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Abstract: Indoor positioning based on the received signal strength (RSS) of the WiFi signal has
become the most popular solution for indoor localization. In order to realize the rapid deployment
of indoor localization systems, solutions based on crowdsourcing have been proposed. However,
compared to conventional methods, lots of different devices are used in crowdsourcing system
and less RSS values are collected by each device. Therefore, the crowdsourced RSS values are
more erroneous and can result in significant localization errors. In order to eliminate the signal
strength variations across diverse devices, the Linear Regression (LR) algorithm is proposed to solve
the device diversity problem in crowdsourcing system. After obtaining the uniform RSS values,
a graph-based semi-supervised learning (G-SSL) method is used to exploit the correlation between
the RSS values at nearby locations to estimate an optimal RSS value at each location. As a result, the
negative effect of the erroneous measurements could be mitigated. Since the AP locations need to be
known in G-SSL algorithm, the Compressed Sensing (CS) method is applied to precisely estimate
the location of the APs. Based on the location of the APs and a simple signal propagation model,
the RSS difference between different locations is calculated and used as an additional constraint
to improve the performance of G-SSL. Furthermore, to exploit the sparsity of the weights used in
the G-SSL, we use the CS method to reconstruct these weights more accurately and make a further
improvement on the performance of the G-SSL. Experimental results show improved results in terms
of the smoothness of the radio map and the localization accuracy.

Keywords: Indoor localization; crowdsourcing; received signal strength; graph-based semi-supervised
learning; linear regression; compressed sensing

1. Introduction

Indoor location-based services (LBS) such as indoor positioning, tracking and navigation, have
been receiving a lot of attention in recent years [1,2]. However, it remains a challenge to provide the
users with an accurate and robust location estimation. Global Positioning System (GPS) is the most
widely used localization system and provides precise positioning in outdoor environments. However,
due to the lack of sufficient signal strength in most of the indoor areas, GPS is not a reasonable solution
for indoor environments. Therefore, various alternatives to GPS have been proposed for indoor
localization. Examples include but are not limited to the methods using Ultra-Wideband, Ultrasound,
Infrared and Radio Frequency signals [2–6]. These alternatives provide a good localization accuracy
for many applications, however, they require additional infrastructure that would be a disadvantage
to their large-scale deployment.
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With the growing deployment of WiFi access points in indoor environments and the widespread
use of mobile devices such as smart phones, WiFi received signal strength (RSS)-based indoor localization
methods are getting popular due to their low deployment cost and relatively high localization accuracy.

In general, there are two main categories of localization methods that use WiFi RSS readings.
The first category comprises those methods that rely on the radio propagation model of the WiFi
signal in indoor environments as well as the locations of the WiFi Access Points (AP). Specifically,
the RSS readings from different access points are used to estimate the distance of a mobile device
from those access points. Then a triangulation method is used to estimate the location of the mobile
device. The next category includes those methods that are based on WiFi RSS fingerprints also known
as fingerprint-based methods. Originally proposed by P. Bahl et al. [7], various fingerprint-based
localization systems have been designed and developed during the last decade [7–9].

Typically, fingerprint-based methods consist of an offline phase followed by an online phase [7].
In the offline phase, RSS values from different WiFi access points are measured at some known locations
throughout the indoor area. These location are referred to as Reference Points (RP) and the measured
RSS vector for each RP is called a fingerprints. All fingerprints and their corresponding RPs are stored
in a database called the radio map. In the online phase, a user’s position can be estimated by comparing
the RSS values measured by the user with the RSS fingerprints stored in the radio map.

A disadvantage to the offline phase of the fingerprint-based methods is the required time and
labor to collect sufficient number of fingerprints throughout the indoor area. In addition, the RSS
value of an AP at a certain location can change over time due to a number of reasons including but
not limited to multipath fading, shadowing, moving objects and people [10]. To mitigate these RSS
fluctuations, a large number of RSS measurements are collected at every reference point in the offline
training phase. However, collecting more RSS measurements at any location makes the offline phase
even more time-consuming and labour-intensive. Several works have been proposed to reduce the
workload of the offline phase [11–13]. The crowdsourcing method has been shown to be a promising
approach to solving this problem [14–16]. In a crowdsourcing-based system, each user can contribute
to the construction and updating of the radio map. Consequently, the number of RSS values collected
in the offline training phase is greatly reduced. On the other hand, RSS measurements collected by the
users moving in the environment are potentially more erroneous than those collected by the experts at
the exact location of reference points.

One of the problems in the crowdsourcing localization system is that numerous of mobile devices
are applied to build the radio map in the offline training phase and provide LBS for the device holders
in the online phase. Due to the different WLAN adapter equipped in the mobile devices, the RSS
values collected by the mobile device are subject to the difference of the WLAN adapter. As a result,
different data collection devices may have different signal sensing capacities and yield different data
distributions. Numerous studies show that, due to the hardware differences, the RSS differences
collected by different devices exceeds more than 25 dB [17–19]. Therefore, the localization accuracy is
degraded significantly by the problem of RSS variations across different devices.

Another issue of indoor localization is the knowledge of the location of the access points. In most
fingerprint-based methods, the location of the access points is considered to be unknown. This is
a convenient simplifying assumption in many situations, especially when the signal strengths are
measured in a passive mode. However, the knowledge of the location of the access points can enhance
the localization accuracy. This is especially important since the location of an access point can be
estimated using some signal processing techniques [20]. The location of an access point can then be
used to correlate the received signal strength across neighbouring locations, as will be discussed in
this paper.

In this paper, in order to deal with the device diversity problem, the Linear Regression (LR)
algorithm is used to mine the intrinsic relationship between different RSS values collected by different
devices. Using the LR algorithm, the problem of device diversity will be solved automatically and the
uniform RSS values are gotten, so as to ensure the application of the following algorithms. On the basis
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of graph-based semi-supervised learning (G-SSL) method, we propose RSS difference-aware G-SSL
(RG-SSL) method and RSS difference-aware sparse graph SSL (RSG-SSL) method to smoothen the RSS
values collected in the offline training phase and improve the localization results. Before smoothing
RSS measurements using the G-SSL method, the locations of APs need to be known. Since the spatial
distribution of the APs is sparse, the Compressed Sensing (CS)-based method of [20] is proposed
to precisely estimate the AP locations. Based on the signal propagation model, the RSS difference
between two locations is calculated with respect to the locations of RPs and APs. Furthermore, RG-SSL
method is proposed to smoothen the radio map in the offline training phase. By leveraging the RSS
readings in the local neighbourhood, the effect of noise and erroneous measurements can be reduced
to obtain a higher localization accuracy. Finally, the sparsity of the graph is discussed and RSG-SSL
method is used to obtain a better RSS smoothing and localization result.

The rest of the paper is organized as follows. The related works are given and discussed in
Section 2. Section 3 formulates the indoor localization problem. In Section 4, the device diversity
problem in crowdsourcing localization system is solved by linear regression method. The CS-based
AP positioning method is explained in Section 5. Section 5 also explains some experiments with the
proposed CS-based AP positioning method. In Section 6, RG-SSL method is proposed with some
experimental results. Finally, we explain the RSG-SSL method in Section 7 and provide the localization
results using RSG-SSL. Section 8 concludes the paper.

2. Background and Related Works

C. Feng et al. in [2] and J. J. Pan et al. in [11] proposed the CS-based method and the G-SSL
method respectively, to reduce the workload of the radio map construction in the offline phase. Both
methods, aim to reduce the number of reference points (RP) and RSS measurements. Also, [14–16]
explore crowdsourcing-based methods to reduce the deployment workload by engaging the users to
participate in radio map construction.

In [21], an RSS pre-processing method called the “sliding correlation time window filter” (SCTW)
is used to reduce the noise in the measured RSS values. Similarly, in this paper, a sliding time window
is used to average the RSS values collected in every RP to improve the accuracy of RSS measurements.
However, this filter only uses a small number of the RSS values in the radio map and most of the
information in the radio map is abandoned.

M. Hasani et al. [22] used a path-loss model to improve the reliability of the measured RSS
values. In the offline phase of their method, a set of channel parameters are estimated for each access
point. In the online phase, the user’s location is found based on the calculated RSS values using the
stored channel parameters. Their method results in a reliable localization thanks to the stability of the
estimated channel parameters. In [23], S. Latif et al. proposed a D-model to estimate the radio signal
strength in indoor areas. The experiments in their paper proved that the proposed D-model is capable
of estimating the RSS values with a high accuracy. Also their method models the wall attenuation
more accurately compared to the method of [22]. Although the simulation result showed that the
proposed method is fit for RFID positioning system, when this method is used in WiFi positioning
system, the result is not satisfactory.

The signal propagation method gives us some inspiration, we proposed signal propagation-based
outlier reduction technique (SPORT) to smooth the RSS collections in both the offline phase and the
online phase and improve the localization accuracy [24]. In this method, we investigate the relationship
of RSS values between adjacent locations using a signal propagation model and show that the outliers
can be corrected using a signal propagation model. Experimental results show that SPORT greatly
smoothens the radio map and improves the location accuracy.

In order to minimize the fluctuation of RSS values, M. S. Rahman Sakib et al. [25] developed a
method using a Particle Filter (PF). Particle filters are used to perform non-linear and non-Gaussian
estimations. However, in the online phase, a large number of particles have to be used in order
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to obtain a high positioning accuracy. Consequently, the computational cost is high which may be
unacceptable for some indoor positioning applications.

L. Ma et al. [26] proposed a method based on the singular value thresholding (SVT) to recover
the missing RSS values both in offline and online phases. In that paper, the authors argued that the
positioning performance degrades significantly when some of the APs are occasionally turned off such
as in a green WLAN system. Therefore, they proposed an SVT-based method to estimate the missing
RSS values both in the radio map and the online RSS readings. They showed that their SVT-based
method could achieve an acceptable positioning performance.

3. Problem Formulation

Suppose a set of ` RPs are selected throughout the indoor area and M APs are visible at each RP
location. In the offline training phase, we collect the i-th fingerprint (ci, ri) at RP Si, where ci = (xi, yi)

T

is the geographical coordinates of Si and ri is an M× 1 RSS vector. We refer to these fingerprints as
labeled data. In the online phase, the user’s location can be estimated by comparing the RSS value rk
collected at the unknown location of the user Sk with the fingerprints in the radio map. If rk is similar
to a particular ri, then we reason that user’s location Sk must be close to RP location Si.

In practice, the RSS values measured by a mobile device are subject to multiple sources of noise,
such as multi-path fading and shadowing. Figure 1 illustrates the histogram of 100 RSS values from
a single AP at a particular location inside the Bahen Building at the University of Toronto. The RSS
values are distributed in a wide range of −70 dBm to −50 dBm. Occasionally, we cannot receive any
power from this AP and a value of −110 dBm is used to denote the missing RSS value. Figure 2 shows
the RSS value from a single AP throughout the fourth floor of the Bahen Building after removing
−110 dBm measurements and averaging over RSS values at each location.
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Figure 1. Histogram of 100 RSS values of a single AP measured at a location.

Next, we explain how we apply the G-SSL method to reduce the effect of noise in the radio map.
Consider a set of u locations within the localization area that are not associated with RSS measurements
hence we call them unlabelled data. In addition to these unlabelled locations, there are ` labelled RP
locations as explained previously. Consequently, we have `+ u locations of labelled and unlabelled
data. In the G-SSL method, a weighted graph is constructed using both labelled and unlabelled data.
In this graph, the vertices represent the training data and all the vertices are connected by edges. The
edge weight matrix, which is calculated by the training data, represents the relationship between
vertices in the graph by assigning a weight to each edge connecting two vertices in the graph. Each
vertex on the graph corresponds to a location and the weighted edges between vertices represent the
relationship between both RSS values and locations corresponding to those vertices. As mentioned
earlier in this section, measured RSS values in an indoor environment are affected by different types
of noise. However, in the graph representation of the G-SSL method, any two vertices on the graph
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are related not only by the RSS values measured at those vertices but also by the physical locations
corresponding to those vertices. Therefore, the G-SSL is able to reduce the effect of noise in the
measured RSS value by incorporating both RSS and location information. Next, we will explain the
G-SSL method with more details.
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Figure 2. RSS values of an AP over the corridor area of the fourth floor of the Bahen Building, University
of Toronto.

Suppose Ω = (V, E) denotes the graph of the G-SSL method. The vertices of the graph, V, is
defined as V = {c1, c2, . . . , c`, c`+1, . . . , c`+u} where the first ` elements are the location coordinates of
the labelled data and the next u elements are the location coordinates of the unlabelled data. For every
edge between two vertices at Si and Sj, we can calculate its weight wij. wij indicates the similarity
between the two vertices and takes values in the range [0, 1] with 0 indicating no similarity between the
vertices. The result is an (`+ u)× (`+ u) weight matrix W containing all the calculated weights. The
graph edges are usually undirected, so the edge (i, j) (weighted by wij) and the edge (j, i) (weighted
by wji) are the same edge in the graph, which means wij = wji. In addition, the edge (i, i) does not
exist, therefore, there are 1

2 [(` + u) × (` + u) − (` + u)] edges in the graph. In summary, only the
corresponding number of graph weights are calculated which makes the weight matrix W a symmetric
matrix. To calculate the weights, here we use the well-known heat-kernel function:

wij = exp
{−‖ci − cj‖2

τ

}
, (1)

where ‖ci − cj‖2 = d2(Si, Sj) is the square of the Euclidean distance between location Si and Sj and τ

is a parameter based on the application which controls how quickly the weight decreases.
The G-SSL uses W to estimate the labels of the unlabelled data using the relationship between

different vertices in the graph. The result is a set of estimated labels r̂i for i ∈ {1, 2, . . . , `+ u}. If ci
is close to cj, the estimated label r̂i is close to the given label rj for all j ∈ {1, 2, . . . , `}. The estimated
labels r̂i have to satisfy two conditions. First, for the labelled data, since the labels are already known,
the estimated labels r̂i must be close to the real labels. For the labelled data (ci, ri), we should have
r̂i = ri. This condition is enforced by minimizing the following loss function

min
R̂

`

∑
i=1
‖r̂i − ri‖2, (2)
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where R̂ is the M× (`+ u) matrix of all estimated RSS values and ‖ • ‖ is the Euclidean distance.
The second condition is that the graph should be smooth. The smoothness of the graph comes

from the fact that data points which are close to each other should have similar labels. To satisfy the
smoothness condition, the estimated labels r̂i and r̂j should meet the following loss function

min
R̂

`+u

∑
i=1

`+u

∑
j=1

wij‖r̂i − r̂j‖2, (3)

If ci and cj are close to each other, the weight wij would be large, and the labels r̂i and r̂j must be
close in order for the whole term to be minimized. On the other hand, if ci and cj are far away from
each other, the weight wij would be very small and the choice of the labels does not have much effect
on the minimization.

Hence, the estimated labels that satisfy both conditions above can be estimated using:

R̂∗ =arg min
R̂

{ `

∑
i=1
‖r̂i − ri‖2 +

γ

2

`+u

∑
i=1

`+u

∑
j=1

wij‖r̂i − r̂j‖2
}

, (4)

where γ is a the weight of the smoothness term based on the application. γ is a design parameter
used to enforce which term is of higher importance. In conclusion, the first term of the Equation (4)
penalizes the difference between the actual labels and the estimated labels and the second term ensures
the smoothness of the graph.

The proposed G-SSL-based RSS smoothing method for crowdsourcing is summarized in the
system diagram shown in Figure 3. In the offline phase, since the actual coordinates of Si and Sj are
already known, the LR algorithm is used to obtain the uniform RSS values. Then the locations’ APs
are calculated by CS method. At last the RSS values can be smoothed by G-SSL method. In the online
phase, the data collected simultaneously from sensors on the mobile device can be used to estimate the
relative displacement between Si and Sj, that is, the distance d(Si, Sj). Then the collected RSS values
are processed by the LR method. After that, the RSS values can be smoothed using the calculated
distance d(Si, Sj). Finally, we get a more accurate positioning result.
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Figure 3. The system view of the proposed G-SSL based Localization.

4. Linear Regression Algorithm against Device Diversity Problem

In the existing experimental systems, the same device is used to collect the RSS values in both
the offline phase and the online phase. However, when the crowdsourcing method is widely applied
to the indoor localization systems, a large number of different mobile devices have been used in
the establishment of the radio map. In the online phase, a variety of mobile devices are also used
by the users which are different from the device used to build the radio map. In this section, the
linear regression (LR) algorithm is proposed to solve the device diversity problem in RSS-based
crowdsourcing localization system.
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We define X and Y are the signal space of different devices. Assume that the fingerprint rX
belongs to X is the nearest neighbor to the online point rY belongs to Y . As described above, although
they were collected at close physical locations, the RSS values have obvious difference. In order
to solve the device diversity problem, the relationship between different devices has to be studied.
Therefore, these RSS values collected by different devices could be processed to make the rY in closer
to rX . Mathematically

X ≈ f (Y), (5)

By learning f , the radio map build by the training device could be used to localize any other devices.
Aiming to explore the mapping function between RSS values collected by distinct devices, the

comparison results of RSS values across different training/tracking devices are plotted in Figure 4.
Every point on the figure represents RSS values from two different devices measured at the same
location from the same AP at the same location. For example, the top right subplot in Figure 4
represents the RSS values measured by Lenovo laptop and Huawei mobile device. From Figure 4,
we can get a linear correlation between the RSS values measured by different devices. Hence, the
following linear regression method can be employed as the mapping function.

rY = arX + b (6)

where (a, b) are the coefficients in the mapping function.
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Figure 4. Linear correlation between RSS values for different devices.

4.1. Pre-Processing of RSS Values

In the typical WLAN localization scenario, the RSS values collected by the mobile device are
subject to multiple sources of noise, such as multi-path fading and shadowing. To mitigate these RSS
fluctuations, a large number of RSS measurements are collected from each AP at every location. Let
RSSli = {rss1, rss2, . . . , rssp} be the set of RSS values collected at location l from the i-th AP. As shown
in Figure 4, if we cannot receive any power from the AP, a value of −110 dBm is used to denote the
missing RSS value.

rssli =

{
rssli, if rssli > −110 dBm
−110 dBm, otherwise

(7)

In order to obtain the high localization accuracy, the first step in localization system is to stabilize
the collected RSS values prior to the localization process. Aiming to overcome the fluctuations, the
average of the collected RSS values is calculated. In the calculation of the average value, the filled RSS
values of −110 dBm could produce meaningless RSS values and will have a adverse impact. These
filled RSS values could affect the localization process and produce erroneous location estimations. As a
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result, the average is calculated using the collected RSS values exclude the filled RSS values as the
following equation:

rli =

p
∑

j=1
rssjI(rssj 6= −110 dBm)

p
∑

j=1
I(rssj 6= −110 dBm)

(8)

where I(•) is an indicator function.
The average value rli is used to build the radio map in offline training phase and estimate the

current location in online localization phase.

4.2. Linear Regression Algorithm against Device Diversity Problem

Before using the linear regression method, the parameters a and b in Equation 6 should be
computed. Since the outliers appear in the collected RSS values frequently and seriously affect the
performance of the linear least squares (LLS) algorithm, the fast least trimmed squares (FAST-LTS)
algorithm is used in this paper.

When the number of measured RSS values is c, the FAST-LTS solution for linear regression with
intercept is given by

min
a,b

h

∑
i=1

d(i)2 (9)

where h = int[(c + 2)/2], d(i) = ‖rY − (arX + b)‖ and ‖ • ‖ is norm 2 of a vector, d(i)2 are the ordered
squared residuals: d(1)2 ≤ d(2)2 ≤ · · · ≤ d(i)2 ≤ · · · ≤ d(c)2.

Given the h-subset Hold of all nearest neighbors, the C-step is used to compute the a and b as
follows [27]:

1. compute aold and bold := least squares regression estimator based on Hold

2. compute the residuals dold(i) for i = 1, · · · , c
3. sort the absolute values of these residuals, |dold(1)| ≤ |dold(2)| ≤ · · · ≤ |dold(c)|
4. arrange the absolute values of the residuals in ascending order, let Hnew be a subset consisting

of the nearest neighbors corresponding to the first h the absolute values of the residuals in the
sequence

5. compute anew and bnew := least squares regression estimator based on Hnew

Repeating C-step with numerous Hold, a lot of regression coefficients will be gotten.
The approximate solution is the coefficient corresponding to the least ∑h

i=1 d(i)2. After getting the
regression coefficient a and b, rX is transformed as follows

r′X = arX + b (10)

where r′X ∈ Y . As a result, both r′X and rY belong to the same signal space, and a uniform radio map
could be built using r′X and rY in the offline training phase and a higher positioning accuracy could be
obtained in online phase.

To verify the LR method, five distinct devices, namely Lenovo, Huawei, Samsung, Xiaomi and
Coolpad, are used to collect RSS values at all RPs and the linear regression coefficients could be
calculated based on the measured RSS values and the corresponding coordinates. When the regression
coefficients are gotten, all the RSS values could be mapped into the same signal space by LR method
and a uniform radio map could be built. Using the processed radio map, the user’s location will be
estimated with a high accuracy in online phase.

In our localization systems, we use the Lenovo device as the standard device, and all the RSS
values collected by other devices are mapped into the signal space of Lenovo device. We take the
(Huawei, Lenovo) pair as an example. As shown in Figure 5, the collected data are more stable after
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pre-processing of RSS values, and the linear regression coefficients could be calculated by LTS method.
Using the coefficients, the RSS values collected by Huawei device could be mapped into the signal
space of Lenovo device. We compare the original RSS values and the transferred RSS values collected
by Lenovo device with the RSS values collected by the Lenovo device, the comparison result is shown
in Figure 6. From the figure, we can see that the difference of signal distribution between different
devices is reduced significantly. Accordingly, a uniform radio map can be built in the offline phase and
the positioning performance could be improved in the online phase.
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Figure 5. Linear correlation between Lenovo and Huawei.
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Figure 6. Comparison of signal distribution.

4.3. Automatic Device-Transparent Algorithm for Crowdsourcing Indoor Localization System

Based on the LR method, the device diversity problem can be solved. However, the LR method is
applied to the premise that the coordinates of the RSS values are same. In offline training phase, the RSS
values used to build the radio map have been labeled, so these RSS values meet the prerequisites for
the LR method and the device diversity problem could be solved automatically. In online localization
phase, the coordinates of the RSS values are unknown, which means the LR method cannot be
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used directly. Therefore, we use the correlation ratio computed from the Pearson Product-moment
correlation coefficient to roughly label the RSS values collected by an unknown device.

t(rY , rX ) =

m
∑

k=1
(rYk − rY )(rX k − rX )√

m
∑

k=1
(rYk − rY )2

m
∑

k=1
(rX k − rX )2

(11)

where m is the number of APs, rYk and rX k are the RSS values measured from the k-th AP,
rY = 1

m ∑m
k=1 rYk is the average of the RSS values from the tracking device and rX = 1

m ∑m
k=1 rX k

is the mean of RSS values measured by the training device in a fingerprint.
The range of the absolute value of Pearson correlation ratio is (0, 1) where 1 indicates the highest

linear correlation between RSS values and 0 indicates the least similarity. In the online phase, when
the RSS vector rY is acquired, the similarity between the online point and all fingerprints rX in X can
be obtained by t. Given a threshold tth, we can get the set of nearest neighbor fingerprints in radio
map X for rY .

A = {rX ∈ X|t(rX , rY ) > tth, 0 ≤ tth ≤ 1} (12)

Based on the nearest neighbors in Equation (12), the RSS data collected in the online phase
can be labeled roughly and the LR method proposed in the previous section is used to train the
mapping function.

In summary, in the offline phase, because the coordinates of the collected RSS data are already
known, the LR algorithm can be used to eliminate the device diversity problem directly. As a result, a
uniform radio map can be built in the offline phase. In the online phase, the RSS values collected by
the unknown device could be localized roughly by the Pearson correlation coefficient at the beginning.
Then the RSS values can be mapped into the signal space of radio map using the LR algorithm. Finally,
we can get a more accurate positioning result.

5. AP Localization Using Compressed Sensing Method

Typically, fingerprint-based localization methods do not rely on the location of the APs. In other
words, the AP locations are assumed to be unknown. Nonetheless, better localization can be achieved
if one could estimate the AP locations. Next, we discuss a compressed-sensing (CS)-based approach to
estimate the AP locations.

Consider a set of N discrete locations throughout the indoor area. Suppose a set of M access
points can be seen at each location. It is a practical assumption that the number of grid points is much
larger than the number of access point in the indoor area i.e., M� N. We will use this assumption to
apply a CS-based method to recover the location of the APs.

Compressed Sensing is a signal processing technique that can efficiently reconstruct a signal by
exploiting the sparsity and incoherence properties of the signal [28–30]. Assume corresponding to the i-th
AP, we define a vector θi of size N. θi is a vector that shows the location of the AP by assigning a one
to one the N element and zero for the rest of the element. For example, if θi(n) = 1 then the location of
the i-th AP is estimated to be the location of the n-th grid point in the indoor area. Concatenating all
such vectors for all M APs results in a so-called index matrix, ΘN×M as,

Θ = [θ1, . . . , θm, . . . , θM], (13)

According to the CS theory, rather than measuring the M-sparse signal or its sparse representation Θ

directly, compressive noisy RSS measurements in an `-dimensional space are used. These compressive
measurements are obtained by multiplying a random matrix by the original signal,

y = ΦΨΘ + ε, (14)
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where

1. y`×M are the compressive noisy RSS measurements.
2. Φ`×N is the measurement matrix. Each row in this matrix represents the location of one RP, with

an element of 1 to indicate the grid point at which the RP is located. Thus, only a few of RSS
values are collected on the locations of RPs instead of measuring all the RSS values on the overall
grid, which reduces the workload in the offline phase.

3. ΨN×N is the sparsity basis on which the measured signals have sparse coefficients Θ. In this
matrix, Ψij = RSS(dij) indicates the RSS values collected at grid point i from the AP located at
grip point j, for all 1 ≤ i ≤ N and 1 ≤ j ≤ N. Assume that the transmition power of an AP is
Pt(dBm). Then RSS(d) is calculated based on the empirical indoor propagation model of [20]:

RSS(d) =

{
Pt − 40.2− 20log(d), if d ≤ 8
Pt − 58.5− 33log(d), if d > 8

(15)

where d is the physical distance from the transmitter (AP) to the receiver.
4. ε is the measurement noise.

The locations of the APs can be recovered by the following `0-minimization:

Θ̂ = arg min
Θ
‖Θ‖0, s.t. y = ΦΨΘ, (16)

Unfortunately, solving (16) is both numerically unstable and NP-hard. Therefore, `1-minimization
is used to recover the AP locations:

Θ̂ = arg min
Θ
‖Θ‖1, s.t. y = ΦΨΘ, (17)

This is a convex optimization problem and various methods have been proposed to find the
solution such as BP [31], OMP [32] and SP [33]. In this paper, we use OMP algorithm.

To evaluate the performance of the proposed CS-based AP localization algorithm, a few number
of APs on the fourth floor of the Bahen Building at the University of Toronto have been localized.
Figure 7 shows the AP localization results. As seen in the figure, all the AP locations are estimated
with a high level of accuracy. Although the localization results contain some errors, it brings limited
effect to our RSS smoothing method proposed later.
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Figure 7. AP localization results using CS method.

6. RSS Difference-Aware Graph-Based Semi-Supervised Learning RSS Smoothing Method

The G-SSL method tries to set the same value for r̂i and r̂j if the coordinates ci and cj at locations
Si and Sj are similar. However, since the distance between each RP and each of the unlabelled locations
is known, we can use this information to estimate the expected difference in RSS based on the known
locations of the APs and the radio propagation model. Thus, we define R̂d(Si, Sj) as the estimated RSS
difference between ri and rj at location Si and Sj. We change the smoothing constraint to reflect that
the difference ‖r̂i − r̂j‖ of estimated RSS values r̂i and r̂j should be close to R̂d(Si, Sj). Accordingly,
(4) can be written as:

R̂∗ =arg min
R̂

{ `

∑
i=1
‖r̂i − ri‖2 +

γ

2

`+u

∑
i=1

`+u

∑
j=1

wij

(
‖r̂i − r̂j‖ − R̂d(Si, Sj)

)2
}

. (18)

6.1. Estimation of R̂d(Si, Sj)

Consider one of the APs as shown in Figure 8. The location of the AP, cAP, can be estimated using
the CS-based method in [20]. We use the indoor signal propagation model in [34]. Therefore, the RSS
value at location Si can be calculated as,

iS j
S

id

jd

 !d ,i jS S

AP

Figure 8. Mobile device is moving away from AP.

ri = 10log10
Phi
dα

i
− 10log10(10−3), (19)
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where di denotes the distance between the location of the i-th measurement and the AP, P is the
transmission power of the AP, α is the propagation loss exponent and h is the combined effect of
path loss, fading, and shadowing. Using this model and assuming hi = hj, we derive the following
expression for R̂d(Si, Sj):

R̂d(Si, Sj) = ‖ri − rj‖ = ‖10αlog10
dj

di
‖ (20)

6.1.1. Offline Training Phase

In the offline training phase, the coordinates of RPs Si and Sj, ci and cj, are already given in the
radio map and the location of AP cAP can be calculated precisely using the CS-based method. Thus,
the Euclidean distance di and dj between the RPs and AP can be obtained. Finally, the RSS difference
R̂d(Si, Sj) can be calculated directly using (20).

6.1.2. Online Localization Phase

In the online localization phase, since the actual location of Sj is unknown, dj cannot be calculated
directly. However, d(Si, Sj) can be estimated using inertial sensor data and step counting algorithms
and di can then be calculated. We can use dj = di − d(Si, Sj) (the mobile device moves towards AP) or
dj = di + d(Si, Sj) (the mobile device moves away from AP) instead.

6.2. Finding the Optimal Solution

The cost function in (18) can be written as:

C =
`

∑
i=1
‖r̂i − ri‖2 +

γ

2

`+u

∑
i=1

`+u

∑
j=1

wij‖r̂i − r̂j‖2

+
γ

2

`+u

∑
i=1

`+u

∑
j=1

wijR̂2
d(Si, Sj) + γ

`+u

∑
i=1

`+u

∑
j=1

wijR̂d(Si, Sj)‖r̂i − r̂j‖,
(21)

In order to find the optimal solution, we need to find the derivative of the cost function with
respect to R̂. Since the cost function of (21) is not convex, we use the gradient descent method to solve
the optimization problem. Next, we derive the derivative for each part of the cost function in (21). The
first part of (21) can be written as:

C1 =
`

∑
i=1
‖r̂i − ri‖2

= trace
((

R̂− R
)
JTJ
(
R̂T − RT)), (22)

where R = [r1 r2 . . . r`+u] is the RSS matrix and if the labels are not given, we use 0M×1 instead.
J = diag(δ1, δ2, . . . , δ`+u) is a Hermitian indication matrix where δi = 1 means that the corresponding
i-th node in the graph is labelled and δi = 0 otherwise. Using (22), ∂C1

∂R̂
can be written as:

∂C1

∂R̂
=
(
R̂− R

)(
J + JT)

= 2J
(
R̂− R

)
,

(23)

The second part of (21) can rearranged as:
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C2 =
γ

2

`+u

∑
i=1

`+u

∑
j=1

wij‖r̂i − r̂j‖2

= γ
`+u

∑
i=1

r̂T
i r̂i

`+u

∑
j=1

wij − γ
`+u

∑
i=1

`+u

∑
j=1

wij r̂T
i r̂j

= γtrace
(
R̂DRT)− γtrace

(
R̂WRT)

= γtrace
(
R̂LRT),

(24)

where L = D−W is the graph Laplacian and D = diag(µ1, µ2, . . . , µ`+u) where µi =
`+u
∑

j=1
wij for all

i ∈ {1, 2, . . . , `+ u}. Differentiating C2 yields,

∂C2

∂R̂
= 2γR̂L, (25)

The derivative of the third part of the cost with respect to R̂ is equal to 0. The last part of (21) is:

C4 = γ
`+u

∑
i=1

`+u

∑
j=1

wijR̂d(Si, Sj)‖r̂i − r̂j‖

= γ
`+u

∑
i=1

`+u

∑
j=1

κij‖r̂i − r̂j‖,
(26)

where κij = wijR̂d(Si, Sj). In order to find ∂C4
∂R̂

, first we find ∂C4
∂r̂n

for 1 ≤ n ≤ `+ u. Using [34],

∂C4

∂r̂n
=

∂

∂r̂n

(
γ

`+u

∑
i=1

`+u

∑
j=1

κij‖r̂i − r̂j‖
)

=
∂

∂r̂n

(
γ

`+u

∑
j=1,j 6=n

κnj‖r̂n − r̂j‖
)
+

∂

∂r̂n

(
γ

`+u

∑
i=1,i 6=n

κin‖r̂i − r̂n‖
) (27)

Since κij = wijR̂d(Si, Sj), κni = κin. Therefore:

∂C4

∂r̂n
= 2× ∂

∂r̂n

(
γ

`+u

∑
j=1,j 6=n

κnj‖r̂n − r̂j‖
)

= 2× γ
`+u

∑
j=1,j 6=n

κnj
r̂n − r̂j

‖r̂n − r̂j‖

= 2γgn,

(28)

where gn =
`+u
∑

j=1,j 6=n
κnj

r̂n−r̂j
‖r̂n−r̂j‖

and ∂C4
∂R̂

is obtained using:

∂C4

∂R̂
= 2γG, (29)

where G , [g1 g2 . . . g`+u]. Finally, in order to find the optimal solution, we set ∂C
∂R̂

= 0:

∂C1

∂R̂
+

∂C2

∂R̂
− ∂C4

∂R̂
= 0. (30)

Using (23), (25) and (29):

R̂ = (RJ + γG)(J + γL)−1. (31)
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In summary, to find the optimal solution, initialize G = 0M×(`+u). Then use an iterative procedure
as follows: First, find R̂ as the solution of (31). Second, update G based on the result of the first step
and the definition of G. Repeat the two steps until convergence.

6.3. Experimental Results

In order to verify our method, we collected RSS data from the 4th floor of the Bahen Building at the
University of Toronto. The radio map was constructed using a step-counter-assisted RSS measurement
method. Sensor information from the accelerometer is used to estimate the distance between the RPs.
Using this system, a radio map consisting of 251 RPs throughout the entire 4th floor of the Bahen
building has been created in less than 30 minutes. However, the resulting radio map has only 5 RSS
measurements at each RP. Consequently, it is more error-prone compared to the traditionally generated
radio maps in which for each RP hundreds of measurements are collected. The Proposed localization
procedure is tested on a sequence of 35 test points collected on a path from Room 4000 (top of Figure 9)
to Room 4148 (bottom of Figure 9).

The RSS values from a single AP in the original radio map and the test points are shown in
Figures 10a and 11a respectively. As can be seen, although the RSS values are generally consistent with
the signal propagation model, there are some large fluctuations at some RPs. To eliminate the negative
effects caused by this fluctuation, the proposed RG-SSL method is applied to smooth the RSS values.
In order to obtain more accurate results, 125 unlabelled data throughout the whole 4th floor of the
Bahen Building are considered. Following steps are repeated until all the labelled points are smoothed:
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1. Set one of the labelled points as unlabelled.
2. Use the rest of the labelled points, 125 unlabelled points and RG-SSL method to estimate the RSS

value of the above unlabelled point.

Figure 9. Actual locations of test points.
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Figure 10. Comparison of signal distribution of radio map. (a) Original radio map (b) RG-SSL method
(c) G-SSL method (d) SCTW method (e) SPORT method.
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Figure 11. Comparison of signal distribution of test data. (a) Original radio map (b) RG-SSL method
(c) G-SSL method (d) SCTW method (e) SPORT method.

As comparisons, the G-SSL method, SCTW method and SPORT method are also simulated in this
paper. The simulation results are shown in Figures 10 and 11. From Figures 10b and 11b we can see
that the RG-SSL method successfully smooths out the radio map and the effect of signal fluctuation is
mitigated. Because most of the information in the radio map is abandoned in the SCTW algorithm, it
cannot achieve the optimal result. In the SPORT algorithm, due to the variability of the parameters in
the signal propagation model, we can obtain suboptimal solution of the RSS values rather than the
best results. In the G-SSL algorithm, all the collected RSS values are used to correct the outliers, which
leads to a better result. Furthermore, the RSS difference between different locations is used to improve
the G-SSL method and the estimated RSS values are more accurate. As a result, although the radio
map and the online RSS values are also smoothed by the other algorithms, the errors are larger than
that in Figures 10b and 11b, especially in the upper part of the corridor. The increasing errors in RSS
values in the radio map and the online data will inevitably result in the increased localization errors.

The localization result from directly using the original radio map and test point data are shown in
Figure 12a. Compared with the actual locations in Figure 9, there are some significant errors in the
localization results as certain distinct test points have been localized erroneously to a single location.
The localization result using the modified radio map can be seen in Figure 12b–e. We see that the
localization results are improved compared to the results in Figure 12a. Most of the test points were
erroneously localized to one location in Figure 12a are now localized to correct distinct locations. These
incorrect estimates were causing a large amount of localization error in the original method however
are greatly reduced using both the RG-SSL method and the other methods. Clearly, the localization
results of the proposed RG-SSL method are closer to actual locations than the results calculated by the
other methods. Furthermore, the trajectory obtained in Figure 12b is clearly smoother than those in
Figure 12c–e.
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(a) (b) (c)

(d) (e)

Figure 12. Comparison of localization results. (a) Original radio map (b) RG-SSL method (c) G-SSL
method (d) SCTW method (e) SPORT method.

We can readily see the performance gain of the RG-SSL method in the cumulative distribution
function (CDF) of the localization error for the RG-SSL method and the other methods, as shown in
Figure 13 and Table 1. It is clear that the proposed localization method outperforms the other methods.
As discussed above, the RSS values smoothed by RG-SSL are more accurate than those smoothed by
the other algorithms, and the location accuracy is increased by 3.5% relative to G-SSL and SPORT, 9.8%
compared to SCTW method and 20.6% relative to original data. The average localization error has
been reduced from 2.89 m to 2.07 m, and notably, the maximum localization error has been reduced
from 10 m to 4 m.
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Figure 13. Cumulative distribution function of the localization error.



Appl. Sci. 2017, 7, 467 19 of 24

Table 1. Comparison of different algorithms.

Algorithm Cumulative Probability (Location Error Is 2 m) Average Error (m) Maximum Error (m)

RG-SSL 63.5% 2.07 4
G-SSL 60% 2.13 4.5
SPORT 60% 2.15 4.5
SCTW 54.3% 2.24 5.5
Original data 42.9% 2.89 10

7. RSS Difference-Aware Sparse Graph-Based Semi-Supervised Learning Method and
Experimental Results

7.1. Sparse Graph Construction for RG-SSL Using CS Method

Since the radio map is constructed using a step-counter-assisted RSS measurement method, the
coordinate of each RP calculated by this method contains a lot of noise. In the proposed RG-SSL
method, the heat-kernel function is used to construct the graph and calculate the edge weights based
on the Euclidean distance. However, the Euclidean distance and consequently the weights are very
sensitive to noise.

The accuracy of the generated graph will greatly affect the positioning performance. When the
vertices in the graph are far away from each other, the graph weight is much smaller than the graph
weight calculated for neighboring vertices. Therefore, the graph weight matrix is sparse. Since the CS
method is robust to noisy data, we can use it to estimate the graph weight matrix [35]. As mentioned in
Section 2, we denote the vertex set V = {c1, c2, . . . , c`, c`+1, . . . , c`+u}. Given the measurement matrix
A and the matrix for unknown reconstruction coefficients W we can reconstruct a sparse W from
V = AW using:

min
W
‖W‖0, s.t. V = AW, (32)

where ‖ • ‖0 denotes the `0-norm. The `0-norm minimization is NP-hard. However, if the solution
is sparse enough, the following convex `1-norm minimization can be used to solve the sparse
representation problem:

min
W
‖W‖1, s.t. V = AW, (33)

Suppose the noise in the collected RSS is denoted by ξ. Then,

V = AW + ξ = [A I]

[
W
ξ

]
= BW′, (34)

where B = [A I] and W′ =

[
W
ξ

]
. Thus the `1-norm minimization can be rewritten as:

min
W′
‖W′‖1, s.t. V = BW′, (35)

For each ci in the vertex set, the measurement matrix Bi is constructed as B =

[c1, . . . , ci−1, ci+1, . . . , c`+u, I] and w′i is calculated using `1-norm minimization:

min
w′i
‖w′i‖1, s.t. ci = Biw′i , (36)

where w′i is the i-th column of the matrix W. Then the graph weights wij are obtained using:

wij =


w′i(j), if j < i
w′i(j− 1), if j > i
0, if j = i

, (37)
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where i, j ∈ {1, 2, . . . , `+ u} and w′i(j) denotes the j-th element of vector w′.

7.2. Experimental Results

Since the labels of all the vertices in the graph are necessary for sparse reconstruction of the graph
weight matrix, CS method can only be used in the offline phase. The weighted matrices calculated
by the heat-kernel function and CS method are shown in Figure 14a,b, respectively. Each pixel in the
figure represents the weight value wij between two vertices and 0 ≤ wij ≤ 1. A larger value of wij
between vertex Si and Sj means a stronger correlation between them. If the vertices around the vertex
Si have strong correlations with the vertex Si, we can get a more accurate RSS estimates for the vertex
Si. As we can see from Figure 14a, since the measurements are noisy, the weight matrix contains
some errors. In the weight matrix, the weight values are very small between different vertices, which
means the relationship between different vertices is very weak. Therefore, the information transferred
between different vertices is inaccurate and the estimated RSS values using this weight matrix are
not accurate enough. As a result, the localization accuracy is reduced by the inaccurate relationship
between different locations.

(a) (b)

Figure 14. Comparison of Weighted graph. (a) Weighted graph calculated by heat kernel method;
(b) Weighted graph calculated by CS method.

Due to the sparsity of the graph and robustness to noise, the weight matrix is recovered more
precisely than the traditional heat-kernel function. The relationship between different vertices in
Figure 14b is much clearer than Figure 14a. Comparing Figure 14b with Figure 14a, the graph weight
values calculated by the CS method are much larger than those obtained using the heat-kernel. As
a result, it is possible to get more useful information between different vertices using the matrix
in Figure 14b. Therefore, the estimated RSS values are more accurate than those calculated by the
heat-kernel as shown in Figure 15a,b. Based on the matrix calculated by the CS method, the localization
results are more accurate in Figure 15b. From Figure 16 we can learn that the cumulative probability
is 71.4% when the location error is 2 m and the localization accuracy is increased by 7.9% relative to
RG-SSL, 11.5% relative to G-SSL and SPORT, 17.1% compared to SCTW algorithm. Thanks to the more
accurate radio map, the maximum localization error has been further reduced to 3.5 m. Meanwhile, the
average localization error has been reduced from 2.07 m to 1.98 m. In summary, the RSG-SSL algorithm
is more robust to noise and has achieved a better performance than RG-SSL algorithm and much
better than other algorithms. By using the RSG-SSL method, the localization accuracy is improved
significantly in crowdsourcing WLAN indoor localization system. As a result, the localization system
could provide us with much better service.
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Figure 15. Smoothed signal distribution of radio map and localization results using RSG-SSL.
(a) Smoothed signal distribution of radio map; (b) Localization results.
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Figure 16. Cumulative distribution function of localization error.

8. Conclusions

In this paper, the effect of noise and erroneous measurements caused by the crowdsourced data
are reduced using the relationship between RSS values of different locations. The LR method is
used to solve the device diversity problem automatically in crowdsourcing system at the beginning.
After getting the uniform radio map, the RG-SSL method is proposed to improve the localization
accuracy by smoothing the RSS values and using label propagation to better estimate the radio map.
The relationship between the RSS values is represented using a weighted graph connecting different
locations. Additionally, the RSS difference is introduced in the traditional G-SSL method to achieve
a better performance. In order to obtain the RSS difference, a CS-based method is used to precisely
localize the location of the APs. Noisy RSS values can be corrected using the proposed RG-SSL method,
resulting in a higher localization accuracy. Due to the sparsity of the weighted graph in the G-SSL,
the weighted graph is reconstructed more accurately by the CS method compared to the traditional
heat-kernel function which is the idea of the proposed RSG-SSL method. The experimental results
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performed at the University of Toronto show that a smoothed radio map and online RSS values are
obtained by RG-SSL method and the localization accuracy is improved. The RSG-SSL method applied
in the offline phase also resulted in an improved performance.
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