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Abstract: Mobile Edge Computing (MEC), which is considered a promising and emerging paradigm
to provide caching capabilities in proximity to mobile devices in 5G networks, enables fast, popular
content delivery of delay-sensitive applications at the backhaul capacity of limited mobile networks.
Most existing studies focus on cache allocation, mechanism design and coding design for caching.
However, grid power supply with fixed power uninterruptedly in support of a MEC server (MECS)
is costly and even infeasible, especially when the load changes dynamically over time. In this
paper, we investigate the energy consumption of the MECS problem in cellular networks. Given the
average download latency constraints, we take the MECS’s energy consumption, backhaul capacities
and content popularity distributions into account and formulate a joint optimization framework
to minimize the energy consumption of the system. As a complicated joint optimization problem,
we apply a genetic algorithm to solve it. Simulation results show that the proposed solution can
effectively determine the near-optimal caching placement to obtain better performance in terms of
energy efficiency gains compared with conventional caching placement strategies. In particular, it
is shown that the proposed scheme can significantly reduce the joint cost when backhaul capacity
is low.

Keywords: edge caching; energy-efficient; mobile edge computing; 5G cellular networks

1. Introduction

Nowadays, with the rapid development of mobile communication technologies and mobile
devices, wireless data traffic is experiencing an explosive increase, especially in terms of mobile video
streaming, high definition (HD) video and video webcasting [1]. A recent Cisco report estimates that
the global mobile data volume will grow nearly ten times in the next five years, and the world’s mobile
data traffic will reach 30.6 monthly exabytes by 2020 [2]. It has led to significant increases in user
latency and imposed a heavy burden on backhaul links connecting local base stations (BSs) to the
core network (CN). In addition, the rapid growth of mobile data traffic has been compelling mobile
network operators (MNOs) to provide more and more network capacities and meet these pressing
traffic demands, which are achieved by extending their network infrastructure and enhancing spectral
efficiency. For example, it is still far from enough to satisfy the mobile data traffic demands although
the capacity of cellular network which can be immensely increased by deploying a large amount of
BSs [3]. In fact, since plenty of the available backhaul networks are of low capacity and often cannot
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catch up with the rate requirements, backhaul capabilities have been regarded as a bottleneck for
mobile cellular networks.

One promising solution to meet the demand is edge caching, which brings video contents closer to
the users, reduces data traffic going through the backhaul links, the time required for content delivery,
as well as help to smooth the traffic during peak hours. In wireless edge caching, highly sought-after
videos are cached in the cellular BSs or wireless access points so that demands from users to the same
content can be accommodated easily without duplicate transmissions from remote servers. Specifically,
local caching can be more effective when a fraction of requested contents has high popularity.

Recently, Mobile Edge Computing (MEC) [4,5] has been introduced as an emerging paradigm
enabling a capillary distribution of cloud storage capabilities to the edge of the cellular radio access
network (RAN). In particular, the MECSs are implemented directly at the BSs using generic-computing
platforms, which enable context-aware services and caching deployment in close-proximity to
the mobile users. As a consequence of this, MECS presents a unique opportunity to not only
implement edge caching but also perform caching placement strategy design. With the benefits
of avoiding potential network congestion and alleviating the backhaul links burden, caching popular
content at MECSs for backhaul capacity-limited mobile networks has emerged as a cost effective
solution [6,7]. Recently, a good deal of works have been focused on big data analysis strategies for
edge caching [8,9], context-aware caching deployment strategy design [10,11], and decentralized coded
caching strategies [12,13]. Nevertheless, the cache allocation mechanism, more specifically, the energy
efficiency (EE) cache deployment, has received less attention. When the actual budget is given, the
cache size deployed at MECS will not be arbitrarily large. Caching more content requires activating
more MECS, which results in more energy consumption. Moreover, providing grid power supply with
fixed power uninterruptedly in support of MECS is costly and even infeasible, especially when the
load changes dynamically over time. Hence, the cost energy of MECS should be carefully investigated,
and the EE of MECS within the 5G cellular network should be optimized. As a result, the interplay
between the EE and backhaul capacity is supposed to be intensively studied.

Recently, the issue of energy efficiency has received a lot of attention in the MEC system [14].
In [15], user association and power allocation in millimeter-wave-based ultra-dense networks is
considered with attention to load balance constraints, energy harvesting by base stations, user quality
of service requirements, energy efficiency, and cross-tier interference limits. Literature [16] investigates
the power control and sensing time optimization problem in a cognitive small cell network, where
the mitigation of cross-tier interference, imperfect hybrid spectrum sensing, and energy efficiency are
considered. As one of the most popular and efficient energy saving schemes [17,18], BS sleeping has
been proposed and widely studied to realize substantial energy saving in cellular networks [19-22].
However, integrating MEC with BSs significantly complicates the energy saving issue due to the fact
that BSs now provide not only radio access services but also caching services. Furthermore, since
caching resources on MECS are limited, downloading some content from the CN is inevitable. As a
result, energy consumption couples the caching capacity and MECSs’ sleeping decisions over time.
It has been observed that the content popularity and caching capacity are two main factors affecting
the MECSs’ sleeping decisions. Literature [23] discussed the caching deployment problem with a
given wireless transmission rate, and it also made an assumption that three factors of the backhaul
transmission rate, MECSs’ storage capacity and system energy consumption are fixed. However,
in practical mobile networks, base stations should consider different wireless channel states and
conditions as well as different types of backhaul links and system power. Thus, it is necessary and
crucial for caching deployment and active MECS to consider the above three factors [7,11]. As a
consequence, how to design an optimal solution to minimize energy cost while guaranteeing high
user’s quality of experience (QoE) is a challenging issue.

In this paper, we study the joint optimization of average download latency and average energy
consumption in cellular networks with MEC integration in order to maximize the QoE for users while
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keeping the energy consumption of the system as low as possible. The main technical contributions of
this work can be summarized as follows:

e  We make a trade-off between system average download latency (SADL) and system average
energy consumption (SAEC) by developing an effective caching placement strategy. Our algorithm
achieves a close-to-minimum delay cost to SADL compared to the delay optimal algorithm, while
minimize SAEC.

e  Weindicate the influence of the content popularity distribution satisfying the required number of
active MECS, as well as the influence of the backhaul capacities on the required cost of system.
Numerical results show that the proposed joint cost optimal (JCO) algorithm outperforms the
conventional caching placement strategies achieve a significant performance improvement and
effectively reduces system energy consumption.

The remainder of this paper is organized as follows. In Section 2, we first describe the system
model and problem optimization. Then, we derive and propose the MECS allocation algorithm for
joint cost delay and power. Simulation results are shown and discussed in Section 3. Finally, conclusion
is drawn in Section 4.

2. System Model and Problem Formulation

In this section, we introduce the system model and explain the considered network architecture.
In the next section, we formally introduce the optimization problem.

2.1. System Model

As a major deployment method of the MEC, we consider an edge system consisting of a BS and
multiple MECSs from the set M = {1, --- , M}, which are physically co-located and share the same
power supply in the cell site. Also, the MECSs serve the content requests submitted by N mobile users
(MUs). N MUs are uniformly distributed within the scope of coverage radius of BS denoted by R.
The MECSs store the contents which can be downloaded by the MUs in the coverage areas of the BS.
Through separated backhaul links, base stations are connected to the core network, which stores the
whole content library. The storage capacity denoted by Cz(bits) of each MECS is limited to handle a
large set of contents in total. This architecture is depicted in Figure 1.
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Figure 1. Architecture of Mobile Edge Computing (MEC) servers’ caching system.
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2.1.1. Wireless Transmission and Content Caching Model

The wireless transmission model can be simplified as follows. The transmission rate is set to be
Cmec (Mbps) if the MU can download the interested content from the MECS. Otherwise, a MU can
only take the content from the core network (CN) by backhaul link at the rate of Cg, Mbps. Also,
the backhaul capacity of BS is denoted as Cp,,,,(Mbps) which is generally limited in dense cellular
network scenarios. We further consider that Cg, < Cpec- In the model, we focus on a multi-user
orthogonal frequency division multiple access (OFDMA) system in mobile networks, where each
channel in the system is orthogonal to the others—in other words, no interference among MUs [24].
For simplicity, we assume that channel gains have the same distribution and small-scale fast fading
will average out. Hence the wireless transmission rate of one MU depends on its available bandwidth
and signal-to-noise ratio (SNR) [7]. In the cell, with available bandwidth W for each MU and a given BS
transmission power Piqys, the wireless transmission rate of a MU is given by the Shannon’s theorem:

—€
C= W(logz(l—i—lwv\s/;{)) 1)
2 CBack < Comax (2)
MU

where 62 is the noise power, € is the pathloss exponent and f is the pathloss constant.

Some previous studies have shown that in practical networks, the request probability of content
can be fitted with some popularity distributions. In the proposed work, we assume that the MUs
request content (i.e., videos, files, news, etc.) from a library F = {1, - - - F}, where each content-f in
this library has a same size of L(f) bits and different popularity. The probability content-f(f =1-- - F)
being requested is denoted as Pr(f), i.e., ), ]€=le( f) = 1. As a matter of fact, the popularity of
requested contents follows the Zipf’s distribution [23-25], which can be expressed as:

_ 0
- &

o (znl)’

The parameter « in equation (3) describes the steepness of the distribution. Like the distribution
of contents in the web proxies and the traffic dynamics of cellular devices, this kind of power law is
used to characterize many real world phenomena [23]. The higher « value corresponds to a steeper
distribution, and indicates that a fraction of the content is more popular than the rest of the catalog
(i.e., users have very similar interests). For another, lower values describe more uniform behavior
almost as popular as the content (i.e., users have different interests) The parameter « can take different
values depending on the MUs’ behaviour and MECS deployment strategies (i.e., campus, enterprise,
urban, and rural environments), and its practical value in our experimental setup will be given in the

Pr(f) &)

where

subsequent sections.

Without the loss of generality, the contents of the library are sorted in line with the descending
order of popularity, in which content-1 indicates the content with the highest downloading probability.
As a consequence, MUs are considered to make independent downloading requests based on Pr(f).
Caching the most popular contents will be regarded as the optimal caching strategy for MECS, and
hence the caching hit ratio (Q) of Ac MECSs can be written as:

Z:_71—;:AC*CS fil"
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where C; 2 % is defined as the number of the caching contents of MECS , the number of active

MECSs is A,.

Proof. The proof is presented in Appendix A.

2.1.2. Users Model

In the model, we assume that the number of MUs, denoted as U(t), which requests interested
contents from BS, follows the Poisson process with parameter A [25,26]. Thus, it yields:

P(U(t) = k) = ();)ke—“ )

2.1.3. Delay Cost Model

For MUs downloading the target content workload, we mainly consider the transmission delay
as the delay cost due to the limitations of the backhaul capacity of the BS. It costs less in terms of
transmission delay for a MU downloading the target content from the MECS to a MU (denoted as
TmEc),as compared to that from the CN to a MU (denoted as T,¢). In order to quantify the delay
performance of services without restricting our model to any particular metric, we utilize an average
response time to represent the delay cost:

T pver = UAﬁT 6)

1 = [Tmec, Tpack] ?)

where Tpec = CL, TBack = CLB represents the duration of one MU finishing a download on interested
content from the MECS and finishing a download on interested content from the CN, respectively.
Cp = ((:jBack ’ if Kpack < B(t) 8)

#r lf KBack > B(t)

Back

where K} is defined as the number of MUs which finishing a download on interested content from
the CN. The maximal number of MUs that can download interested content at the same time by the

backhaul network is defined as B(t). If K}, < B(t), then each user’s transmission rate of backhaul is

Cgack, else if K, > B(t), each user’s transmission rate of backhaul is Cp = %é"’”: ,B(t) = % .
aC)

Back

1 2 u(t)

A= Kype Kvee  + Kuec )
Kl K2 KU(t)
Back Back s Back

where Kj ;- is defined as the number of MUs which finishing a download of interested content
from the MECS. The average number of MUs requesting interested contents from the BS is

k
E[U(t)] = Kjypc + K}, Since U(t) yields to the Poisson process, E[U(t)] = E [(/\,:!)e_M } = At.

B=1[P(1),P(2),...,P(N)] (10)

n
KM EC
cache simultaneously.

where P(n) = ( u )HKX/IEC(l -H )Kgﬂck represents the probability that K}~ users hit the
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As such, the formulation of average response can be written as:

n n

Toer —Zfﬁ%( ue )Q"(l—Q)”(”‘"TMEwZﬁ’E%( uw )Q"(l—Q)“W‘”TBMk (1)

The Equation (11) can be rewritten as:

TAwr—ZEIﬁ?(um)@”(l—Q)”(””( R ) (12)

n Cmvec  min{Cguek, Cpax }

Proof. The proof is presented in Appendix B.

2.1.4. Power Consumption Model

The power model can be assumed as follows. The total power consumption Ps,s demand of
the 5G cellular networks consists of operational power Poy, transmission power Pans , and MECSs
power Puec.

PSys = POp + Prrans + Pmec (13)

The operational power is load-independent, consisting of the baseband processor, the converter,
the cooling system, etc. Therefore, for the BS in time slot t:

Pop = Poj (14)

where Py is a constant which describes system power consumption, p is a synchronous
workload coefficient.

Transmission occurs on wireless links between the MU and the BS, as well as the backhaul link
between the BS and CN. Usually the wireless transmission power consumption dominates, so that we
consider only the wireless portion. We assume that the small-scale fast fading will average out since
the considered time slot is relatively long. Hence, we focus on pathloss effects. We can approximate
the pathloss effect by considering the maximum coverage radius (R) of the BS, in order to keep the
maximum achievable transmission rate of all users which are under the coverage of the BS larger than
C, [27,28]. Given the transmission power P45, the maximum achievable transmission rate is given by

the Shannon’s theorem,
Ptmns ,BR7€

where W is the channel bandwidth, % is the noise power, € is the pathloss exponent and B is the
pathloss constant. We suppose the noise-limited is set by assuming that the BS operates on orthogonal
channels [28-30].

Similarly, we consider each transmission must meet a target rate C, to satisfy a transmission delay
requirement, the transmission power should satisfy:

26— 1) We?

DPrrans = IBRfe (16)
The MECS system power at the edge server is load-dependent. Let
Pyvec = PServerPT 17)

where p = [a1,ay,_an]|, letay € {0,1} represent the active (1)/inactive (0) decision for the MECSs.
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2.2. Problem Formulation

2.2.1. Delay Optimization

Firstly, we want to quantify the delay performance of services without restricting our model
to any particular metric (for the delay-optimal algorithm). Thus, the minimum delay cost can be
computed as:

P1: arg min T ayer (18)
P

s.t. Cp < Comax

Y FaL(f) ¢z

The optimization problem is a linear programming problem with a computational complexity of
O(F * K x Cs) and can be solved by using a conventional solver, i.e., MATLAB.

2.2.2. Joint Delay Cost with Power Consumption Optimization

In this subsection, we will give the joint optimization for time delay and energy cost. Due to the
different impact of time and energy cost, we introduce a weight factor, denoted as w, which indicates
the emphasis on either time or energy cost. Thus, minimizing the time and energy cost of system can
be specified as the following problem:

P2: arg n}(in(TAUgr - Topt)z + W * Pgys (19)

s.t. Cp < Cpmax
KxCq
Y f<F
K=ol

The joint optimization problem is hard to solve, so we decouple P2 problem in two stages
as follows:

Stage 1: We consider the system power allocation is fixed, i.e., Ppirc is already known. We find
that the optimization of P2 can be decoupled into K sub-problems with regard to the number of
active MECSs, and the series of problems G{K}, in order to find the minimum delay cost for each
sub-problem K, which follows the solution for the P1.

Stage 2: In this stage, we focus on minimizing the energy cost in the JCO algorithm.

Algorithm 1. Joint Cost Optimal (JCO) algorithm

1: Set Tgpt =0,Pymec =0, and Ty =0

2: whlie

3: Calculate Topt, Prmec, Tavers Psys, then set P2 = P2
4: If (6) is satisfied for active a new MECS

5: If (8) is satisfied for inactive a new MECS

6: If (TAver — Topt) > 0 then

7: G{K} = G{K + 1} ,and use genetic algorithm minimum P1
8: else then

9: obtain Péys, Ter

10:  update P2’ ,and if 22~ > § then reset G{K}

11: End If "

12: Until P2' — P2 < ¢, end whlie
13: Output Tsger,Poys K, P2
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3. Numerical Results

In this section, we present numerical results to verify the effect of energy efficiency scheme and
illustrate the impact of various MEC network parameters. In simulations, we use the MEC network
parameters as shown in Table 1.

Table 1. List of main simulation parameters.

Parameters Value
Number of MECS Mserper = 15~20
Number of MU MU = 10~50 [25]
Radius of the MEC range R=100m
Number of alternative contents in total F = 1000
Storage capacity of one MECS C,=3~10GB
Size of each content L=50~100 Mb [23]
Maximum transmission rate of MEC to MU Cpec = 2 Mbps

Maximum transmission rate of CN to MU
The backhaul capacity of BS
Noise power
BS transmit rate requirement
Contents Request Pattern
Power of system
Power of one MECS
Transmit power of BS
Transmit bandwidth W
Path-loss exponent o
Trade-off weight

Cgack = 1 Mbps
Chimax = 15~30 Mbps
6% = —102 dbm [7,33]
Co = 2Mbps
a =0.56~1.16 [7,10,31,32]
Pop =800 W [35]
Pserper = 200 W
Prrans = 20 W
10 MHz
4110]
w = 0.5 [34]

3.1. Impact of the Backhaul Capacities

We analyze the impact of the backhaul capacities on the algorithms’ performance in Figure 2,
meanwhile illustrating the average power consumption and average delay cost. As expected, increasing
backhaul capacities not only reduces average power consumption but also decreases average delay
cost. We observe that if the number of active MECSs equals to 0, all contents will be downloaded with
the rate C, from the CN, so Typer = %?L If the number of active MECSs equals to oo, the MECSs
are enough to ensure that each content can be downloaded from the MECS, so the transmission rate
is always Cpiec, and thus Tager = gggé On the other hand, for a low value of backhaul capacities
increasing the MECS’s power consumption, we can reduce the average delay cost effectively when the
system is in overloaded conditions, as the MECS can serve more requests. However, if excessively
active MECSs cache a lot of unpopular content, it brings about a bad performance in effectively
reducing average delay cost. Figure 2 explicitly demonstrates the trade-off between the average delay

cost and the average power consumption for given backhaul capacity.

25+ —+—Cbmax = 1Mbps
—+#—Cbmax= 3Mbps
——Cbmax = 5Mbps
Cbmax = 8Mbps
—6—Cbmax = 10Mbps

N

System Average Delay (s)

6 8 10 12
The Numer of Active MECS

Figure 2. System joint performance versus backhaul capacity.
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3.2. Impact of the Content’s Popularity Pattern

We analyze the impact of the content’s popularity pattern on the algorithms’ performance in
Figure 3. Namely, we vary the shape parameter a of the contents popularity with the value 0.46 to 1.16.
As expected, with increase of «, the active MECSs decrease in the scheme, and the energy efficiency
improves as the popularity distribution gets steeper. When « is high, the vast majority of user requests
refer to a small number of contents. Clearly, caching the above contents provides significant benefits to
the provider. To conclude, when the content popularity distribution is highly concentrated (i.e., & > 1),
our algorithm achieves at least 1.5 times higher performance than « < 1.

7000

)

D
o
o
o

System Average Delay(s

1000 ; 3
2 4 6 8 10 12 14 16
The Number of Active MECS

Figure 3. System performance versus popularity shape parameter.

3.3. Impact of the Joint System Cost

Figure 4 shows the joint performance of the delay optimal, energy optimal and joint optimal
algorithms. In Figure 4, we observe that the proposed algorithm outperforms the other two schemes in
terms of the system cost. As expected, increasing backhaul capacities not only reduces the average
power consumption but also decreases the average delay cost. Therefore, with the increase of backhaul
capacities, the joint cost rapidly decreases.

%104

—+—Energy Opt(No-Caching)
Delay Opt(Active All MECS)
—e—Joint Opt(Proposed)

Joint System Cost

2 4 6 8 10
Backhaul Capacity(Mbps)

Figure 4. Joint system cost versus backhaul capacities.

Figure 5 shows the delay and energy performance of the delay optimal, energy optimal and joint
optimal algorithms. In Figure 5a, the delay optimal algorithm achieves the best delay performance at
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the maximum cost of energy, as shown in Figure 5b. Otherwise, the energy optimal algorithm achieves
the minimum cost of energy at the worst delay performance. Obviously, both methods have very low
energy efficiency. In Figure 5a, the performance of the proposed joint optimal is in close proximity to
the delay optimal, which achieves the theoretical delay performance but much better than the energy
optimal. In Figure 5b, although the performance of the proposed method causes a slightly larger
delay than the delay optimal (increasing minimum delay by around 20%), energy consumption can be
reduced up to about 63%.

4 x10% 5000
4500

@ =B %. 4000 ——Energy Opt(No-Caching) |
S 039 ——Delay OptiActive all MECS)
T 2f —+—Energy Opt(No-Caching) 5 3500 —— Joint Opt(Proposed)
% ——Delay Opt(Active All MECS) S
% —&—Joint Opt(Proposed) g
= 1.5 fas
o 0 2500
< <
5 11 5 2000
%] w
& 1 & 1500

’ 1000

0" 500 3 ' ’

2 4 6 8 10 2 4 6 8 10
Backhaul Capacity(Mbps) Backhaul Capacity(Mbps)

(@) (b)

Figure 5. (a) Delay performance; (b) Energy performance.

4. Conclusions

In this paper, we have focused on energy-efficient strategies for MECS in a backhaul
capacity-limited cellular network for minimizing the power consumption while satisfying a
computation delay cost constraint. For the motivation, taking the backhaul capacity, contents
popularities and the number of users into account, a constraint expression that can trade off the
system energy consumption and average delay has been derived, and it can illustrate the impacts of
different MECS network parameters. The numerical results indicate that our method can reduce the
energy consumption by about 63% with the trade-off in delay efficiency (increasing the minimum
delay by around 20%), perform very close to the optimal solution, and much better than the worst-case
scenario, i.e., the approximation bound.
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Abbreviations

The following abbreviations are used in this manuscript:

MEC Mobile Edge Computing
MECS Mobile Edge Computing Server
MNOs Mobile network operators
MCS Mobile communication system
MUs Mobile Users
HD High Definition
EE Energy efficiency
BS Base station
OFDMA  Orthogonal Frequency Division Multiple Access
SNR Signal-to-Noise Ratio
SADL System Average Download Latency
SAEC System Average Energy Consumption
CN Core Network
Appendix A
From Equations (4), Q can be expressed as the following:
-1
0 <Zf:1 %)
Pr(f) = I3 = T

when the number of active one MECS , the hit ratio can be written as:

Cs o, (Zh )7 s
R VY

Q

AT R CI S,

hence when the number of active MECS is A,

AcxCs 1 F 1 F 1 F 1
0= Yoo g _Lyag mEace gy Tasc
F 1 [ 1 [ 1
Ly g N Yio e
Hence 1 — Q can be written as:
Thsc, v
1-Q= Sl
F 1
Y170

This completes the proof.
Appendix B
Proof.

Using (16), we can rewrite

P(n) = ( KXI;IIEC )QKXAEC(l — Q)Kgm

So the formulation of average response can be written as:

Tpoer = Yot ( ut) )Q”(l — QU Ty e+ YU ( ut) )Q”(l ~ QU Ty,

Z;ISO) < U(t) )Qn(l - Q)U(t)inTBack

n

110f13
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- Thoo( ) Jora-or e m (MY Jout - g O

CBack n Cy
Then
uy (- U(t n —n _oue (o Uf(t n _n  U(t)—n)L
() )era-0 - () Jen-om e

T"‘W:Zﬂtg( u(t) )Qn(l_Q)U(t)fn( Lo (U@ -n)L )

n Cmec  min{Cguer, Cpax }

This completes the proof.

References

1. Paschos, G.; Bastug, E.; Land, I.; Caire, G.; Debba, M. Wireless caching: Technical misconceptions and
business barriers. IEEE Commun. Mag. 2016, 54, 16-22. [CrossRef]

2. Cisco CVNIL Global Mobile Data Traffic Forecast Update, 2015-2020 White Paper. Document ID:
1465272001663118.  Available online: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/ (accessed on 1 June 2016).

3. Li, C; Zhang, J.; Letaief, K.B. Throughput and energy efficiency analysis of small cell networks with
multi-antenna base stations. IEEE Trans. Wirel. Commun. 2014, 13, 2505-2517.

4. Hu, Y.C,; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing-A key technology towards
5G. In ETSI White Paper; ETSI: Antipolis, France, 2015.

5. Roman, R;; Lopez, J.; Mambo, M. Mobile edge computing, Fog et al.: A survey and analysis of security
threats and challenges. Future Gener. Comput. Syst. 2016. [CrossRef]

6. Bastug, E.; Bennis, M.; Kountouris, M.; Debbah, M. Cache-enabled small cell networks: Modeling and
tradeoffs. EURASIP J. Wirel. Commun. Netw. 2015, 1, 1-11.

7.  Peng, X.; Zhang, ].; Song, S.H. Cache size allocation in backhaul limited wireless networks. In Proceedings
of the IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23-27 May 2016.

8. Zeydan, E.; Bastug, E.; Bennis, M.; Kader, M.A. Big data caching for networking: Moving from cloud to edge.
IEEE Commun. Mag. 2016, 54, 36—42. [CrossRef]

9.  Zheng, K, Yang, Z.; Zhang, K.; Chatzimisios, P.; Yang, K.; Xiang, W. Big data-driven optimization for mobile
networks toward 5G. IEEE Netw. 2016, 30, 44-51. [CrossRef]

10. Poularakis, K.; Iosifidis, G.; Tassiulas, L. Approximation algorithms for mobile data caching in small cell
networks. IEEE Trans. Commun. 2014, 62, 3665-3677. [CrossRef]

11. Peng, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Backhaul-aware caching placement for wireless networks.
In Proceedings of the IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA,
6-10 December 2015.

12. Maddah-Ali, M.A.; Niesen, U. Decentralized coded caching attains order-optimal memory-rate tradeoff.
IEEE/ACM Trans. Netw. 2015, 23, 1029-1040. [CrossRef]

13. Niesen, U.; Maddah-Ali, M.A. Coded caching with nonuniform demands. Trans. Inform. Theory. 2017, 63,
1146-1158. [CrossRef]

14. Antonopoulos, A ; Kartsakli, E.; Bousia, A.; Alonso, L.; Verikoukis, C. Energy-efficient infrastructure sharing
in multi-operator mobile networks. IEEE Commun. Mag. 2015, 53, 242-249. [CrossRef]

15. Zhang, H.; Huang, S.; Jiang, C.; Long, K.; Leung, V.C.M.; Poor, H.V. Energy Efficient User Association and
Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations.
IEEE ]. Sel. Areas Commun. arXiv 2017, arXiv:1704.07037.

16. Zhang, H.; Nie, Y.; Cheng, J.; Leung, V.C.; Nallanathan, A. Sensing time optimization and power control for
energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans. Wirel. Commun.
2017, 16, 730-743. [CrossRef]

17. Bousia, A.; Kartsakli, E.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. Game-theoretic infrastructure sharing
in multioperator cellular networks. IEEE Trans. Veh. Technol. 2016, 65, 3326-3341. [CrossRef]

18. Datsika, E.; Antonopoulos, A.; Zorba, N.; Verikoukis, C. Green cooperative device-to-device communication:

A social-aware perspective. IEEE Access 2016, 4, 3697-3707. [CrossRef]


http://dx.doi.org/10.1109/MCOM.2016.7537172
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.1109/MCOM.2016.7565185
http://dx.doi.org/10.1109/MNET.2016.7389830
http://dx.doi.org/10.1109/TCOMM.2014.2351796
http://dx.doi.org/10.1109/TNET.2014.2317316
http://dx.doi.org/10.1109/TIT.2016.2639522
http://dx.doi.org/10.1109/MCOM.2015.7105671
http://dx.doi.org/10.1109/TWC.2016.2628821
http://dx.doi.org/10.1109/TVT.2015.2445837
http://dx.doi.org/10.1109/ACCESS.2016.2586305

Appl. Sci. 2017, 7,557 130f 13

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Wu, J.; Bao, Y.; Miao, G.; Zhou, S.; Niu, Z. Base-station sleeping control and power matching for energy-delay
tradeoffs with bursty traffic. IEEE Trans. Veh. Technol. 2016, 65, 3657-3675. [CrossRef]

Yu, N.; Miao, Y.; Mu, L.; Du, H.; Huang, H.; Jia, X. Minimizing Energy Cost by Dynamic Switching ON/OFF
Base Stations in Cellular Networks. IEEE Trans. Wirel. Commun. 2016, 15, 7457-7469. [CrossRef]

Bousia, A.; Kartsakli, E.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. Multiobjective Auction-Based
Switching-Off Scheme in Heterogeneous Networks: To Bid or Not to Bid? IEEE Trans. Veh. Technol.
2016, 65, 9168-9180. [CrossRef]

Han, F; Zhao, S.; Zhang, L.; Wu, J. Survey of strategies for switching off base stations in heterogeneous
networks for greener 5G systems. IEEE Access 2016, 4, 4959-4973. [CrossRef]

Bastug, E.; Bennis, M.; Zeydan, E.; Kader, M. A ; Karatepe, I.A. Big data meets telcos: A proactive caching
perspective. J. Commun. Netw. 2015, 17, 549-557. [CrossRef]

Zhang, K.; Mao, Y,; Leng, S.; Zhao, Q.; Li, L.; Peng, X. Energy-Efficient Offloading for Mobile Edge Computing
in 5G Heterogeneous Networks. IEEE Access 2016, 4, 5896-5907. [CrossRef]

Ding, R.; Wang, T.; Song, L.; Han, Z.; W, ]. Roadside-unit caching in vehicular ad hoc networks for efficient
popular content delivery. In Proceedings of the Wireless Communications and Networking Conference
(WCNC), New Orleans, LA, USA, 9-12 March 2015; pp. 1207-1212.

Hu, Z.; Zheng, Z.; Wang, T.; Song, L. Poster: Roadside Unit Caching Mechanism for Multi-Service Providers.
In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
Hangzhou, China, 22-25 June 2015; pp. 387-388.

Chen, L.; Zhou, S.; Xu, J. Energy Efficient Mobile Edge Computing in Dense Cellular Networks. arXiv 2017,
arXiv:1701.07405.

Xu, J.; Sun, Y.; Chen, L.; Zhou, S. E2M2: Energy Efficient Mobility Management in Dense Small Cells with
Mobile Edge Computing. arXiv 2017, arXiv:1701.07363.

Rimal, B.P; Van, D.P.; Maier, M. Mobile Edge Computing Empowered Fiber-Wireless Access Networks in
the 5G Era. IEEE Commun. Mag. 2017, 55, 192-200. [CrossRef]

Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic computation offloading for mobile-edge computing with energy
harvesting devices. IEEE ]. Sel. Areas Commun. 2016, 34, 3590-3605. [CrossRef]

Liu, J.; Bai, B.; Zhang, J.; Letaief, K.B. Content caching at the wireless network edge: A distributed algorithm
via belief propagation. In Proceedings of the IEEE International Conference on Communications (ICC),
Kuala Lumpur, Malaysia, 23-27 May 2016.

Gill, P; Arlitt, M,; Li, Z.; Mahanti, A. Youtube traffic characterization: a view from the edge. In Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, CA, USA, 24-26 October 2007;
pp- 15-28.

Lee, W.; Jung, B.C. Energy-Efficient On-Off Power Control of Femto-Cell Base Stations for Cooperative
Cellular Networks. Appl. Sci. 2016, 6, 356. [CrossRef]

Chen, M.; Hao, Y; Lai, C.F,; Wu, D.; Li, Y.; Hwang, K. Opportunistic task scheduling over co-located clouds
in mobile environment. IEEE Trans. Ser. Comput. 2016. [CrossRef]

Xu, J.; Ren, S. Online Learning for Offloading and Autoscaling in Renewable-Powered Mobile Edge
Computing. arXiv 2016, arXiv:1609.05087.

® © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TVT.2015.2434381
http://dx.doi.org/10.1109/TWC.2016.2602824
http://dx.doi.org/10.1109/TVT.2016.2517698
http://dx.doi.org/10.1109/ACCESS.2016.2598813
http://dx.doi.org/10.1109/JCN.2015.000102
http://dx.doi.org/10.1109/ACCESS.2016.2597169
http://dx.doi.org/10.1109/MCOM.2017.1600156CM
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.3390/app6110356
http://dx.doi.org/10.1109/TSC.2016.2589247
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	System Model and Problem Formulation 
	System Model 
	Wireless Transmission and Content Caching Model 
	Users Model 
	Delay Cost Model 
	Power Consumption Model 

	Problem Formulation 
	Delay Optimization 
	Joint Delay Cost with Power Consumption Optimization 


	Numerical Results 
	Impact of the Backhaul Capacities 
	Impact of the Content’s Popularity Pattern 
	Impact of the Joint System Cost 

	Conclusions 
	
	

