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Abstract: X-ray Free-Electron Lasers have made it possible to record time-sequences of diffraction
images to determine changes in molecular geometry during ultrafast photochemical processes.
Using state-of-the-art simulations in three molecules (deuterium, ethylene, and 1,3-cyclohexadiene),
we demonstrate that the nature of the nuclear wavepacket initially prepared by the pump laser,
and its subsequent dispersion as it propagates along the reaction path, limits the spatial resolution
attainable in a structural dynamics experiment. The delocalization of the wavepacket leads to
a pronounced damping of the diffraction signal at large values of the momentum transfer vector q,
an observation supported by a simple analytical model. This suggests that high-q measurements,
beyond 10–15 Å−1, provide scant experimental payback, and that it may be advantageous to prioritize
the signal-to-noise ratio and the time-resolution of the experiment as determined by parameters such
as the repetition-rate, the photon flux, and the pulse durations. We expect these considerations to
influence future experimental designs, including source development and detection schemes.

Keywords: X-ray free-electron lasers; ultrafast dynamics; diffraction; spatial resolution; pump-probe;
quantum dynamics; wavepackets; photochemistry

1. Introduction

X-ray and electron scattering have long played an important role in structure determination
of matter [1–3]. The recent development of ultrashort pulsed electron and X-ray beams has
now expanded the scope of structure determination to the time domain [4,5] (and references
therein). Important applications include the determination of molecular structures in excited states
and the observation of structural molecular dynamics, i.e., the time-resolved determination of
transient molecular structures during chemical reactions [6–13]. The advent of ultrafast pulsed X-ray
Free-Electron Lasers (XFELs) in particular has increased the intensity of X-rays while decreasing pulse
durations to below 30 fs [14]. Consequently, XFELs are assuming a powerful role in the exploration of
gas-phase photochemistry, allowing a direct comparison between experimental results and high-level
theory [15]. More generally, ultrafast X-ray scattering will play an important and growing role in
our arsenal of ultrafast imaging techniques by providing a structurally-sensitive complement to
spectroscopic techniques.

Ultrafast measurements typically involve a pump-probe scheme, where a laser pump pulse
prepares an initial wavefunction, whose subsequent time evolution is probed at a sequence of
delay-times [15–24]. Depending on the experimental situation, the wavepacket may be of electronic [25,26],
nuclear [27], or mixed nuclear-electronic [28] nature. Inevitably, the localization of the initially prepared
wavepacket and its subsequent spreading depends not only on the potential energy landscape of the
molecular system but also on the exact optical preparation of the initially excited state [29–31]. While
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in some cases, such as nonradiative transitions in intermediate or statistical limit scenarios, the wave
packet is presumed to spread over all receiving modes [32–34]; in other cases, well-defined wave
packets persist for at least part of the chemical reaction pathway. In 1,3-cyclohexadiene, for example, the
propagation of the wavepacket has been described as ’ballistic’, implying that it retains a well-localized
form even as it propagates [35]. However, it is inevitable that the nonclassical nature and propagation
of the wavepacket leads to a delocalization. It is therefore an important question to consider the extent
of this delocalization and how it affects the measurement of the structural dynamics in time-resolved
scattering experiments. In the present article, we explore the effective upper limit on the range of the
momentum transfer vector (q) that is meaningful to observe in scattering experiments. To do so, we
use advanced simulations of ultrafast dynamics in the molecules D2, ethylene, and 1,3-cyclohexadiene
(CHD), and examine the effect of the nuclear wavepacket spreading on the X-ray scattering signals.

2. Methods

2.1. Wavepacket Dynamics

Ultrafast experiments follow the evolution of a time-dependent wavepacket, |Ψ(r, R, t)〉, where r
and R are the electronic and nuclear coordinates, and t is time. The wavepacket is the solution to the
time-dependent Schrödinger equation,

ıh̄
d
dt
|Ψ(r, R, t)〉 = Ĥ|Ψ(r, R, t)〉, (1)

where the Hamiltonian Ĥ can be decomposed into a field-free molecular Hamiltonian Ĥ0 and an
interaction term Ĥint that describes the interaction with the pump pulse (and, later, the probe pulse).
Most commonly, the pump will be an optical laser pulse, so that the light-matter interaction is given in
the dipole approximation by Ĥint(t) ≈ −dε(t), where ε(t) is the time-dependent electromagnetic
field and d the electric dipole operator. The wavepacket excited by the pump pulse will have
certain qualitites imprinted by the pump laser, including a bandwidth, phase-properties, and overall
energy distribution.

There are many strategies for solving the time-dependent Schrödinger equation in Equation (1)
above. One possible ansatz expands the wavepacket in the complete basis of orthonormal eigenstates
|Ψj〉 of the molecular Hamiltonian Ĥ0 (see e.g., Ref. [36]),

|Ψ(t)〉 = ∑
j

cj(t)e
−iEjt/h̄|Ψj〉, (2)

where |Ψ(t)〉 is the excited wavepacket, |Ψj〉 are orthonormal rovibronic wave functions and Ej are the
corresponding energies. According to first-order perturbation theory, the time-dependent coefficients
cj(t) become,

cj(t) = iDjs

[
e
h̄

∫ t

−∞
dteiωjstε(t′)

]
, (3)

where Djs are the combined dipole transition moments and the Franck–Condon factors for excitation
from the initial state s to the final state j. The expression in the square brackets corresponds to
the energy- and the time-dependent complex excitation function with e the charge of an electron,
the angular frequency ωjs = (Ej − Es)/h̄ and ε(t′) the excitation field [28,37,38]. The trouble with this
solution is that it requires that the eigenstates of the system are calculated first, which renders the
approach practical only in molecules with a small number of degrees of freedom, such as the diatomic
molecule D2 in the present article.

In the general case, one must propagate the wavepacket numerically while circumventing
as much as possible the effect of the exponential scaling of the required grid (basis) with the
number of degrees of freedom. One approach is to expand the molecular wavepacket in a basis
of non-stationary Gaussian wavefunctions (coherent states). Methods that take this path include the
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ab-initio multiconfigurational Ehrenfest method (AI-MCE) [39,40] used in this article, the closely related
ab-initio multiple spawning (AIMS) [41], the hybrid ab-initio multiple cloning (AIMC) method [42],
the variational multiconfigurational Gaussians (v-MCG) [43] method, and the coupled coherent-states
(CCS) method [44–46]. All of these methods trace their roots to seminal semi-classical work by
Eric Heller [47].

In AI-MCE, the molecular wavepacket, |Ψ(t)〉, is expanded in terms of Ehrenfest functions with
dynamically coupled expansion coefficients Dk(t),

|Ψ(t)〉 =
N

∑
k=1

Dk(t)|ψk(t)〉, (4)

where each Ehrenfest function, |ψk(t)〉, consists of a Gaussian nuclear coherent state, |z̄k(t)〉,
distributed across Ns electronic states, |φi

k〉, with the amplitudes ai
k(t),

|ψk(t)〉 =
[

Ns

∑
i=1

ai
k(t)|φ

i
k〉
]
|z̄k(t)〉. (5)

The coherent state, |z̄k(t)〉, is a product of 3×(number of atoms) one-dimensional Gaussian
coherent states, shown here for xα, the x-component of the coordinate of atom α,

〈xα|z̄k(t)〉 =
(γα

π

) 1
4 exp

(
−γα

2

(
xα −Qk

αx

)2
+

ı
h̄

Pk
αx

(
xα −Qk

αx

)
+

ıPk
αxQk

αx
2h̄

)
, (6)

where the position is Qk
αx, the momentum Pk

αx, and the width parameter γα. The Ehrenfest ansatz can
be slow to converge, but, in the context of this article, the difference is mostly technical, as sampling
methods have been developed to speed up the convergence of Equation (4) [42,48]. Each time-step of
the propagation requires multiple calls to an ab-initio electronic structure software package to calculate
energies for the ground and excited states, the potential gradients, and non-adiabatic couplings.
For further details, see, e.g., Refs. [39,40,42,49]. In this article, we use the AI-MCE method to simulate
the photoexcited dynamics of the molecules ethylene and CHD.

2.2. Computational Details for Dynamics

2.2.1. Deuterium (D2)

In D2, we consider a vibrational wavepacket in the B1Σ+
u electronic state, excited by a single

photon from the X1Σ+
g (ν = 0) ground state. The pump pulse energy is 14.3 eV, with the full width at

half maximum (FWHM) duration 20 fs, such that the excited vibrational wavepacket is centered at the
ν = 38 vibrational state [27]. The potential energy curves are shown in Figure 1a. Since D2 is a diatomic
molecule, the wavepacket can be expanded in a basis of vibrational eigenfunctions using the ansatz
in Equation (2). We use potential energy curves for the initial ground X-state [50] and the excited
B-state [51], and dipole transition moments [52], calculated ab-initio by Wolniewicz et al. The molecular
mass is taken from CODATA 2010 [53]. The vibrational eigenfunctions are calculated using an accurate
5th order Runge–Kutte algorithm, with the orthonormality of the vibrational eigenstates ensured via
a Cholesky factorisation, and the transition moments Djs calculated for B1Σ+

u (ν)← X1Σ+
g (ν = 0).
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Figure 1. Overview of the molecules and dynamics discussed in this article. (a) D2: Potential
energy curves for the ground X1Σ+

g and excited B1Σ+
u state potential energy curves. The vibrational

wavepacket is excited onto the B1Σ+
u state centered on vibrational state ν = 38 by a 14.3 eV pump pulse.

The wavepacket (dashed line) is shown at the outer turning point; (b) Ethylene: After excitation to the
S1 state, the dynamics is dominated by C–C bond twist, pyramidalization, and changes in C–C bond
length; (c) 1,3-cyclohexadiene (CHD): Upon excitation from the 1A ground state onto the 1B bright
state in the Franck–Condon region, the molecule decays through a sequence of conical intersections
back to the ground state in either the ring-open or ring-closed form (based on illustration in Ref. [54]).

2.2.2. Ethylene

In ethylene (H2C=CH2), we consider vertical excitation into the S1 (ππ∗) state. The excited
molecule undergoes cis-trans isomerisation around the C=C bond, and decays via nonradiative decay
through a twisted or pyramidalised conical intersection, or via H-atom migration to form ethylidene
(CH3CH), which then decays through a different conical intersection. The basic dynamics is sketched



Appl. Sci. 2017, 7, 534 5 of 19

out in Figure 1b. The population on S1 remains fairly constant for the first 30 fs, at which point the
molecule begins to decay exponentially to S0 with an approximate lifetime of ≈112 fs.

The simulations employ the AI-MCE method [55], with electronic potential energies, gradients,
and nonadiabatic couplings calculated on-the-fly using the MOLPRO electronic structure package [56].
A total of 1000 Ehrenfest trajectories are initiated in the Franck–Condon region using a Wigner
distribution [57], and are propagated for 150 fs. The electronic structure is calculated at the
state-averaged SA3-CAS(2,2)-SCF/cc-pVDZ level (two electrons in π and π∗ orbitals) including
the S0, the S1 π-π∗, and the S2 π∗2 states. The calculated lifetime from the simulations (112 fs) agrees
well with the 110 fs obtained with AIMS dynamics using the same CAS(2,2) active space [58]. Including
more dynamic correlation via CASPT2 drops the lifetime to 89 fs [58] while including Rydberg states
(predominantly the π-3s state) lowers the lifetime further to approximately 60 fs [59,60]. However, the
influence of Rydberg states on the dynamics simulations is relatively small and experimental evidence
for the role of Rydberg states remains under debate [61,62]. Importantly, the small active space in
the present study allows us to converge the simulations [49], which is the key aspect for the present
discussion of X-ray scattering signals.

2.2.3. 1,3-Cyclohexadiene (CHD)

The electrocyclic ring-opening reaction of CHD has been studied extensively in experiments [54],
including ultrafast X-ray scattering [6] and time-resolved photoelectron spectroscopy [15]. Following
vertical excitation into the 1B bright state, the molecule decays rapidly via two sets of conical intersections
back to the 1A ground state, as outlined in Figure 1c. The reaction is very rapid and occurs in a ballistic
manner. When the molecule reaches the ground state, there is an approximately even split between
molecules that return to the ring-closed form and those that undergo ring-opening [6,54].

The simulations follow the procedure outlined in Ref. [6]. The same AI-MCE method as in
the ethylene case is used, with adiabatic electronic potential energies, gradients, and nonadiabatic
couplings calculated on-the-fly with MOLPRO [56] at the SA3-CAS(6,4)-SCF/cc-pVDZ level of theory,
which has been shown to be suitable for the CHD ring-opening reaction [63]. Wigner-sampling
is employed for the initial state, with 100 AI-MCE trajectories propagated for 200 fs. This is not
sufficient to fully converge the simulations, but provides a reasonable and effectively semi-classical
representation of the reaction dynamics.

2.3. X-ray Scattering

We now review briefly the theory of X-ray scattering. To a good approximation, X-ray photons
scatter in a two-photon process via the squared field vector potential, A2, taken in the first order of
perturbation theory (see e.g., Refs. [64,65]). The resulting double-differential scattering cross-section is
given by [66,67],

d2S
dΩdωk1

=α
∫ ∞

0
dt
∫ ∞

−∞
dδ IP(t)CP(δ)e

−ıωk1
δW(t, δ), (7)

where IP(t) = |Ek0 |
2e−(t−tP)

2/γ2
d is the X-ray pulse intensity-profile, and CP(δ) =

√
ε(δ)eıωk0

δ the
normalized X-ray pulse coherence function. The probe pulse duration, in terms of FWHM intensity,
is τd = 2γd

√
ln 2, and ε(δ) = e−(t−tP)

2/2γ2
d is the Gaussian electric field envelope, with tP the time-delay

between pump and probe. The scattering from the material system is given by W(t, δ), which is
a function of the wavepacket |Ψ(t)〉 and the scattering operator L̂,

W(t, δ) = 〈Ψ(t)|eıĤ0δ/2h̄ L̂† e−ıĤ0δ/h̄ L̂ eıĤ0δ/2h̄|Ψ(t)〉, (8)

where the scattering operator L̂ appears twice as appropriate for a two-photon process, and is given by

L̂ = ∑
j

eıqrj , (9)
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where rj is the position of electron j, and q = k0 − k1 the momentum transfer vector with k0 and k1

the incoming and outgoing wavevectors for the X-rays. Matrix elements of the operator L̂ correspond
to elastic and inelastic scattering [68]. Assuming that the time-scale for nuclear motion is significantly
slower than for electrons, and that electronic states are well separated, one arrives at the so-called
elastic approximation [67,69],

W(t, δ) ∝ ∑
i

∫
|χi(R, t)|2 |Lii|2 dR, (10)

in which we have used the Born–Huang ansatz for the wavepacket |Ψ(R, t)〉 = ∑i χi(R, t)|i(r; R)〉,
with χi(R, t) the nuclear wavepacket on each electronic state |i(r; R)〉, and the elastic X-ray scattering
matrix elements Lii = 〈i(r; R)|L̂|i(r; R)〉r [70–72]. The elastic scattering can be simplified further if we
adopt the independent atom model (IAM), whereby we ignore the specifics of each electronic state and
instead assume that the bulk of the scattering corresponds to a coherent sum of the scattering from
the individual constituent atoms. In this approximation, Lii ≈ fIAM, irrespective of electronic state i.
The fIAM is given by,

fIAM(q) =
Nat

∑
α=1

f 0
α (q)e

ıRαq, (11)

where f 0
α (q) are the tabulated atomic form factors [73], Rα the atomic positions, and q=|q| the amplitude

of the momentum transfer, which is a function of the scattering angle θ via q = 2|k0| sin θ/2. Finally,
|Lii|2 ≈ | fIAM|2 becomes,

| fIAM(q)|2 =
Nat

∑
α=1

∣∣∣ f 0
α (q)

∣∣∣2 + Nat

∑
α 6=β

f 0
α (q) f 0

β(q)e
ıRαβq, (12)

with Rαβ = Rα −Rβ the vector between each pair of atoms. The first sum on the right is the atomic
term, which forms a constant background, and the second sum is the molecular term, which contains
all structural interference relating to molecular geometry. Equation (12), when rotationally averaged,
becomes the standard IAM formula shown in Equation (15). It is perhaps worthwhile to point out
that elastic electron scattering results in an expression almost identical to Equation (12), with the main
difference being that the form factors for electron scattering must account for the additional scattering
from the nuclei [2,74,75].

3. Results

3.1. Simple Model

We begin by examining the effect of the delocalization of the nuclear wavepacket on the diffraction
signal via a simple analytical model. For this, we use frozen Gaussian width parameters, γα, fitted to
calculated ground state harmonic vibrational wavefunctions in a large set of organic molecules by
Thompson et al. [76]. Consider a Gaussian nuclear wavepacket, v(R), expressed as a product of
three-dimensional Gaussian wavefunctions, one for each atom. The probability density for such
a wavepacket is,

|v(R1, . . . , RNat)|
2 =

Nat

∏
α=1

(γα

π

) 3
2 e−γα(Rα−Qα)2

, (13)

where Rα = (Rαx, Rαy, Rαz) are the Cartesian nuclear coordinates, Qα is the coordinate that
determines the center of the wavepacket, Nat is the number of atoms, and γα the width parameter
of the Gaussian associated with each atom. There is a large body of theoretical work that
shows that such Gaussian wavepackets constitute a sensible basis for nuclear dynamics (see e.g.,
Refs. [40,43,44,47,77]). Time-dependent propagation of the wavepacket generally involves propagation
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(classical, semi-classical, or quantum) of the phase-space coordinates and sometimes the width
parameter γα.

The X-ray scattering signal will be proportional to 〈v(R)| | fIAM(q)|2 |v(R)〉R, according to the
elastic approximation in Equation (10). Solving this integral analytically, including rotational averaging
and thus assuming no preferred orientation of the molecule, results in,

Iwavepacket
IAM (q) ∝

Nat

∑
α=1

∣∣∣ f 0
α (q)

∣∣∣2 + Nat

∑
β 6=α

f 0
α (q) f 0

β(q)
sin
(
qQαβ

)
qQαβ

e−q2/2γαβ , (14)

with Qαβ =
∣∣Qα −Qβ

∣∣ the distance between centers of the Gaussian wavepackets for each pair of
atoms, and with the damping factor exp (−q2/2γαβ) proportional to the combined Gaussian width of
the two atoms given by γαβ = 2γαγβ/

(
γα + γβ

)
. The consequence of introducing the wavepacket in

Equation (13) is thus an exponential damping of the molecular term in the scattering, which leaves
the atomic term unaffected. It is instructive to contrast Equation (14) with the standard rotationally
averaged IAM expression for scattering, originally derived by Debye [78],

IIAM(q) ∝
Nat

∑
α=1

∣∣∣ f 0
α (q)

∣∣∣2 + Nat

∑
β 6=α

f 0
α (q) f 0

β(q)
sin
(
qRαβ

)
qRαβ

, (15)

where Rαβ are the distances between atoms (i.e., Rα are the fixed nuclear positions). This expression is
recovered from the wavepacket-damped expression in Equation (14) for strong localization (γα → ∞).
Conversely, strong delocalization (γα → 0) extinguishes the structural interference in the molecular
term, which is responsible for structural information. It is interesting to note that the damping in
Equation (14) takes the same form as the temperature damping derived in electron diffraction [2],
but has nothing to do with temperature; it is a consequence of the inherently delocalized nature of the
wavepacket [21].

Numerically, we can examine the damping factor exp−q2/2γαβ using the Gaussian widths
determined by Thompson et al. [76]. The results, calculated in the range 0 < q < 20 Å−1 are shown
in Figure 2 for pairs of atoms. For each pair, the damping factor is calculated for γα ± σα, where σα

is the standard deviation obtained in the fitting procedure for the width parameters γα in Ref. [76].
Numerical values for the damping factors at q = 10 Å−1 are shown in Table 1. Invariably, the damping
at q = 10 Å−1 is on the order of 0.7 or less (down to ≈0.4 for H, but then H-atoms contribute little
to the scattering signal [75]). A factor of 0.7 corresponds to 30% of the signal irrevocably lost due to
the delocalized nature of the target. It is important to point out that these damping factors constitute
lower limits, since the width parameters used here are essentially minimum width parameters fitted to
ground state harmonic oscillators. As such they are representative of the initially pumped wavepacket
in the Franck–Condon region above the ground state geometry. It is therefore clear that, generally,
we can expect significant degradation of the diffraction signal for q > 10 Å−1. The subsequent
evolution of the wavepacket then leads to further dispersion, and we will investigate the effects of the
propagation of the wavepacket for the three molecules D2, ethylene, and CHD, in Section 3.2.
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Table 1. The damping factor (see Equation (14)) at q = 10 Å−1 for pairs of atoms, including: H, C,
N, O, F, S, and Cl. A damping factor with value 1 corresponds to no damping (100% of the signal
remains), and 0 to complete damping (the signal vanishes). In parenthesis, the value of the damping
factor for γα − σα, with σα the standard deviation, is given to provide an approximate lower bound.
The numerical values for γα and σα are taken from Ref. [76].

Atom H C N O F S Cl

H 0.22 (0.17) 0.40 (0.33) 0.39 (0.31) 0.35 (0.27) 0.31 (0.21) 0.38 (0.28) 0.29 (0.17)
C 0.73 (0.65) 0.71 (0.61) 0.64 (0.54) 0.57 (0.40) 0.69 (0.54) 0.53 (0.33)
N 0.69 (0.58) 0.62 (0.50) 0.55 (0.38) 0.67 (0.51) 0.52 (0.32)
O 0.56 (0.44) 0.50 (0.33) 0.61 (0.45) 0.47 (0.28)
F 0.44 (0.25) 0.54 (0.34) 0.41 (0.21)
S 0.66 (0.45) 0.50 (0.28)
Cl 0.39 (0.17)

0 10 200
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0.75

1

D
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pi
ng

0 10 20

q (Å-1)
0 10 20 0 10 20

C-C C-N C-O C-S

C-H

Figure 2. Damping factors (see Equation (14)) as a function of momentum transfer q (Å−1) calculated
using frozen Gaussian widths γα from Thompson et al. [76] for scattering from the following pairs
of atoms: C−H, C−C, C−N, C−O, and C−S. The damping is given for γα ± σα, where σα are the
standard deviations in the fitted widths [76].

3.2. Simulations

Having considered a simple analytic model of the effect of delocalization on the diffraction pattern
in the previous section, we now turn to simulations to examine the effect of the propagation of the
molecular wavefunction on the scattering signal. We consider three different molecules to emphasize
the generality of the discussed effects. In D2 (Section 3.2.1), we examine the effect in a prototypical
diatomic molecule, compare the results to a classical molecule, and evaluate the effect of nuclear
mass on the wavepacket and thus the scattering signal. In ethylene (Section 3.2.2), we use the fact
that quantum molecular dynamics simulations can be fully converged in such a comparatively small
molecule to examine the sensitivity of the scattering signal to the number of trajectories used as a
nuclear basis in the simulations. Finally, in CHD (Section 3.2.3), we examine the case of a larger
polyatomic molecule, and in particular, evaluate the effect of the width parameters associated with the
nuclear basis.

3.2.1. Deuterium (D2)

We begin by considering the vibrational wavepacket in the B-state of the diatomic molecule D2.
The probability distribution of the wavepacket is shown in a contour plot in Figure 3a as a function of
time and internuclear distance R. Upon excitation at the inner turning point by the 20 fs pump pulse,
the wavepacket oscillates between the inner and outer turning points of the B-state potential with
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a period of 82 fs. Due to the anharmonic nature of the potential, the wavepacket gradually spreads
across the entire B-state potential. It is worth emphasizing that this wavepacket has been observed in
a recent experiment using a strong-field probe [27].

The elastic X-ray scattering corresponding to this wavepacket is shown in Figure 3b as a function
of time and momentum transfer q. In order to focus on the structural component of the diffraction,
and to remove the atom-specific effects of the form factors, we plot the modified molecular intensity [74],

M(q, t) = qImol(q, t)/
∣∣∣ f 0

m(q)
∣∣∣ ∣∣∣ f 0

n(q)
∣∣∣ , (16)

with f 0
m = f 0

n = f 0
H in the present case. The molecular intensity, Imol(q, t), is calculated

as Imol(q, t) = 〈Ψ(t)|∑i 6=j f 0
i (q) f 0

j (q) sin qRij/qRij|Ψ(t)〉, which thus combines the elastic scattering
approximation in Equation (10) and the IAM in Equation (12). The modified molecular intensity
makes it easier to visualize the elastic scattering intensity at larger values of q, which otherwise decays
rapidly due to the exponential decay of the atomic form factors f 0(q) [74]. We assume an instant X-ray
probe pulse, δ(t− tP), to avoid convolution over the temporal X-ray pulse envelope, which would
otherwise act to further ’soften’ the diffraction patterns and thus obscure the effect of the wavepacket
on the scattering.

Since D2 has a small reduced mass the wavepacket is strongly delocalized from the beginning,
even when excited by a bandwidth limited pulse as in the present example. The resulting diffraction
signal is thus strongly damped from the outset, as can be seen at high q values in Figure 3b. It is
enlightening to compare the diffraction pattern in Figure 3b to that of a classical D2 molecule, shown
in Figure 3c, in which the nuclei are perfectly localized at all times. The diffraction from the classical
molecule is shown for three full oscillations, at the same frequency as the quantum D2 wavepacket
(T = 82 fs). Comparing the diffraction patterns from the classical and quantum D2 molecule, it is
apparent that the signal in the classical case is stronger and better defined across all values of q,
and remains identical for each oscillation. In contrast, the quantum wavepacket disperses with time,
see t/T > 5 in Figure 3a, an effect which increases the decay of the diffraction signal over time, as seen
in Figure 3b.

One possible objection to using D2 as an example, despite the fact that the modified molecular
intensity minimizes the effect of the atomic form factors on the scattering, is that D2 is not an obvious
candidate for a scattering experiment and that its small reduced mass exaggerates delocalization.
We have therefore performed the same calculation but with a higher reduced mass corresponding to the
potassium dimer, K2. In order to aid comparison, we have not changed the potential, i.e., the potential
energy curve remains that of the D2 B-state, and all parameters except the reduced mass are left
unchanged. We refer to this wavepacket as K̃2 to avoid confusion with actual K2. We first consider the
wavepacket, which is plotted in Figure 4a. The greater reduced mass leads to a significant increase in
the density of vibrational states, and thus in the number of eigenstates contained in the wavepacket
in Equation (2). As a consequence, initial localization is stronger than in D2, but conversely, the
dispersion at longer times (on the normalized t/T timescale) is also greater. The scattering from the
K̃2 wavepacket, shown in Figure 4b, is thus more defined at earlier time, but suffers more from the
dispersion of the wavepacket at larger multiples of the characteristic period, which leads to a more
marked degradation of the diffraction signal at large values of q.
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(a)

(b)

(c)

Figure 3. Results for D2 excited to the electronic B-state by a 14.3 eV pulse with 20 fs duration.
(a) Contour plot of the D2 vibrational wavepacket probability density, |v(R, t)|2, with R the internuclear
distance in Bohr and t the time; (b) Contour plot of the corresponding modified (elastic) scattering
intensity M(q, t) for the wavepacket, with q the momentum transfer in Å−1 and t the time; (c) Contour
plot of the modified (elastic) scattering intensity M(q, t) for the classical D2 molecule, shown over three
oscillation periods, t ∈ [0, 3T]. Note that in all three plots the time t is given in units of the classic
oscillation period T = 82.5 fs. The modified scattering intensity M(q, t) is defined in Equation (16),
and we use the form factor for H in the denominator.
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(a)

(b)

Figure 4. Results for K̃2, calculated using the reduced mass of K2 and the B-state potential of D2, excited
to the electronic B-state by a 14.3 eV pulse with 20 fs duration. (a) The K̃2 vibrational wavepacket
probability density, |v(R, t)|2, with R the internuclear distance in Bohr and t the time; (b) Contour plot
of the corresponding modified (elastic) scattering intensity, M(q, t), with q the momentum transfer
in Å−1 and t the time. In both plots, the time t is given in units of the classic oscillation period
T = 335.8 fs. The modified scattering intensity M(q, t) is defined in Equation (16), and we use the form
factor for K in the denominator.

3.2.2. Ethylene

We now consider ethylene, a small molecule where we can be confident that the simulations are
converged, to investigate the effect of the number of trajectories included in the simulations. In the
case of ethylene, full convergence requires >500 trajectories [49]. In Figure 5, we compare the modified
molecular intensity for elastic scattering from ethylene for a small set of 20 trajectories, shown in
Figure 5a, with a large set of 1000 trajectories shown in Figure 5b. Comparison of the two signals
indicates that the subset of 20 trajectories underestimates the dispersion at longer times, with the full
set of 1000 trajectories showing a distinct deterioration of the signal over time. Interestingly, the limited
subset of 20 trajectories is sufficient to capture the evolution of the dynamics qualitatively. In part,
this reflects that the diffraction signal is dominated by the comparatively simple dynamics of the
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C–C bond [75], which is well reproduced by the smaller subset of trajectories, but the observation is
more general since we know from earlier studies that a small number of trajectories can do a good
job of capturing the essence of a reaction path [79]. This observation is also commensurate with
recent work on the ring-opening reaction of CHD, which found that the time-dependent diffraction
pattern for the reaction could be reproduced accurately by a comparatively small number of trajectories
representative of the dynamics [6]. Overall, this is good news for the analysis of ultrafast diffraction
experiments because it suggests that a sensible analysis of experimental results does not require
fully converged quantum molecular dynamics simulations (which are simply out of reach in many
molecules of interest). However, it does raise another issue, which is the influence of the width
parameters associated with trajectories, as discussed in the example of CHD next.

(a) (b)

Figure 5. Contour plots of modified (elastic) scattering intensity, M(q, t), for the photoexcited dynamics
of ethylene. Time in fs and momentum transfer q in Å−1, with M(q, t) defined in Equation (16) (we use
form factors for the C-atom in the denominator). (a) A small set of 20 trajectories; (b) A large set of
1000 trajectories, giving a better representation of dispersion of the wavepacket at long times.

3.2.3. 1,3-Cyclohexadiene (CHD)

We consider the elastic scattering from the polyatomic molecule CHD during the electrocyclic
ring-opening reaction triggered by an optical pump pulse [6,15], as outlined in Section 2.2.3.
A reduced-dimensionality representation of the dominant dynamics is shown in Figure 6, in terms of
the length of the C–C bond that breaks during the ring-opening reaction. Here, we will focus on the
effect of the wavepacket width parameters γα defined in Equation (6) on the diffraction signal. We show
the scattering in terms of the modified molecular intensity, Equation (16), with f 0

m = f 0
n = f 0

C. Note
that the simulations are identical in all three scenarios discussed below, and only the γα parameters are
varied. Note that fully converged simulations with an oversampled nuclear basis would not display a
dependence on γα in the scattering.

First, we examine the diffraction in the fully localized limit, i.e., for γ→ ∞, shown in Figure 7a.
This is also known as the bracket-averaged Taylor expansion (BAT) approximation [67], and is
equivalent to perfectly localized trajectories not dissimilar to the trajectories obtained in surface
hopping simulations. In this case, the damping of the molecular (interference) term is absent, and
as expected, there is little deterioration of the diffraction signal even at large values of q. In contrast,
for the standard values of γα (taken from Thompson et al. [76]), there is a significant degradation of
the diffraction signal at large values of q which persists at all times, as can be seen in Figure 7b. Given
that the default width parameters are fitted to ground state molecules, it is not far-fetched that the
most appropriate values will deviate from the standard γα values. We therefore consider, in the third
scenario shown in Figure 7c, the diffraction when the width factors have been halved, i.e., γα/2. This
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leads to an even more delocalized wavepacket and has a dramatic effect on the diffraction signal,
with the signal becoming very weak for q > 15 Å−1 (intensity below the height of the lowest contour in
Figure 7c). Again, considering that the standard values of γα constitute a conservative estimate of the
width of the wavepacket, this emphasizes the strong effect of the damping due to the delocalization
of wavepackets.

In addition to the effect of the width parameters discussed above, we also observe in Figure 7 that
the dispersion plays an important role in degrading the signal over time, in particular for t > 50 fs,
similarly to what was observed in the calculations for D2 and ethylene. This 50 fs time-scale is
consistent with Figure 6, which indicates that the dynamics is comparatively uniform at early times
(the so-called ’ballistic’ nature of this particular reaction [35]), but diverges at later times (t > 50 fs
in Figure 6).

0 50 100 150 200
Time (fs)

2

3

4

5

R
C

1-
C

6 
 (

Å
)

Figure 6. Representative C−C bondlength distances for the bond that breaks during the 1,3-cyclohexadiene
(CHD) ring-opening reaction, shown as a function of time. Reproduced from Ref. [6]. Trajectories
in blue lead back to the ring-closed form, while trajectories in green lead to the ring-open form of
the molecule.

(a) (b)

Figure 7. Cont.
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(c)

Figure 7. Contour plots of modified (elastic) scattering intensity, M(q, t), for the ring-opening reaction
of 1,3-cyclohexadiene (CHD) [6]. Time in fs and momentum transfer q in Å−1, with M(q, t) defined in
Equation (16) (we use C-atom form factors in the denominator). (a) Perfectly localized trajectories with
γα → ∞; (b) Standard values of the width parameters γα; (c) Increased width, i.e., more delocalized
wavepackets, obtained via half-value 0.5γα width parameters.

4. Discussion

Our analytical model in Section 3.1 indicates that degradation of the diffraction signal beyond q
values of about 10–15 Å−1 is significant, with at least 50% of the signal lost by q = 15 Å−1. This is a
conservative estimate, since it is based on width factors fitted to ground state harmonic vibrational
wavefunctions. These widths reflect the shape of the initially excited wavepacket in the Franck–Condon
region above the ground state equilibrium geometry, which is why the Wigner distribution is used
for sampling initial conditions in semi-classical propagation schemes [57]. However, subsequent
propagation of the excited wavepacket leads to further dispersion. This is a general phenomenon,
as emphasized by our simulations in three different molecules: D2, 1,3-cyclohexadiene, and ethylene.
In all three examples, the scattering signal degrades further with time as the wavepacket evolves.

In D2 (Section 3.2.1), a diatomic molecule, we compare to a classically oscillating molecule and
find that the diffraction signal is better defined and persists for all q when the nuclei are perfectly
localized. Furthermore, we examine the effect of nuclear mass on the wavepacket, and find that the
greater density of states associated with heavier atoms (or conversely a pump pulse with greater
bandwidth) leads to greater initial localization. However, this sharper initial localization, which leads
to better defined scattering, also leads to faster and more complete dispersion as the wavepacket
evolves, degrading the scattering at longer times. In the ethylene molecule (Section 3.2.2), we examine
the sensitivity of the scattering signal to the number of trajectories used in the simulations. We find
that the number of trajectories correlates with the dispersion recorded in the scattering signal, such that
a larger number of trajectories lead to an increased degradation of the signal. Strikingly, a small
number of trajectories can qualitatively reproduce the scattering signal, indicating that a comparatively
small number of trajectories can capture the essence of the reaction path and thus the diffraction
signal, albeit while underestimating the dispersion at longer times. This finding is congruent with the
analysis of recent ultrafast X-ray scattering experiments in 1,3-cyclohexadiene [6]. However, using not
fully converged quantum molecular dynamics simulations, or equivalently just a small number of
trajectories, introduces a sensitivity in the predicted diffraction patterns on the width parameters
associated with each trajectory. In our simulations of 1,3-cyclohexadiene (Section 3.2.3), we examine
this effect for the example of a larger, polyatomic molecule. Already with the standard and rather
conservative width parameters, the scattering degrades notably at large values of q, and an additional
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50% decrease in the width factors is sufficient to effectively quench the molecular diffraction signal for
q > 14 Å−1. This suggests that width parameters must be considered whenever ultrafast diffraction
data for the time-evolution of molecular geometry is analysed.

Clearly, the concept of molecular geometry, in a classical sense, must be used with caution in
the context of ultrafast processes and ultrafast diffraction in particular. The upside is that ultrafast
diffraction experiments provide a sensitive probe of the delocalization of wavepackets, and one could
consider using such experiments to determine, possibly time-dependent, width parameters that can be
compared to quantum molecular simulations. Although molecular geometry is ’fuzzy’ in time-evolving
molecules, the wavepacket does have a distinct shape at all times. It is interesting to envision the use
of ultrafast scattering to image the wavepacket in full detail, including for instance so-called quantum
ripples [80]. This may only be possible in very small molecules, essentially diatomics, where direct
inversion of the scattering signal is feasible. A similar resolution in a polyatomic molecule, although in
principle possible, would certainly require advanced inversion algorithms and experiments that use
alignment and/or tomographic techniques.

It is natural in this context to reflect on whether the dispersion of the wavepacket can be overcome
via clever experimental setups. For instance, the shorter the duration of the pump pulse, the greater the
initial localization, but this initial localization results in greater dispersion at later times. This is directly
analogous to the calculations in D2 and K̃2 in this article, where the effect of an increased density
of states for K̃2 corresponds to the effect of shorter-duration, greater bandwidth pump pulses in an
experiment. In practice, one often wishes to balance a degree of selectivity in the optical excitation
against the achieved time resolution, since a pulse with very large bandwidth may simultaneously
excite dynamics on several electronic states, leading to complex dynamics that are challenging to
interpret [81]. Another possibility might be focusing. Most pump-probe experiments are performed
with bandwidth-limited (i.e., transform-limited) pulses, which yield an initially localized wavepacket.
As a consequence, the wavepacket naturally disperses and becomes more delocalized as it propagates
for times t > 0. One could attempt to circumvent this by focusing the wavepacket at specific times
using phase-shaped pump-pulses, enabling more accurate structure determinations at specific time
points. However, first of all, such focusing would be unlikely to overcome the lower bound estimates of
signal degradation at high q presented in our simple analytic model. Secondly, implementation of the
focusing would add technical challenges to the already commanding experiments, essentially requiring
a readjustment of the pulse shape for every time point on which to focus the wavepacket. While such
an experiment might not necessarily help to elucidate reaction paths resulting from ordinary light
exposure, it could add significant information about the potential energy surfaces involved and might
help to optimize desired product yields.

5. Conclusions

The delocalization of nuclear wavepackets is a natural effect in molecular systems, and constitutes
a fundamental property of wavepackets that cannot be easily circumvented. As the signal measured
in scattering experiments is the transform of the molecular structure, the natural delocalization of
structures during chemical reactions dampens the diffraction signal, particularly at large values of q,
and implies a limit to the range of scattering vectors that yield useful information on the molecular
dynamics. For the X-ray scattering experiments considered here, our simulations and analytical model
suggest that there is little information beyond 10 to 15 Å−1, at least for typical organic molecules.
The sensitivity of scattering experiments to the shape of the wavepackets may offer an opportunity to
experimentally measure them. Such measurements could be valuable for the development of advanced
computational codes.

Ultrafast X-ray scattering experiments benefit from the exciting development of ultrashort pulsed
free electron lasers. A challenge to date has been that the X-ray photon energy is limited, so that only
rather small ranges of q can be probed. However, advances in accelerator technologies, in particular
the build-out of LCLS-II at the SLAC National Accelerator Laboratory, promise harder X-rays and
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a concommittant expanded q range. With a typical detector geometry covering scattering up to
60 degrees, 30 keV X-ray photons will reach up to q = 15 Å−1. It therefore seems likely that the
advances offered by LCLS-II will enable experimental determinations of wavepacket motions up to
the useful maximum suggested by our simulations.
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