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Abstract: In wideband radar systems, the performance of motion parameters estimation can
significantly affect the performance of object detection and the quality of inverse synthetic aperture
radar (ISAR) imaging. Although the traditional motion parameters estimation methods can reduce
the range migration (RM) and Doppler frequency migration (DFM) effects in ISAR imaging,
the computational complexity is high. In this paper, we propose a new fast non-parameter-searching
method for motion parameters estimation based on the cross-correlation of adjacent echoes (CCAE)
for wideband LFM signals. A cross-correlation operation is carried out for two adjacent echo signals,
then the motion parameters can be calculated by estimating the frequency of the correlation result.
The proposed CCAE method can be applied directly to the stretching system, which is commonly
adopted in wideband radar systems. Simulation results demonstrate that the new method can
achieve better estimation performances, with much lower computational cost, compared with existing
methods. The experimental results on real radar datasets are also evaluated to verify the effectiveness
and superiority of the proposed method compared to the state-of-the-art existing methods.

Keywords: motion parameters estimation; wideband LFM radar; cross-correlation

1. Introduction

The wideband linear frequency modulation (LFM) signal is widely used in modern wideband
radar systems. Compared with the narrow-band LFM signal, it can achieve much better quality in
inverse synthetic aperture radar (ISAR) imaging, due to the higher range resolution [1–4]. However,
the motions of the target often cause range migration (RM) and Doppler frequency migration (DFM)
effects in the received signals, which will degrade the imaging quality. Therefore, the object’s motion
parameters should be estimated and compensated before imaging [5–8]. Besides, the accuracy of
motion parameters estimation also affects the performance of target tracking and identification.
Thus, high precision motion parameters estimation is necessary and attracts much more attention
in modern wideband radar systems [1–9].

For wideband radars, the estimation methods of motion parameters can be divided into two
types: parameter-searching methods and non-parameter-searching methods. A parameter-searching
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method maximizes or minimizes some criterion by searching the motion parameters step by step.
Many of the traditional range alignment methods [4,8,10–16] in inverse synthetic aperture radar (ISAR)
imaging are parameter-searching methods, such as spatial domain realignment [8], adaptive joint
time-frequency technique [10] and minimum entropy method [15,16]. Spatial domain realignment [8]
defines a correlation function between two envelops of echo signals with delays. The amount
of envelope shift is determined by searching the delay to obtain the maximum of the correlation
function. In [10], the radar echo signal is projected to a set of basis functions, which are constructed
with different parameters. A searching procedure is conducted to maximize the projection value,
and then, the motion parameters are estimated. The minimum entropy method introduces a 1D entropy
function to determine the degree of alignment between radar echoes [15,16]. As the delay, which
minimizes the entropy, is searched with the step determined by the bandwidth of the transmitted signal,
the accuracy of the estimated parameters is limited by the delay step. To perform high precision motion
parameters estimation, the Radon–Fourier transform (RFT) method is proposed for multi-pulse energy
accumulation [9,17,18]. The RFT method is a multidimensional searching method and achieves a good
performance of motion parameters estimation because of long coherent integration time. A common
drawback of these parameter-searching methods is that their computation is highly complex, when they
are applied in the wideband radar systems.

In the non-parameter-searching methods, the keystone transform (KT) is able to eliminate the
RM effect based on long time coherent integration technology [19–21]. However, the DFM induced by
acceleration cannot be removed by KT. In [22], a non-searching ISAR range alignment method based
on minimizing the entropy of the average range profile (ARP) is proposed. An iterative procedure
is utilized to estimate the delays of envelops, of which the precision is determined by the range
resolution. Meanwhile, an interpolation is employed on the envelops to improve the estimation
precision. However, the iterative procedure and the interpolation operation significantly increase
the computational complexity. Moreover, the phase information is not used for estimation in [22].
In [23], a novel estimation algorithm of motion parameters is proposed for ISAR imaging, based on
KT and the adjacent cross-correlation function (ACCF). Then, a fast non-parameter-searching method
based on ACCF is proposed for target motion estimation, target detection and ISAR imaging [24–28].
There are two differences between the two methods in [23] and in [24–28]. The first one is that the
KT is not utilized in [24–28], and the other one is that the choice of the scaling factors is improved
in [28]; thus, better performance is obtained under low SNR conditions. Compared with the RFT
method, the ACCF method [24,25] can achieve similar performance with much lower computational
cost. However, it can be applied only to the uncompressed received (UR) signal, whose bandwidth is
equal to that of the transmitted wideband LFM signal. In order to reduce the processing bandwidth
and the sampling rate of the analog-to-digital converter, the stretching processing is commonly used
in most of the wideband LFM radars, and therefore, the ACCF method cannot be applied in these
radar systems.

In this paper, a novel and fast estimation method based on the cross-correlation of adjacent echoes
(CCAE) is proposed. Specifically, the cross-correlation operation is performed on two adjacent echo
signals, then the motion parameters are calculated by estimating the frequency of the correlation result.
The proposed new method is a non-parameter-searching method and can be directly applied to the
stretched signals. Since the SNR of the stretched signal is higher than that of the UR signal, better
root-mean-square error (RMSE) performance can be achieved by applying the CCAE method to the
stretched signals. When estimating the velocity using two echo signals, the FFT operation is needed
only once in the CCAE method. Thus, the computational complexity of the proposed CCAE method is
much lower than that of the existing methods. Numerical simulations demonstrate that the proposed
CCAE method can be applied in real wideband LFM radars.

The rest of this paper is organized as follows. In Section 2, the model of the stretched signal is
presented. In Section 3, the proposed fast non-parameter-searching CCAE method is presented first,
and then, the root mean square error (RMSE) of the proposed CCAE method is derived in closed
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form. In Section 4, the details of the experiments conducted on simulation and real data are presented.
Finally, we conclude this paper in Section 5.

2. Signal Model

In this paper, the scatterer model of the wideband LFM signal is used. It is assumed that the
target is in the far field and the incident wave is a plane wave. The scatterers are located on the line of
sight. The range profile of target in wideband radar is illustrated in Figure 1. In stretching processing,
the wideband echo signal reflected by the scatterers is mixed with the local wideband LFM signal.
For single scatterer, the mixing result is a single frequency signal, whose frequency is determined by
the round trip time of the scatterer. For multiple scatterers, the mixing result is composed of multiple
signals with different frequencies. Therefore, the wideband echo signal is converted to a narrowband
signal, of which the bandwidth is determined by the length of the target. After performing FFT
operation, this stretched narrowband signal can be transformed to a range profile along the radar line
of sight (RLOS), as shown in the bottom of Figure 1. The parameters that will be frequently used in
later derivation are listed in Table 1.
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Figure 1. Target’s range profile of wideband radar.

Table 1. Notations.

Notation Type Meaning

ur Subscript The received signal is uncompressed.
st Subscript The signal is stretched.
ac Subscript The signal is obtained by multiplying a echo signal with the conjugate of another echo signal.
se Subscript The signal is the multiplication result of the different echo signal from the same scatterers.
cr Subscript The signal is the multiplication result of the different echo signal from the different scatterers.

str(t) Signal The transmitted signal.
sLO(t) Signal The local reference signal.

sur(t, tm) Signal The uncompressed received signal.
sst(t, tm) Signal The stretched signal.
Rp(tm) Signal The distance from radar to the p-th scatterer.

The transmitted signal of the wideband LFM radar can be modeled as:

str(t) = rect
(

t
T

)
ejπγt2

ej2π fct, (1)

where rect(u) =

{
1, |u| ≤ 1/2
0, otherwise

denotes the rectangle pulse shape, t the fast time, T the pulse width

and fc the radar center frequency. γ = B/T is the chirp rate of the LFM signal, where B is the swept
bandwidth of the LFM signal.
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The UR signal of the wideband LFM radar can be represented as:

sur(t, tm) =
P−1

∑
p=0

rect
(

t− τp(tm)

T

)
× Apej2π fc(t−τp(tm))

× ejγπ(t−τp(tm))2
+ ω0(t, tm)

= sur,s(t, tm) + ω0(t, tm),

(2)

where P denotes the number of scatterers, Ap the scattering coefficient of the p-th scatterer and τp(tm)

the time delay from the radar to the p-th scatterer. tm = mTpr is the slow time, where m is the pulse
number, and Tpr is the pulse repetition interval (PRI). sur,s(t, tm) denotes the signal term of sur(t, tm),
ω0(t, tm) is the Gaussian noise with mean zero and variance σ2. The time delay can be expressed as:

τp(tm) =
2Rp(tm)

c
, (3)

where Rp(tm) is the distance from the radar to the p-th scatterer at slow time tm. Due to the wide
bandwidth of the signal, the data size of the uncompressed signal is considerably large, which leads to
a high computational complexity. Therefore, in wideband radar systems, the stretching operation is
often used to reduce the data size.

The local reference signal for stretching operation can be written as:

sLO(t) = rect
(

t
T̂

)
e−j(2π fct+πγt2), (4)

where T̂ is the duration of the reference signal, which is usually slightly larger than the width of
the transmitted pulse, so that it covers the received signal. The stretched signal is obtained by
multiplication:

sst(t, tm) = sur(t, tm) · sLO(t)

=
P−1

∑
p=0

rect
(

t− τp(tm)

T

)
Ape−j2πγτp(tm)t

× ejπγτ2
p (tm)e−j2π fcτp(tm) + ω1(t, tm)

= sst,s(t, tm) + ω1(t, tm),

(5)

where sst,s(t, tm) is the signal term of the sst(t, tm) and ω1(t, tm) = ω0(t, tm) · sLO(t) is the noise.
In practical wideband radar systems, the sampling frequency of the stretched signal is much lower
than that of the UR signal. Thus, the data size of the stretched signal is much smaller than that of
the UR signal. When parameter estimation is performed on the stretched signal, the computational
complexity decreases significantly. The proposed motion parameters estimation method can be applied
to both UR and stretched signals. In the following section, the idea of “stretching” processing is first
illustrated to show the availability of the CCAE method to the UR signal, then the algorithm of the
proposed CCAE estimation method is derived using the stretched signal model.

3. Estimation of Motion Parameters Based on the CCAE Method

3.1. “Stretching” Idea of the Proposed CCAE Method

In radar systems, when a target is tracked, the range profile of the target varies from pulse to pulse
because of the rotational and the translational motions of the target. In this paper, the rotation of the
target is not taken into consideration. However, within the interval of two adjacent transmitted pulses,
the change in motion parameters is generally small. Therefore, the range profiles of two adjacent echo
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signals are highly correlated [29]. Consequently, the energy of two adjacent echoes can be accumulated.
Thus, the motion parameters may be estimated by the correlation result of adjacent echoes.

The idea of the proposed method is shown in Figure 2, where the UR signal is utilized for the
convenience of illustration. It is already known that the stretching operation can transform a wideband
echo signal into a narrow-band signal. In the CCAE method, considering one of the two adjacent
echo signals (e.g., the echo at slow time tm) as the “local reference” signal, the other one (e.g., the echo
at slow time tm+1) is “stretched” into a single tone signal. The frequency of the “stretched” signal
contains the information of the distance differences between the slow time tm and tm+1. The motion
parameters can be estimated according to the distance differences. In the next subsection, the CCAE
method is derived mathematically to prove the idea.
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Figure 2. The “stretching” idea of the proposed cross-correlation of adjacent echoes (CCAE) method.

3.2. Proposed CCAE Algorithm

At the beginning, we apply the conjugate multiplication to both UR signals and stretched signals.
Then, it is seen that the conjugate multiplication result of the UR signals is similar to that of the
stretched signals. The UR signal at slow time tm is multiplied with the conjugate of the adjacent UR
signal at slow time tm+1:

sur
ac (t, tm) = sur (t, tm) · conj (sur (t, tm+1))

= sse (t, tm) + scr (t, tm) + ωur
2 (t, tm),

(6)

where:

sse (t, tm) =
P−1

∑
p=0

A2
p rect

(
t− τp (tm)

T

)

× rect
(

t− τp (tm+1)

T

)
× ej2πγ(τp(tm+1)−τp(tm))t

× ej2π fc(τp(tm+1)−τp(tm))

× ejπγ(τ2
p (tm)−τ2

p (tm+1)),

(7)
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scr (t, tm) =
P−1

∑
q=0

P−1

∑
p=0,p 6=q

Aq Ap rect
(

t− τq (tm)

T

)

× rect
(

t− τp (tm+1)

T

)
× ej2πγ(τp(tm+1)−τq(tm))t

× ej2π fc(τp(tm+1)−τq(tm))

× ejπγ(τ2
p (tm)−τ2

q (tm+1)),

(8)

ωur
2 (t, tm) =ω0(t, tm)sur,s(t, tm+1)

+ ω0(t, tm+1)sur,s(t, tm)

+ ω0(t, tm)ω0(t, tm+1),

(9)

where the superscript x denotes the conjugate of x and the superscript ur indicates that the
multiplication is performed on the UR signals. In Equation (6), the first term, i.e., the self-term
sse (t, tm), is the product of adjacent echoes from the same scatterer, the second term, i.e., the cross-term
scr (t, tm), is the product of adjacent echoes from different scatterers and the third term ωur

2 (t, tm) is the
noise after conjugate multiplication.

Similarly, when the conjugate multiplication is performed on the stretched signals, we can obtain:

sac (t, tm) = sst (t, tm) · conj (sst (t, tm+1))

= sse (t, tm) + scr (t, tm) + ω2(t, tm),
(10)

where:
ω2(t, tm) =ω1(t, tm)sst,s(t, tm+1)

+ ω1(t, tm+1)sst,s(t, tm)

+ ω1(t, tm)ω1(t, tm+1)

(11)

is the noise added to the stretched signal after conjugate multiplication. The first two terms of
the right-hand side of Equation (10) are the same in Equation (6), where the exponential term

ej2πγ(τp(tm+1)−τp(tm))t contains the information of the distance difference between the slow time tm and
tm+1. The difference lies in that the data rate of the stretched signal is lower than that of the UR signal,
and the noise bandwidth is smaller, resulting in the SNR of the stretched signal being higher than that
of the UR signal. Consequently, the stretched signal is adopted in the following derivation.

In Equations (7) and (8), there are two rectangular window functions. The lengths of the two
functions are equal, while their positions are different. In other words, the nonzero parts of the two
window functions do not completely overlap. This will cause loss in signal energy. The length of the
non-overlapping part is determined by the target’s motion, i.e.,

∆tp,q = τp(tm+1)− τq(tm)

=
2
c
(Rp(tm+1)− Rq(tm))

=
2
c

∆Rpq(tm),

(12)

where ∆Rpq(tm) = Rp(tm+1)− Rq(tm).
In common radar applications, the ratio of the non-overlapping part’s length to the length T

of the transmitted signal (i.e., 2∆Rpq(tm)/cT) is much less than one. For example, if T = 1 ms and
Tpr = 10 ms, then the length of the target is 50 m and velocity 6000 m/s. Computation of the maximum
value of ∆Rpq(tm) by ∆Rpq(tm) = 50 + 6000× 0.01 = 110 m gives the ratio 2∆Rpq(tm)/cT ≈ 0.073%.
Thus, the influence of the non-overlapping part can be considered negligible. Then, by substituting
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Equation (3) into Equation (10) and applying the FFT operation to Equation (10) for energy focusing,
one gets:

Sac ( f , tm) = Sse ( f , tm) + Scr ( f , tm) + W2( f , tm), (13)

where Sse( f , tm), Scr( f , tm), W2( f , tm) are the FFT results of sse(t, tm), scr(t, tm) and ω2(t, tm),
respectively, i.e.,

Sse ( f , tm) =
P−1

∑
p=0

A2
psinc

[
T
(

f −
2γ∆Rpp(tm)

c

)]
× ej 4π

λc ∆Rpp(tm)ej 4π
c2 γ(R2

p(tm)−R2
p(tm+1)),

(14)

Scr ( f , tm) =
P−1

∑
q=0

P−1

∑
p=0,p 6=q

sinc
[

T
(

f −
2γ∆Rpq(tm)

c

)]
× Aq Apej 4π

λc ∆Rpq(tm)

× ej 4π
c2 γ(R2

p(tm)−R2
q(tm+1)),

(15)

where λc is the wavelength corresponding to the center frequency fc. In Equations (14) and (15),
the exponential terms are constant phase terms, which have no impact on estimating the frequency of
the spectrum, i.e., Equation (13). For simplicity, the sinc functions are extracted for further discussion
in the following sections.

Define:

Ssi ( f , p, q) = sinc
[

T
(

f −
2γ∆Rpq(tm)

c

)]
. (16)

Let it be assumed that the peak position of Ssi( f , p, q) is f̃pq. When p = q, Equation (16) is the
same as the sinc function in Equation (14). Since all scatterers are assumed to locate along the line of
sight, the distance difference between tm and tm+1 is the same for every scatterer of the target. Namely,
∆Rpp(tm) = ∆Rqq(tm) and f̃pp = f̃qq for p 6= q. The energy of all scatterers will accumulate on one
peak, which can be regarded as the main peak of the spectrum. When p 6= q, because of the differences
in the combinations of p and q, the distance difference ∆Rpq(tm) will bring a number of frequency
components f̃pq (p 6= q) into the spectrum. The amplitudes of these spectral lines are much less than
that of the main spectral line f̃pp. As seen from Equations (12) and (14), the main peak position of
the spectrum is determined by the distance difference of the target between slow time tm and tm+1.
Therefore, the target parameters can be obtained by estimating the frequency of the main peak position.
This can be implemented by using the frequency estimation methods, such as FFT and Newton’s
method [30]. The estimated frequency can be expressed as:

f̂m =
2γ∆Rpp(tm)

c

=
2γ(Rp(tm+1)− Rp(tm))

c
.

(17)

Unlike the estimation methods based on the coherent integration strategy, the proposed CCAE
method is a fast non-parameter-searching estimation method, where the estimated parameters can be
output in real time. In the following paragraphs, we discuss the algorithm of estimating the velocity
and higher order parameters, respectively.

3.2.1. Estimation of Velocity

Assuming that only the velocity is taken into consideration and that the velocities of different
scatterers within a target are the same, the motion of the target can be written as:
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Rp(tm) = R0,p + vtm, (18)

where Rp(tm) denotes the distance between the p-th scatterer and the radar at tm instant, R0,p the initial
distance between the p-th scatterer and the radar and v the velocity of the target. The acceleration of
the target a is set to zero. Thus, the estimated frequency f̂m can be rewritten as:

f̂m =
2γ(Rp(tm+1)− Rp(tm))

c

=
2γvTpr

c
.

(19)

Consequently, using two echo signals, we can estimate the velocity by the following equation:

v̂ =
c f̂m

2γTpr
. (20)

3.2.2. Estimation of Higher Order Parameters

It is seen from Equation (17) that the estimated frequency of the cross-correlation result is
determined by the difference in the target’s distance between the two pulses. To estimate high-order
motion parameters, the differential operation or curve fitting operation can be applied to the
cross-correlation results. For example, a second-order differential operation can be applied to estimate
the jerk, with which the acceleration can be obtained using the result of the first-order differential
operation. Another approach for simultaneous estimation of velocity, acceleration and other higher
order parameters is to employ the curve fitting method, such as the least-square method. However,
high-order parameter estimation requires more pulses, and consequently, the output delay increases.
It is worth noting that the objective of the proposed CCAE method is to estimate the motion parameters
in real time, i.e., the estimated results should be output with minimum delay. Therefore, for estimation
of high-order motion parameters, we mainly focus on acceleration estimation in this paper. Considering
the acceleration, Equation (18) is rewritten as:

Rp(tm) = R0,p + vtm +
1
2

at2
m. (21)

Then, the estimated frequency f̂m of Equation (17) can be expressed as:

f̂m =
2γTpr

c
(v + atm +

1
2

aTpr). (22)

It is seen that the estimated frequency is a slow time varied function. The acceleration can be
calculated out by fm and fm+1 (i.e., three echo signals are used).

â =
c

2γT2
pr
( f̂m+1 − f̂m). (23)

Then, the velocity can be obtained with f̂0 at slow time tm = mTpr (m = 0) and a, where tm

(m = 0) can always be set to the time of the first pulse:

v̂ =
c

2γTpr
f0 −

1
2

Tpr â. (24)



Appl. Sci. 2017, 7, 500 9 of 19

3.3. Implementation of the Proposed CCAE Method

As described above, the velocity of the target can be estimated by the proposed CCAE method
using only two echo signals. To estimate the acceleration or even higher order parameters, three or
more echo signals are required. The flowchart of the proposed CCAE method is shown in Figure 3,
including the following steps:

1. The first UR or stretched signal is multiplied with the conjugate of the second UR or stretched
signal. For acceleration estimation, the second echo signal is also multiplied with the third
echo signal.

2. The FFT operation is performed on the multiplication results for energy accumulation.
3. Estimate the frequencies of the above FFT results.
4. The acceleration and velocity are calculated using the estimated frequencies according to

Equations (23) and (24).

Although the ACCF method [24,25] also adopts the conjugate multiplication, it is basically
different from the proposed CCAE method. In the ACCF method, first, pulse compression is applied
to the two adjacent UR signals by the FFT operation, and then, a conjugate multiplication is performed
with the pulse compression results. Then, for velocity estimation, the correlation result is transformed
into the time domain by an IFFT operation. If we only estimate the velocity of the target by using two
echo signals, the ACCF method requires the FFT (or IFFT) operation three times, while the proposed
method only requires once. Besides, the ACCF method can be applied to only the UR signals, while
the proposed CCAE method can be applied to both UR and stretched signals.

Uncompressed 

received (UR) 

or stretched 

echo signal 1

Uncompressed 

received  (UR) 

or stretched 

echo signal 2

Conjugate 

multiplication

Frequency 

estimation

Fast Fourier 

transform 

(FFT)

Uncompressed 

received  (UR) 

or stretched 

echo signal 3

Conjugate 

multiplication

Frequency 

estimation

Fast Fourier 

transform 

(FFT)

Velocity or

acceleration 

estimation

Figure 3. The flowchart of the proposed cross-correlation of adjacent echoes (CCAE) method.

3.4. Performance Analysis

The SNR of the wideband signal is defined as in [23,31,32]. If the mean of the ω0(t, tm) in
Equation (2) is zero and the variance is σ2, then the SNR of sur(t, tm) can be written as SNRur = A2/σ2,
where A is the signal amplitude. Because of the stretching operation and analog-to-digital conversion,
the bandwidth of the noise will decrease. If the sampling frequency is fs, then the noise bandwidth
of the stretched signal decreases by the ratio B/ fs. Consequently, the SNR of the stretched signal,
i.e., Equation (5), can be written as:

SNRst =
A2

fs
B σ2

= SNRur
B
fs

.

(25)
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In Equation (10), the first two terms contain the signal, and the third one is regarded as the
noise term, which is composed of three terms, i.e., ω1(t, tm)sst,s(t, tm+1), ω1(t, tm+1)sst,s(t, tm) and
ω1(t, tm)ω1(t, tm+1). It is clear that ω1(t, tm)sst,s(t, tm+1) and ω1(t, tm+1)sst,s(t, tm) satisfy the Gaussian
distribution, and ω1(t, tm)ω1(t, tm+1) satisfy double Gaussian distribution [33]. There is no exact PDF
for this distribution so far. However, this distribution can be approximately regarded as a Gaussian
distribution in most cases [33,34]. Therefore, the noise term in Equation (10) is approximate to the
Gaussian noise. In addition, the means of these three terms are zero, and the variances of them are
A2σ2 fs/B, A2σ2 fs/B and σ4 f 2

s /B2, respectively. Hence, the SNR of sac(t, tm) is:

SNRac =
A4

fs
B (2A2σ2 + fs

B σ4)

=
SNRst

2 + 1/SNRst
.

(26)

The velocity of the target is obtained by estimating the main peak position of the sinc function
in Equation (13). This procedure can be considered similar to that of the frequency estimation of
a complex sinusoidal signal sac(t, tm). For a complex sinusoidal signal with unknown amplitude,
phase and frequency [35], the RMSE of frequency estimation can be expressed as:

RMSE f =

√
6

4π2SNR∆2N(N2 − 1)
, (27)

where ∆ is the sampling interval, N the number of samples and SNR the SNR of the sinusoidal
signal [35]. According to the above definition, the RMSE of velocity of the proposed method is:

RMSEv =
c

2γTpr

√
6

4π2SNRac∆2N(N2 − 1)

=
c

2γTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur∆2N(N2 − 1)
.

(28)

When N is large, the equation can be written as:

RMSEv ≈
c

2γTprT

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N

=
c

2BTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N
.

(29)

It is seen from Equation (29) that the estimation performance is affected by the PRI, the SNR of the
UR signal and the bandwidth B. When the acceleration is taken into consideration, the acceleration is
obtained by subtracting two i.i.d variables f̂m and f̂m+1 in Equation (23). The RMSE of the acceleration
can be obtained according to Equation (23):

RMSEa =

√
2c

2γT2
pr

√
6(2B fs + f 2

s /SNRur)

4π2(B2SNRur)∆2N(N2 − 1)

≈
√

2c
2BT2

pr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N
,

(30)
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Similarly, according to Equation (24), the velocity is calculated using the subtracted value of the
two i.i.d variables f0 and a. Thus, the RMSE of the velocity can be expressed as:

RMSEv =
3c

4γTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur∆2N(N2 − 1)

≈ 3c
4BTpr

√
6(2B fs + f 2

s /SNRur)

4π2B2SNRur N
.

(31)

The energy loss is not considered in the above derived RMSEs. In Section 3.2, it is pointed out
that the non-overlapping part of the conjugate multiplication result induces the loss of signal energy.
The loss can be figured out to be small, which has little influence on the estimation performance.
According to Equation (25), conjugate multiplication causes a decrease in SNR, consequent to which
the performance of the proposed method also suffers. However, since the noise bandwidth of the
stretched signal is reduced to be much smaller than that of the UR signal, the SNR of the stretched
signal is higher than that of the UR signal. Therefore, better estimation performance can be achieved
by applying the CCAE method to the stretched signals.

In this paper, the cross-correlation operation is performed on the two adjacent echo signals.
Actually, the cross-correlation can performed on any two echo signals. When the two echo signals are
taken with an interval nTpr, the “Tpr” in Equation (29) should be modified as “nTpr”. As a result, the
RMSE will decrease to RMSEv/n. In other words, the performance of the proposed method can be
improved through increasing the interval of the echo signals. However, when the interval becomes too
large, the correlation between the two echo signals decreases, as a consequence of which the accuracy
of parameters estimation decreases. Therefore, for this study, the two adjacent signals are used for
parameters estimation.

4. Simulations and Real Data Processing

In this section, the proposed CCAE method is first evaluated with different simulation parameters.
In Section 4.2, the performance of the CCAE method is compared with that of the ACCF method at
different SNRs. Finally, the CCAE method is verified using real radar data.

4.1. Evaluation of the Proposed CCAE Method

In this subsection, simulations are performed to evaluate the proposed CCAE method on stretched
signals. The CPU frequency of the computer is 3.30 GHz, and the memory size is 8 GB. The transmitted
signal is an LFM waveform, and additive white Gaussian noise is added to the UR signal. Table 2 lists
the detailed simulation parameters. The target is set as a multi-scatterer model containing 10 scatterers,
and the length of the target is about 9 m. The velocity is 100 m/s, and the acceleration is set to zero.

Table 2. Simulation parameters of the evaluation of the proposed CCAE method.

Center Frequency (GHz) Bandwidth (MHz) Pulse Width (µs) Sampling Frequency (MHz) PRI (ms)

9 200 100 10 5

The energy concentration of the proposed CCAE method is investigated at a high SNR level,
i.e., 30 dB. The spectrum of the cross-correlation result is shown in Figure 4, which shows that the
energy of different scatterers is focused on one position. The estimated velocity of the proposed
method is 99.9 m/s.
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self term
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Figure 4. The spectrum of the cross-correlation result.

Next, we compare the performances of the proposed CCAE method with different bandwidths
and PRIs, under different SNR conditions. The SNR varies from −30 dB to 2 dB. Under each SNR,
1000 Monte Carlo simulations have been carried out. Figure 5 shows the RMSE results. It is observed
that when the bandwidth or the PRI increases, the RMSE decreases. To achieve the same RMSE, the test
case with B = 1 GHz and Tpr = 10 ms requires the lowest SNR, and hence, it has the best performance.
Under the same SNR, the RMSE performance of the case with B = 1 GHz, Tpr = 10 ms is about 3 dB
lower than the case with B = 0.5 GHz, Tpr = 10 ms and the case with B = 1 GHz and Tpr = 5 ms.
The performance difference is about 6 dB between the case with B = 1 GHz, Tpr = 10 ms and the case
with B = 0.5 GHz, Tpr = 5 ms.

−30 −25 −20 −15 −10 −5 0 5
−20

−10

0

10

20

30

40

50

SNR (dB)

R
M

S
E

 (
dB

)

 

 
Bandwidth 1GHz, PRI 10ms
Bandwidth 1GHz, PRI 5ms
Bandwidth 0.5GHz, PRI 10ms
Bandwidth 0.5GHz, PRI 5ms

Figure 5. The performances of the proposed CCAE method with different parameters.

4.2. Comparison with the ACCF Method

In this subsection, we compare the performance of the proposed CCAE method with the ACCF
method [24,25] at different SNRs, which varies from −30 dB to 2 dB. One thousand Monte Carlo
simulations are also carried out for each SNR condition. The other simulation parameters are listed
in Table 3. In this experiment, the stretched signals and UR signals are both used in the proposed
CCAE method, and the UR signals are used in the ACCF method, which can only be applied to the
UR signals.
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Table 3. Simulation parameters of the comparison with the adjacent cross-correlation function (ACCF)
method.

Center Frequency (GHz) Bandwidth (GHz) Pulse Width (µs) Sampling Frequency (MHz) PRI (ms)

9 1 100 10 10

We first evaluate the performance of the case, in which only velocity is taken into account.
The velocity of the target is set to 100 m/s. Two pulse echoes are used only for velocity estimation.
In Figure 6, it is seen that the estimated RMSEs of CCAE method on UR signals are similar to that of
ACCF on UR signals, and the performance of CCAE on stretched signals is the best. As mentioned
in Section 3.4, the noise term ω1(t, tm)ω1(t, tm+1) is approximately regarded as a Gaussian noise,
hence there is a gap between the theoretical and simulation results, which can be seen from Figure 6.
However, on average, the RMSE gap is about 0.0543 dB for UR signals and 0.0179 dB for stretched
signals. This shows that the noise approximation is reasonable.

Furthermore, it is noted that the RMSEs of the CCAE deteriorate largely when the SNR is low.
In low SNR cases, the amplitude of the self-term in the correlation result may be smaller than the
noise amplitude. This may cause the failure of the peak search, so that the RMSEs deteriorate. In the
parameter estimation problem, a threshold SNR means that the performance may deteriorate largely
when the input SNR is lower than the threshold value. The threshold SNR is lower, the performance is
better. In this experiment, the threshold SNR of CCAE/ACCF on UR signals is about −16 dB, higher
than that of CCAE on stretched signals (about −26 dB). Generally, the theoretical RMSE is derived
with the assumption that the spectrum peak can be successfully found. Therefore, there is no threshold
SNR in the theoretical RMSE.
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Figure 6. RMSE comparison of velocity estimation by using CCAE on stretched signals, CCAE on
uncompressed received (UR) signals and adjacent cross-correlation function (ACCF) on UR signals
(without acceleration).

We further evaluate the performances of the two methods with a second-order motion model.
The velocity of the target is 100 m/s, and the acceleration is 10 m/s2. Three pulses are used for
velocity and acceleration estimation, the other parameters being the same as those of the previous
experiments. The estimated acceleration results are shown in Figure 7, from which we can see that
the RMSE performance of CCAE on UR signals is better than that of ACCF on UR signals. It can
also be seen that the threshold SNR of CCAE on UR signals is smaller than that of ACCF on UR
signals, i.e., −16 dB versus −8 dB. As has already been analyzed in Section 3.4, SNR decreases after
cross-correlation. To estimate the acceleration, the conjugate multiplication has to be used twice in the
ACCF method, but only once in the CCAE method. Therefore, the performance loss is more in the
ACCF method than in the CCAE method. In addition, the performance of CCAE on stretched signals
is better than that of CCAE on UR signals, due to the higher SNR of stretched signals.
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Figure 7. RMSE comparison of acceleration estimation by using CCAE on stretched signals, CCAE on
UR signals and ACCF on UR signals (with acceleration).

When the acceleration is considered, the velocity estimation results by using CCAE on stretched
signals, CCAE on UR signals and ACCF on UR signals are compared in Figure 8. It can be seen that the
RMSE of the ACCF method is also larger than the proposed method. In this experiment, the threshold
SNRs of the three test methods are −26 dB, −16 dB and −4 dB, respectively. To estimate the velocity,
the estimated acceleration should be used to eliminate its influence. Thus, the performance of the
velocity estimation is related to the performance of the acceleration estimation. As the performance
of estimated acceleration is worse, the performance of velocity estimation of the ACCF method also
becomes worse. From a comparison of Figures 6 and 8, for the proposed CCAE method, it can be seen
that the RMSE of the estimated velocity with acceleration is a bit higher than that without acceleration.
This is because the velocity is calculated by subtracting two i.i.d variables. This can be confirmed by
comparing Equations (29) and (31).

In Figures 6–8, there exist performance gaps between the simulation and the theoretical results
of the CCAE method. The differences are mainly caused by the noise approximation, which is
analyzed in Section 3.4. The RMSE gap in Figures 7 and 8 is bigger than that in Figure 6. The reason
is that acceleration estimation is implemented by performing CCAE twice. This leads to a noise
term subtracted from two double Gaussian noises. When approximating this subtraction noise to be
a Gaussian distribution, the error is increased. Thus, the RMSE gap between the simulation and the
theoretical results in Figures 7 and 8 is larger than that in Figure 6. In summary, for the CCAE method,
the RMSEs of the estimated acceleration and velocity are both close to the theoretical RMSEs, which
proves the effectiveness of the proposed method.
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Figure 8. RMSE comparison of velocity estimation by using CCAE on stretched signals, CCAE on UR
signals and ACCF on UR signals (with acceleration).
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The total time costs of the 1000 Monte Carlo simulations for all of the SNR cases are listed in
Table 4. It is seen that the time cost of the CCAE on stretched signals is much less than that of CCAE
on UR signals and ACCF on UR signals. The reason is two-fold: first, the data size of the UR signal is
larger than the stretched signal; second, the number of FFT operation required by the ACCF method is
more than that of the CCAE method.

Table 4. Comparison of the time cost between CCAE on stretched signals, CCAE on UR signals and
ACCF on UR signals.

Time Cost (s) CCAE_Stretched CCAE_UR ACCF_UR

Estimation without acceleration 81.6 2545.1 5282.1
Estimation with acceleration 156.5 4869.7 10175.3

Simulation environment: CPU frequency 3.30 GHz, memory 8 GB.

4.3. Verification with Real Data

Two sets of real data, obtained from the wideband LFM radar systems, are applied for the
verification of the proposed method. The parameters of the two datasets are shown in Table 5, where
PRI means pulse repetition interval. The targets are satellites in space. They fly along the radar line of
sight, first toward the radar, then leave. For real radar data, the signals are stretched, and the SNR
values cannot be obtained. Nevertheless, the noise power can be estimated by averaging the power of
the spectrum outside the target’s position, and the signal power can be calculated via subtracting the
noise power from the power of the stretched signal. In this way, the average estimated SNRs of the
two real data sets are −5.99 dB and −7.58 dB, respectively.

Figure 9 illustrates the spectrums of the cross-correlation results of the two datasets. Figures 10a
and 11a show the estimated velocities in comparison with the real velocities of the targets. The absolute
values of differences between the estimated velocities and the real velocities of the targets are shown
in semilog scale in Figures 10b and 11b. It is seen that the estimated results are consistent with the real
velocities for both datasets. The RMSE of the estimated velocity is 0.0561 m/s in the first dataset and
0.2842 m/s in the second dataset.

self term

cross term

(a)

self term

cross term

(b)

Figure 9. The spectrums of the cross-correlation results. (a) The spectrum of the cross-correlation result
of radar Dataset 1. (b) The spectrum of the cross-correlation result of radar Dataset 2.
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Figure 10. Estimation results of Dataset 1. (a) The estimated velocity and the target’s real velocity
(due to the high speed of the target and the high precision of the estimated velocity, the two lines
overlap). (b) The absolute values of differences between the estimated velocities and the target’s
real velocities.
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Figure 11. Estimation results of Dataset 2. (a) The estimated velocity and real velocity of the target
(due to the high speed of the target and the high precision of the estimated velocity, the two lines
overlap). (b) The absolute values of differences between the estimated velocities and the target’s
real velocities.

Table 5. Parameters of radars.

Parameters Radar 1 Radar 2

Center Frequency (GHz) 9 3.2
Bandwidth (MHz) 2000 300

Sampling Frequency (MHz) 10 10
Pulse Width (µs) 400 200

PRI (ms) 40 100

Finally, the proposed CCAE method is applied to range alignment in the ISAR imaging procedure,
with a civil aircraft as the target. Figure 12a shows the target’s range profiles of wideband radar at
different slow times (i.e., pulse number). Due to the target’s motion, the range profile of the target
moves across the range cells, which is called the range migration (RM). Thus, the range profiles at
difference slow times are not aligned. As a result, the energy of the different range profiles cannot
be focused to generate a high quality image. Therefore, the motion compensation is necessary for
ISAR imaging. In this experiment, motion compensation is performed using the proposed CCAE
method. After motion compensation, the range profiles of different slow times are aligned, as shown
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in Figure 12b. With motion compensation, the RM effect is eliminated, resulting in a focused ISAR
image (Figure 13). These results with real data demonstrate that the proposed method is effective in
practical radar systems.
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Figure 12. The range profiles of the target. (a) The range profiles with the range migration (RM) effect.
(b) The range profiles after range alignment by the proposed CCAE method.
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Figure 13. The result of inverse synthetic aperture radar (ISAR) imaging after range alignment.

5. Conclusions

In this paper, a new fast motion parameters estimation method based on CCAE for wideband
LFM radars is presented. First, the conjugate multiplication is performed on two adjacent signals.
Then, the velocity is obtained by estimating the frequency of the signal, i.e., the correlation result.
The acceleration can be estimated by using three echo signals. The proposed CCAE method can be
applied to the UR signals or the stretched signals. When estimating the velocity using two echo signals,
the FFT operation is required only once in the proposed method, and the estimated parameters can be
output in real time. Simulation results show that the new method provides better RMSE performances
than the state-of-the-art existing method for both velocity and acceleration estimation, with much less
computational cost. Besides, the RMSEs of the simulation data are close to the theoretical RMSEs of the
proposed method. Real radar datasets are also evaluated to verify the effectiveness of the proposed
method. The proposed fast estimation method of motion parameters can be applied to range alignment
in ISAR imaging.
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