization
system enables interactive features such as translation and rotation of the listener within the enclosure.
However, changes in the boundary conditions or modifications of the acoustic source in terms of
its directivity and spatial location are not included at this stage without recalculating the PWE.
The maximum frequency simulated was 447 Hz, which is sufficient to auralize the modal behaviour
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of the enclosure. The time required to recalculate the PWE depends on the volume of the enclosure
and the maximum frequency computed in the FE solution. For this reference case, the computation
time is about one day using six nodes per wavelength on a standard desktop computer with 32 GB
of RAM and Intel i7 processor. A high-pass filter (cut-off at 20 Hz) and a low-pass filter (cut-off
355 Hz) were applied to reduce the ripples produced by the truncation of the data. The proposed
auralization system combines a real-time acoustic rendering with a graphical interface based on a video
game environment.

Figure 15 shows the general architecture of the signal processing chain. It is composed of four
main blocks. The first block is the convolution of anechoic audio material with a plane wave expansion.
The second module refers to the implementation of the translation operator in the plane wave domain.
The third block corresponds to the application of a rotation operator in the spherical harmonic domain,
and finally, the last stage is the sound reproduction using a headphone-based binaural system with
non-individual equalization. The implementation has been made using the commercial packages
Max v.7.2 and Unity v.5.0. Max is a visual programming language oriented toward audio and video
processing. In contrast, Unity is a programming language dedicated to video game development. It
was used in the current research to create a graphical interface for the interactive auralization.

Figure 15. General architecture for a real-time auralization based on the plane wave expansion.

4.1. Translation of the Acoustic Field

It is important to point out that the reconstructed field will be exact for the target field if
an integral plane wave expansion (Equation (1)) is used for the synthesis. This outcome means that
the translation operator will lead to the correct field regardless of the location where the translation
is intended. However, if the plane wave expansion is approximated by a finite sum, as in Equation (8),
the reconstructed field will contain errors, and the translation operator will lead to the correct field
only in the area where the discretized plane wave expansion matches the target field. An indication of
the amount of translation that can be applied before noticeable sound artefacts occur can be estimated
from Equation (14) as:

rt =

(
(
√

L− 1)λ
2π

)
− rl . (21)

where rt is the translation distance, L is the number of plane waves used for the synthesis,
λ is the wavelength and rl is the radius of the listener’s head (e.g., 0.1 m) where it is desirable that
the sound field is reproduced accurately. Indeed, rl must be taken into consideration in order to
preserve the binaural cues. An example of the translation radius is given in Figure 16, in which

R(ω) = (
√

L−1)λ
2π .
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Figure 16. Region of accurate translation given by the PWE.

4.2. Rotation of the Acoustic Field

Although sound field rotation can be generated by interpolating HRTFs, this methodology has
the limitation that it is restricted to binaural reproduction only. The use of a spherical harmonic
representation to rotate the acoustic field is suitable for several audio reproduction techniques,
which increases the flexibility of the proposed approach. In general, the implementation of the rotation
in the auralization system using a spherical harmonic transformation can be divided into three main
steps: the encoding, rotation and decoding stages, respectively. The general concept can be defined as
the encoding of each of the directional impulse responses into a finite number of spherical harmonic
coefficients, the application of the rotation and, finally, the return to the plane wave domain again
through a decoding process. Nevertheless, to reduce the computational cost required by the generation
of the rotation in the acoustic field, the encoding stage is computed by using as an input the difference
between the angles of the directional impulse responses ŷl(θl , φl) and the rotation angle, rather than
by multiplying the spherical harmonic coefficients by a rotation operator. Figure 17 shows the signal
processing chain for the rotation operator.

Figure 17. Rotation scheme.

One relevant consideration on the use of this approach is the number of audio files to be processed
in real time (L× N). Due to the very large amount of operations, the number of spherical harmonic
coefficients was limited to the fifth order (36 coefficients) for the encoding and decoding stages.
The encoding is performed using real-valued spherical harmonics [31], which are calculated from
their complex pairs. As a consequence of the reduced order used for rotation, the area of accurate
reconstruction is reduced following the relation N = kr. In order to preserve the translation area,
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the translation operator is applied before the rotation. In this case, the area reduction given by
the lower spherical harmonic order does not reduce the region where the translation operator
accurately reconstructs the target field. This means that the outcome of the rotation operation
has only to be accurate in the radius corresponding to the listener’s head (rl). The truncation of
the spherical harmonic series up to fifth order is sufficient to cover the listener’s radius for the
frequency range considered.

4.3. Graphical Interfaces

A virtual environment was created in Unity to generate a platform where the listener can move
using a first-person avatar and hear the changes in the acoustic field based on its relative position
with respect to the enclosure. This is achieved by sending from Unity to Max the location and
orientation of the avatar. The interaction between these two software packages was achieved using
the Max-Unity Interoperability Toolkit [32]. Figure 18 illustrates the model made in Unity to generate
the interactive auralizations.

Figure 18. Room model created in Unity. Exterior (a) and interior (b) view of enclosure.

5. Evaluation of the Auralization System

A series of experiments to assess the accuracy of the sound field reconstruction given by
the proposed method is presented. For this, the real-time implementation in Max was used to record the
synthesized acoustic field at different positions of the enclosure. Two types of analysis were performed:
monaural (based on omnidirectional signals) and a spatial evaluation based on first order B-format
signals. The procedure consisted of recording the output signals from the real-time auralization system
implemented in Max and comparing them to numerical references from the FE model.

5.1. Monaural Analysis

A comparison of the predicted omnidirectional frequency responses at different receiver
positions was carried out. This was performed by rendering the sound field in real time
using the auralization system developed in Max. The omnidirectional frequency responses from
the auralization system were obtained by adding all of the directional impulse responses corresponding
to the different L plane waves used to represent the field and recording the total output after
the rotation stage. This information is compared to omnidirectional frequency responses that
were synthesized individually at the receiver locations. These omnidirectional references do not use
the directional information of the plane wave expansion. They correspond to the frequency response of
omnidirectional receivers obtained directly from the FE solution. The use of the numerical information
as a reference is due to the lack of measurements and spatial information across the enclosure to
evaluate different positions.

Five receivers’ positions were selected as shown in Figure 19. The central point of the expansion
corresponds to Location 01. The predicted frequency responses in narrow band and in 1/3 octave
band resolution for each receiver are illustrated in Figures 20–23. The vertical cyan line indicates
the cut-off frequency (355 Hz) of the low-pass filter, and the vertical black line indicates the maximum
frequency below which the translation is expected to provide accurate results. The maximum frequency
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was estimated by solving Equation (14) for R. This was done taking into account the distance between
the central point of the expansion and each receiver’s position. The mean error displayed in the figures
was selected as a metric, and it is defined as:

ME(dB) =
1
n

n

∑
i=1

∣∣∣10 log10(| p̃i|2)− 10 log10(|pi|2)
∣∣∣ , (22)

in which n is the number of 1/3 octave frequency bands and | p̃i|2 and |pi|2 are the predicted and
reference energy of the acoustic pressure in the 1/3 octave band i, respectively. This error is based
on an equal contribution from all of the 1/3 octave bands, being analogous to a model in which pink
noise is used as the input signal. It was created to provide insight into how dissimilar on average the
reconstructed field is from the reference one. A summary of the mean errors according to the receiver
location is presented in Table 2.

Figure 19. Listener positions selected to evaluate the auralization system.

Figure 20. Comparison of full (a) and 1/3 octave band (b) frequency responses. PWE and
omnidirectional room impulse response (FEM) at reference Position 1.
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Figure 21. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE and
omnidirectional room impulse response (FEM) at translated Position 2.

Figure 22. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE and
omnidirectional room impulse response (FEM) at translated Position 3.

Figure 23. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE and
omnidirectional room impulse response (FEM) at translated Position 4.

Figure 24. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE and
omnidirectional room impulse response (FEM) at translated Position 5.
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Table 2. Mean errors at different receiver locations. The distance to the central point of the expansion
and the maximum frequency at which achieving an accurate reconstruction is expected are reported.

Receiver Distance (m) Frequency (Hz) ME (dB)

2 0.5 ≈562 1.5
3 0.5 ≈562 1.7
4 1 ≈281 1.9
5 1.5 ≈187 2.0

The results indicate that the changes in the modal response of the enclosure are correctly
predicted by the translation operator. Furthermore, the figures show good accuracy in the sound
field reconstruction up to the frequencies predicted by Equation (14) as long as these frequencies
are below the cut-off frequency. The differences found at this frequency range may arise from
three causes: the implementation of integer delays in Max, the numerical accuracy used by Max
to perform mathematical operations (summing the directional impulse responses) and the application
of regularization in the inverse problem, which decreases the matching between the radius of validity
and the effective area where the reconstruction is accurate.

5.2. Spatial Analysis

In the previous section, the auralization system was evaluated in terms of its accuracy
in reconstructing the acoustic pressure at different reference locations. Although this provides useful
insight into the performance of the method, it does not give any information about the spatial
characteristics of the synthesized sound field. This aspect was investigated by assessing the ability
of the system to accurately reconstruct the zero and first order terms in the spherical harmonic
expansion of the sound field, as described by Equation (4), often referred to as Ambisonics B-format
signals. An accurate reconstruction of the zero and first order sound fields at the listening position
implies an accurate reproduction of binaural localization cues at low frequencies [33]. Nevertheless,
this approach is a preliminary analysis, and further investigation is required.

The B-format reference signals were estimated by the implementation of an inverse method
according the formulation proposed by the authors [34]. For this, virtual microphone arrays were used
to sample the FE data at the positions where the B-format signals were intended to be synthesized.
The B-format signals from the auralization system were obtained by recording the output of the rotation
module (see Figure 15), which is based on a spherical harmonic transformation. The zero and first
order components were recorded and compared to the numerical references.

The B-format consists of four signals, which correspond to an omnidirectional (zero order) and
three orthogonal dipoles (first order). They are refereed to in the Ambisonics literature as W, X,
Y and Z, respectively. The analysis of the B-format signals was carried out at Receivers 2 and 5.
These were chosen because they corresponded to the locations where the best and worst agreement
was found in terms of the mean errors for the monaural evaluation. The frequency responses in the
narrow band and in the 1/3 octave band resolution of the reference and synthesized B-format signals
are illustrated in Figures 25–30. A summary of the mean errors according to the B-format component
is presented in Table 3.
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Figure 25. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (W)
and reference (W) at translated Position 2.

Figure 26. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (X)
and reference (X) at translated Position 2.

Figure 27. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (Y)
and reference (Y) at translated Position 2.

Figure 28. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (Z)
and reference (Z) at translated Position 2.
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Figure 29. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (W)
and reference (W) at translated Position 5.

Figure 30. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (X)
and reference (X) at translated Position 5.

Figure 31. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (Y)
and reference (Y) at translated Position 5.

Figure 32. Comparison of full (a) and 1/3 octave band (b) frequency responses. Translated PWE (Z)
and reference (Z) at translated Position 5.



Appl. Sci. 2017, 7, 558 20 of 22

Table 3. Mean errors in the B-format signals for the interactive auralization at different receiver locations.

Receiver W (dB) X (dB) Y (dB) Z (dB) Average (dB)

2 (0.5 m) 0.6 1.0 1.5 1.3 1.1

5 (1.5 m) 1.2 1.9 2.0 1.5 1.7

A comparison of the mean errors indicates that the field at Receiver 2 has smaller errors values
than at Receiver 5. This is expected as the distance to the central point of the expansion of Receiver
2 is smaller. Regarding the B-format signals, the outcomes show that the reconstruction is more
accurately performed for the W signals. In this case, a very good agreement between the frequency
response synthesized by the auralization system and the reference signal was found up to the frequency
established by Equation (14). For the remaining coefficients, the match is not as good as the zero order,
but with good agreement in terms of the envelope of the frequency response.

6. Conclusions

A framework for the generation of an interactive auralization of an enclosure based on a plane
wave expansion has been presented. This acoustic representation not only allows for interactive
features, such as the translation and rotation of sound fields, but is also compatible with several sound
reproduction techniques, such as binaural rendering, Ambisonics, WFS and VBAP. The directional
impulse responses corresponding to this plane wave representation were predicted by means of
the finite element method.

An analysis of the reconstruction of the sound field in terms of monaural and B-format signals
indicates that the interactive auralization system based on a plane wave representation is able to
synthesize the acoustic field at low frequencies correctly, making it suitable for the auralization of
enclosures, whose sound field is characterized by a modal behaviour.

The suitability of inverse methods to estimate the amplitude of a set of plane waves that
reconstruct a target field has been proven. This technique is useful to extract directional information
from data obtained from FE simulations. However, the discretization of the integral representation
into a finite number of plane waves limits the spatial accuracy of the sound field reconstruction.
The extent of the region in which the synthesis is accurate depends on the number of plane waves and
the frequency of the field.

The use of Tikhonov regularization has three main effects on the sound field representation.
The first is that the energy of the plane wave density used for the synthesis of the sound fields
is considerably lower than for the non-regularized solution. The second consequence is that
the energy distribution of the plane wave density is much more directionally concentrated. The last
effect is a reduction of the area where the sound field reconstruction is accurate compared to
the non-regularized solution. Nevertheless, the implementation of regularization is convenient for
an interactive auralization system because the translation operator can generate zones with high
acoustic pressure if no regularization is applied.

Future work will include the combination of finite element and geometrical acoustic results to
extend the method outlined here to middle and high frequencies.

The code developed for the interactive system can be download from “https://drive.google.com/
file/d/0BwuuNpQpY5UKZ2htSW9JbXN5OVU/view?usp=sharing”.
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Abbreviations

The following abbreviations are used in this manuscript:

GA Geometrical Acoustics
FEM Finite Element Method
BEM Boundary Element Method
FDTD Finite Difference Time Domain
GPU Graphics Processor Unit
PWE Plane Wave Expansion
WFS Wave Field Synthesis
VBAP Vector-Based Amplitude Panning
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