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Abstract: Intraoperative ultrasound (iUS) imaging is routinely performed to assist neurosurgeons
during tumor surgery. In particular, the identification of the possible presence of residual tumors
at the end of the intervention is crucial for the operation outcome. B-mode ultrasound remains the
standard modality because it depicts brain structures well. However, tumorous tissue is hard to
differentiate from resection cavity borders, blood and artifacts. On the other hand, contrast enhanced
ultrasound (CEUS) highlights residuals of the tumor, but the interpretation of the image is complex.
Therefore, an assistance system to support the identification of tumor remnants in the iUS data is
needed. Our approach is based on image segmentation and data fusion techniques. It consists of
combining relevant information, automatically extracted from both intraoperative B-mode and CEUS
image data, according to decision rules that model the analysis process of neurosurgeons to interpret
the iUS data. The method was tested on an image dataset of 23 patients suffering from glioblastoma.
The detection rate of brain areas with tumor residuals reached by the algorithm was qualitatively
and quantitatively compared with manual annotations provided by experts. The results showed that
the assistance tool was able to successfully identify areas with suspicious tissue.

Keywords: assistance system; neurosurgery; operating room; glioblastoma

1. Introduction

Nowadays, brain tumor surgeries are guided using neuronavigation systems, which are
commonly based on anatomical preoperative 3D MR data together with functional data. Such systems
assist accurately the first steps of the operation, which consist of locating the tumor under the skull
and defining the opening access. However, right after skull opening, the craniotomy and dura mater
opening, the brain tissue shifts up to 2 cm. The tumor location and shape indicated in the preoperative
MR data is not accurate anymore. Experienced neurosurgeons use their knowledge about the haptic
and the visual information of the tumors in comparison to the surrounding edema and brain, for the
orientation, preparation and definition of the tumor borders. However, some tumors have complex
irregular shapes, and parts can be hidden in the backside of anatomical structures. Intraoperative
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imaging is therefore crucial to provide the surgeon with an update representation of the current tumor
state during the operation. Modern intraoperative imaging modalities for neurosurgery are MR,
fluorescence and ultrasound modalities. Intraoperative MR imaging delivers image data of quality
similar to pre- and post-operative datasets. However, investment and follow-up costs limit its use to
a few hospitals only. Fluorescence imaging requires the oral taking by patients of a contrast agent,
5-aminolevulinic acid (5-ALA). This substance accumulates in malignant tumor cells and is emitted
as a red fluorescence under blue light excitation (400 nm). Margins of surface tumor are visualized
in the operating microscope view during the operation. The main limitations of this technique are:
(1) the high cost of the drug and (2) the visualization of brain and tumor surface only. Therefore,
intraoperative ultrasound (iUS) imaging is the most used imaging modality during brain tumor
operations. Ultrasound devices have the advantage of being easy to use in the operating room and
provide the benefit of real-time visualization of the brain anatomical structures. Hence, extra image
acquisitions may modify the surgical workflow a little. Additionally, they are relatively low cost
in comparison to other medical imaging systems. This intraoperative modality is routinely used to
guide brain tumor operations. Particularly, iUS aims at identifying the presence of possible tumor
residuals at the end of the operation, in order to remove as much tumor tissue as possible [1,2]. This is
a crucial aspect since several studies showed that a gross-total resection has a positive impact on the
progression-free survival of patients. Figure 1 illustrates the surgeon using a US probe placed at the
patient open head surface during the intraoperative US image acquisition.

Figure 1. Intraoperative 2D image acquisition with an ultrasound (US) probe placed at the patient
open head surface during brain tumor surgery.

Intraoperative B-mode ultrasound (iB-mode) remains the most popular modality used to support
brain tumor surgery, but is not always suitable. Hence, specific brain tumors (e.g., glial tumors)
are often represented by a weak contrast, and the exact position of tumor boundaries is hard to
define. Furthermore, the tumor residuals, which are located beyond the borders of the resection
cavity, are hardly differentiable from blood and artifacts. The use of an ultrasound contrast agent to
enhance brain tumor tissue and residual tumor is currently being developed. The technique is not
new; contrast enhanced ultrasound (CEUS) imaging is routinely performed, and it was already tested
in other medical areas like breast tumor diagnosis [3,4], liver lesions [5,6], renal masses [7–9] or blood
vessel identification [10–12]. Additionally, improvements of brain tumor tissues and tumor residuals
enhancement by using CEUS were effectively demonstrated by several recent studies [13–17].

However, the identification of tumor residuals in the iUS data remains in general complex for
the expert-eye. Depending on the position of the tumor within the patient’s head, the resection cavity,
as well as other cerebral structures like blood vessels, potentially ventricles and bone structures,
are usually well depicted in the iB-mode image data. However, the possible tumor residuals are
hardly differentiable from other hyperechogenic structures, like the border of the resection cavity,
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blood or artifacts (Figure 2, left). Furthermore, it is only attempted to enhance the blood vessels and
vascularized structures, like tumors, in the iCEUS image data. Furthermore, the borders of the resection
cavity, which are important structures that are needed to analyze the images correctly, are hardly or
not at all visible (Figure 2, right). The combination of the information in the iB-mode and iCEUS image
data, also called data fusion, can support the identification of tumor residuals.

B-mode CEUS

Blood

Resection cavity

Tumor 
residuals

Figure 2. Intraoperative B-mode ultrasound (iB-mode) (left) and iCEUS (contrast enhanced ultrasound
(CEUS)) (right) patient image data acquired at the end of a brain tumor operation.

Image fusion consists of combining relevant information from various source images of the same
scene into a single resulting image called the “fused image”. The aim of fusion is to preserve specific
details of the source images within the fused image to obtain a better representation and understanding
of the scene. In theory, three levels of image fusion can be distinguished: the pixel level, the feature level
and the decision level [18,19]. The initial level is known as the lowest level because it directly involves
the pixels of the source images. The second level utilizes features or objects extracted from source
images. The highest level involves decision rules. This technique is largely used in many applications
like remote sensing [20,21], computer vision [22,23] and medical imaging [24,25]. In the medical field,
image fusion is mainly applied to provide a high quality in patient data representation by using images
from different modalities. The objectives of image fusion are mainly the improvement of the image’s
contrast and rectification of image degradation. Image fusion is performed using various fundamental
methods. Das et al. [26] combined a non-subsampled contourlet transform (NSCT) with a reduced
pulse-coupled neural network and fuzzy logic technique to overcome the image fusion problems such
as contrast reduction and image degradations. Zhu et al. employed a dictionary learning approach [27].
Due to the limited and redundant information in image patches created by using traditional dictionary
learning methods, an alternative scheme of image patch sampling and clustering was proposed.
Then, the K-SVD algorithm was used for training of patch groups into compact sub-dictionaries,
which were then combined into a complete dictionary. Furthermore, a multimodal (CT/MRI) image
fusion method based on NSCT was introduced by Bhatnagar et al. [28]. The resultant low and
high-frequency coefficients were respectively combined through the phase congruency and directive
contrast-based models. Then, the inverse NSCT was applied on composite coefficients to recover the
fused image. Since nature-inspired techniques became popular in computer vision, they have been
applied extensively in medical image fusion. Xu et al. [29] have fused multimodal medical images by
means of adaptive pulse-coupled neural networks (PCNN). They proposed automatic and optimum
parameters tuning of the PCNN model by using the quantum-behaved particle swarm optimization
algorithm. In the same fashion, the swarm intelligence of the ant colony and neural network was used
for fusing images from PET, MRI, SPECT and MRI modalities [30]. The loss of edges and directional
information often occurs during feeding of neural network inputs. Therefore, to solve this problem,
the ant colony optimization and statistical scaling techniques were respectively used to detect and
enhance the image’s edges before the neural network training and testing. Above all, the image
fusion has demonstrated its effectiveness for planning and intraoperative interventions, especially in
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neurosurgery. Fusion techniques allow, in this context, augmenting the visualization of anatomical
structures that are depicted only in one imaging modality or to monitor in time the evolution of
a disease. For instance, the CT-MR fusion images were used by Nemec et al. [31] for supporting the
surgeon to improve the surgical performance of temporal bone tumors. Furthermore, Prada et al. [32]
presented the fusion imaging between preoperative MRI and iUS for intra-operative ultrasound-based
navigation in the context of brain tumor removal. The combination of the MRI, characterized by good
spatial resolution and a wide field of view, and the iUS that provides real-time status of the brain
enables improvement of surgical outcomes. By the same token, an interesting review concerning image
fusion for precise target detection in radiosurgery, neurosurgery and hypofractionated radiotherapy
was presented in [33]. It is pointed out that the mixture of images such as MR and CT is useful to
avoid the damage to the nerves and blood vessels, to accurately locate tumors and to follow-up on the
postoperative treatment.

In this technical paper, we are concerned with the development of an image-processing approach
to aid the surgeon with the identification of brain areas including residual brain tumor based on both 3D
iB-mode and 3D-iCEUS imaging. Our approach retraces the neurosurgeon’s process for interpreting the
iUS image data. It is based on two assumptions. The tumor residuals are located beyond the resection
cavity wall (for patients who overcame a gross total resection). Additionally, the tumor residuals
are enhanced in the iUS image data. However, they are hardly distinguishable from blood, cavity
borders and artifacts in the iB-mode image data. Therefore, the method consists of extracting relevant
information from both iB-mode and CEUS modalities using automatic segmentation techniques and of
fusing them according to rules to keep the tumor residuals. This procedure corresponds to the second
and third level fusion methods. In the proposed methodology, the suspect tissues are overlaid on the
original 3D B-mode US to facilitate clinical interpretation. In this way, the physician decision regarding
the tumor removal task can be optimized. To the best of our knowledge, this is the first time that
a computer-assisted approach has been proposed to aid neurosurgeons in the detection of residual
tumor cells based on iUS imaging. However, it is important to note that this work was tested “offline”
on a limited database of patient images.

In the next section, the materials involved in this study and the image fusion approach proposed
for detecting residual brain tumor are described. The results obtained from the performed experiments
are presented and analyzed in Section 3. Experiment results are discussed in Section 4. Finally, Section 5
provides the conclusions of this work.

2. Materials and Methods

2.1. Patient Image Dataset

At the end of brain tumor operations, 3D iB-mode and 3D iCEUS data were acquired using a
neuronavigation system (SonoNavigator, Localite, Sankt Augustin, Germany) coupled with an ultrasound
device (AplioXG, Toshiba Medical Systems Europe, Zoetermeer, The Netherlands). The resection cavity
was filled with physiological liquid for the propagation of the ultrasound waves. A large linear array
transducer (contact area: 13 mm × 46 mm; range of frequency: 4.8 to 11.0 MHz; average frequency:
8 MHz; frame rate of the 2D ultrasound images: 29 fps (frames per second)) was positioned through
the skull opening, in contact with the brain surface and the resection cavity surface. The surgeon
scanned the cerebral region of interest with the 2D ultrasound transducer whose position was followed
by the navigation system’s optical tracking module. A 3D ultrasound volume was then reconstructed
from the 2D slices by the neuronavigation system. The 3D iCEUS data were obtained by injecting
4.8 mL of an intravenous ultrasound contrast agent (SonoVue, Bracco s.p.a, Milan, Italy) at a rate
of 3.0 mL/min using a syringe pump (ACIST VueJect, Bracco s.p.a, Milano, Italy) and the contrast
harmonic imaging (CHI) modality [10]. The contrast agent injection was performed via the central
venous catheter positioned in the vena jugularis interna. In the original 2D ultrasound images, the pixel
size is 0.422 mm × 0.422 mm, and the voxel size of the reconstructed 3D volumes is 1 × 1 × 1 mm3.
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An image database of patients with different kinds of tumors has been collected by the Department
of Neurosurgery at the University Hospital of Leipzig, in the context of a previous research project
funded by the German Research Society (Deutsche Forschungsgemeinschaft) and accepted by the
ethics commission of the University of Leipzig. Twenty three patients were included in this “offline”
analysis based on intraoperative ultrasound images (see Table 1), the histopathology of a glioblastoma
WHO Grade IV and a planned gross total or subtotal resection. Glioblastomas are tumors that infiltrate
the brain tissues, and their borders with healthy tissues are unclear. Therefore, the removal of the whole
tumor is a complex task for the surgeon. Possible tumor residuals in the 3D i-Bmode and iCEUS data
were manually segmented by four experts (neurosurgeons and scientists), who have had experience
with intraoperative ultrasound imaging of brain tumors (image data acquisition and analysis) for more
than seven years. The task was performed using radiological findings and postoperative MR image
data. For four patients, no tumor was visible in the iUS and MR image data. Radiological findings
are medical reports provided by radiologists in which possible operation complications (for example
blooding) and the presence of possible remnants of tumor tissue are described. These reports are
routinely achieved based on postoperative MR data.

Table 1. Brain tumor data from patients, such as: location, side and size of the tumor.

Patient Location Side Tumor Size in mL

1 frontotemporal left 45.3
2 temporal right 73.5
3 frontal right 11.5
4 temporal left 26.8
5 frontal left 14.7
6 temporal left 9.6
7 parietal left 24.4
8 frontal left 30.6
9 frontal left 11.5
10 frontal right 30.3
11 occipital left 55.6
12 frontal left 15.1
13 frontal right 43.6
14 frontal right 33.0
15 temporal right 33.4
16 frontal right 41.7
17 parieto-occipital right 46.9
18 frontal left 23.3
19 frontal right 72.2
20 parietal left 40.9
21 frontal left 1.5
22 frontal left 17.9
23 parieto-occipital left 22.9

2.2. Image Fusion for Residual Brain Tumor Identification

The approach to automatically identify tumor residuals based on iUS image data is depicted in
(Figure 3). It consists of automatically segmenting target structures in the image data and then of
optimally fusing them to keep only those that provide relevant information. The target structures,
i.e., the residual tumors, are highlighted in both B-mode and CEUS modalities. Therefore, gray-level
intensities were chosen as the feature for extracting tumor tissue.
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Figure 3. Image processing approach for brain tumor residual identification. The method is subdivided
into four main steps. First, an image preprocessing is performed for removing the ultrasound image
border by using erosion filters. Second, highlighted structures are extracted in both imaging modalities
by applying the Otsu multi-level thresholding method. Third, segmented structures are combined via
a fused rule defined by Equation (1). Finally, a post-processing stage is performed to remove small
structures detected that are in general false positives.

A preprocessing stage was previously carried out by extracting foreground masks for both images
(i.e., B-mode and CEUS). Given an image I(i, j, k) where the background contains voxels of value zero,
the mask M is obtained as M = I(i, j, k) > 0. Then, erosion filters (with cubic/quadratic structuring
elements of 9× 9× 3 and 3× 3× 1 for B-mode and CEUS, respectively) were applied on these masks.
The multiplication of original images by the filtered masks was performed for removing artifacts
located at the image’s border and due to the contact of the ultrasound transducer with the brain surface.

In a second step, high intensity structures in the iUS data were automatically extracted using
the Otsu multilevel thresholding method [34,35]. The Otsu method is one of the better and stable
thresholding algorithms, which can be reliably applied on real images. Its uniformity results in bi-level
thresholding allowing one to separate the objects and background by maximizing the between class
variance [36]. Multilevel thresholding segments a level gray image into several distinct homogeneous
regions by increasing the number N of estimated thresholds (Ti). The quantity of segmented classes
is related to the number of estimated thresholds by N − 1. It should be noticed that N should have
a moderate value in order that multi-thresholding algorithms could get reliable results. In the proposed
implementation, N is not recommended to go higher than five; unfortunately, thresholding algorithms
cannot automatically determine the number of thresholds [37], and the number of thresholds has to be
fixed, focalizing the targeted regions.

In the 3D iB-mode images the highlighted structures are mainly borders of the resection cavity
including blood and possible tumor residuals, but also blood vessels, bone structures and artifacts.
In the 3D iCEUS images, they mainly consist of tumor residuals and vascular structures. The number of
classes for Otsu thresholding method was experimentally set to four and three for iB-mode and iCEUS,
respectively. Additionally, the voxels classified in the highest intensity class were kept as the target
(i.e., tumor remnant). Lastly, a post-processing stage based on the opening filter (with structuring
element of 3× 3× 1) was applied to reduce small false positive regions detected by the algorithm.
The opening operation consists of an erosion followed by a dilation step, such that f ◦ g = ( f 	 g)⊕ g,
where f is the image and g the structuring function.

For identifying suspicious brain tissue, the decision level fusion is performed based on expert
knowledge. The main idea consists of selecting the structures that are enhanced in the 3D iCEUS
images and that are located in the neighborhood of the cavity border as depicted in the 3D iB-mode
images (Figure 4). This operation is performed by keeping the intersection of the segmented regions in
both modalities. Let X′ and Y′ be the extracted structures from X and Y, respectively. With X′ ⊂ X
and Y′ ⊂ Y, the fused image is obtained via the decision rules described as follows:
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Z(i, j, k) =

{
1, if X′(i, j, k) ∩Y′(i, j, k)=1;

0, otherwise
(1)

where Z(i, j, k), X′(i, j, k) and Y′(i, j, k) represent the voxels of volume Z, X′ and Y′, respectively.

B-mode CEUS Feature-level 
fusion

Decision-level 
fusion 

Resection 
cavity 

Cavity 
border, 
blood, 
artifact

Residual 
tumors 

Other 
structures

Figure 4. Image fusion approach for residual brain tumor identification. The border of the resection
cavity and highlighted structures are respectively extracted from B-mode and CEUS. Afterwards,
they are combined on the feature-level fusion step. Finally, the expected result is obtained by selecting
only specific structures based on the rules defined in the decision-level fusion step.

2.3. Validation

2.3.1. Qualitative Validation

The brain areas’ locations, automatically detected by the algorithm, are compared with the manual
annotations of tumor residuals (i.e., ground truth). The following code, A/B, was used to qualitatively
assess the performance of the approach. The score A provides the degree of success of the algorithm
for the detection of residual tumors. A score of 1 indicates that all areas including tumor tissue
were identified. A score of 0 means that a part of the total number of manually-annotated regions
was detected. Additionally, a score of −1 indicates the failure of the algorithm. The second score B
(−1 or 1) reveals the additional detection of false positives (FP) by the algorithm, i.e., healthy structures
misclassified as remnant tumorous structures. The score of +1 indicates the presence of FP, while
the value of −1 shows the absence of FP. It is noteworthy that in the case of patients without tumor
residuals, the first score A is omitted. Hence:

1 /−1 : all tumorous regions detected;
0 /−1 : a part of tumor residuals detected;
−1/−1 : detection failure;

1 / 1 : all tumorous regions detected and extra suspect regions (FP), as well;
0 / 1 : a part of tumorous structures detected and FP, as well;
−1 / 1 : extraction only of FP;

/−1 : patient without tumor residuals and no FP detected;
/ 1 : patient without tumor residuals and FP extracted.

2.3.2. Quantitative Validation

Residuals of tumor extracted by our algorithm were quantitatively compared with manual
annotations considered as ground truth. Manual segmentation in the iUS data is a complex task due to
the unclear representation of tumorous structure borders. Therefore, the method validation was done
in two steps, namely the comparison of (1) the localization of areas containing the tumor residuals and
(2) voxel classification.

First, the tumorous structures detected by the algorithm and the manual annotations were
enclosed in 3D bounding boxes. The overlap coefficient (Overlap) of these boxes was used as a
similarity measure to assess the spatial localization of tumor residuals as proposed by Dollar et al. [38].
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Indeed, an Overlap value of 1 is reached when one box is completely enclosed in the other one.
Moreover, a value of 0 occurs when there is no intersection between both boxes. Several boxes were
used when different disconnected regions were detected. The final Overlap index was the average of
indices calculated for each box. According to the application, this coefficient allows one to evaluate
detection methods through a binary output based on a threshold value (i.e., detected or no detected).
For instance, threshold values of 0.3 and 0.5 were set for target detection in [39] and [40], respectively.
Thus, in our application, a threshold value of 0.5 has been selected for evaluating the proposed
approach. The task of tumor residuals’ detection was considered as succeed when Overlap ≥ 0.5 and
failed otherwise. This evaluation methodology, as illustrated in the 3D iUS images in Figure 5 for
3 patients (1, 6 and 16), provides information about the intersection rate between the two volume
boxes. The green and red bounding boxes encompass respectively the brain areas identified by the
algorithm and the ground truths. This similarity measure is described as follows:

Overlap =
BBal ∩ BBgt

min(BBal , BBgt)
(2)

where BBal and BBgt are the bounding boxes enclosing the brain areas detected by the algorithm and
those manually annotated (ground truth), respectively.

BBgt

BBal

Resection 
cavity BBgt

Resection 
cavity

BBal

Resection 
cavity

BBgt
BBal

Figure 5. 3D representation of the quantitative evaluation approach on Patients 1, 6 and 16. BBd is the
algorithm result’s bounding box, and BBgt is the ground truth’s bounding box.

Second, the additional metrics, including accuracy (Acc), area under the ROC curve (AUC) [41]
and error rate (Err) or percentage of wrong classifications [42], were calculated to evaluate the voxels
classification as the tumor residual or healthy tissue by the method. This evaluation was carried out by
interactively defining a region of interest enclosing the resection cavity where the remnant tumors can
be found. Furthermore, these metrics were computed only for the cases where the method succeeds to
identify tumor residuals based on the first quantitative metric (i.e., Overlap ≥ 0.5). These similarity
measures take values in the interval [0,1]. Acc and AUC values of 1, and Err of 0 value represent the
best performance of the algorithm. They are calculated as:

Acc =
TP + TN

TP + TN + FP + FN
(3)

AUC =
1
2
(

TN
TN + FP

+
TP

TP + FN
) (4)

Err =
FP + FN

TP + TN + FP + FN
(5)

where TP, TN, FP and FN are:
True positive (voxels correctly classified as tumorous tissue), true negative (voxels correctly

classified as healthy tissue), false positive (healthy tissue misclassified as tumor region) and false
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negative (undetected tumorous tissue), respectively. It is important to note that the Acc is correlated to
the Err, but they were used for easy interpretation of the final results in term of accuracy or error rates.

3. Experimental Results

This section provides the evaluation results of the proposed method for automatically identifying
possible brain tumor residuals. The implementation was performed with the Mevislab software
development kit. The method was tested “offline” on the data of 23 patients with glioblastoma where
19 patients (Set A, Patients 1 to 19) presented tumor residuals, while no remnant tumor tissue was
indicated for the remaining four patients (Set B, Patients 20 to 23).

3.1. Evaluation of the Influence of the Class Number in the Segmentation Step

The performance of the system is dependent on the setting of parameters such as the class
number (multilevel thresholding Otsu method) and the filter window sizes in the erosion and opening
operations. The influence of the class number on the segmentation results was estimated. Eight setting
possibilities of class numbers were analyzed. Additionally, the notation α–β was adopted to represent
the class numbers in B-mode and CEUS, respectively. Figure 6 shows the mean values of AUC and Acc
calculated on the patient set using these eight configurations. It can be clearly observed that the highest
Acc is achieved by selecting a large number of classes (e.g., 5–5). On the other hand, the highest AUC
is obtained with a low number of classes (e.g., 3–2). When α and β increase, the system becomes more
selective or less sensitive. This means that the probability to detect highlighted structures, including
tumor residuals and other hyperechogenic structures, is reduced. On the contrary, it becomes more
sensitive when α and β decrease (large values of AUC). Here, the probability to detect these highlighted
structures is maximized. The first objective of the tool is rather the tumor remnants’ localization and not
accurate segmentation. Therefore, the optimal number of classes should be obtained when a balance
between high values of both Acc and AUC is reached. A trade-off was obtained by setting α and β to
the values of 4 and 3.

Setting of class number (B-mode -- CEUS)
1 2 3 4 5 6 7 8

A
U

C
 a

nd
 A

cc
 r

at
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC
Acc

5--5 5--4 4--4 5--3 4--3 3--3 4--2 3--2

Figure 6. AUC and Acc performance rates computed for several numbers of class configurations in
B-mode and CEUS.
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3.2. Method Evaluation

The outcomes, obtained by the automatic proposed method, are presented in Figures 7–9.
In addition, the algorithm results (in green) and the ground truths (in red) are overlaid on a selected
slice of the 3D iB-mode images for visualization purposes. Table 2 summarizes the qualitative and
quantitative evaluation. The former is based on expert observations, and the latter is performed by
using the overlap, accuracy, area under the curve and error rate measures. The experiments showed
that our approach succeeded in detecting the position of all tumor remnant areas in 15 out of 19 patients
(Overlap ≥ 0.5). For these cases, a qualitative coding of 1/−1 (all tumorous regions were detected) or
1/1 (all tumorous regions were detected and extra suspected regions, as well) was observed. Regarding
the four unsuccessful cases, the areas with tumorous tissue were partially detected in two patients
(Patients 2 and 7, where Overlap < 0.5), and the algorithm failed in the two other cases (Patients 14
and 18, where Overlap = 0). One failure reason is the position of tumor residuals near the image top
(Patients 7 and 18). These areas are removed in the preprocessing steps to eliminate artifacts caused by
the US probe. The method was also tested on patient data from the set B where false positives were
detected in the cases of Patients 20 and 23 and none for Patients 21 and 22.

2

6

1

4 5

3

Figure 7. Results of residual tumor identification from Patients 1 to 6. The results obtained with
the proposed automatic method (in green) and in the manual segmentation (in red) are overlaid on
a selected slice of the 3D iB-mode image data. The algorithm missed tumorous structures in Patient 2
and identified extra regions in Patient 4.
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7

11 12

9

10

8

Figure 8. Results of residual tumor identification from Patients 7 to 12. The results obtained by using
the proposed automatic method (in green) are superimposed with the expert manual segmentation
(in red). The algorithm missed the detection of other tumorous structures in the case of Patient 7, and it
identified a large region in the case of Patient 10.

19

13 14

16 17 18

15

Figure 9. Results of residual tumor identification from Patients 13 to 19. The results obtained by using
the proposed automatic method (in green) are overlaid with the expert manual segmentation (in red).
The algorithm missed completely the target in the case of Patients 14 and 18. In addition, it detected
an extra region in the case of Patient 15.
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Table 2. Overlap, accuracy (Acc), area under the curve (AUC) and error rate (Err) measures obtained
from the identification of residual brain tumors by using the proposed data fusion approach. Overlap
values above 0.5 indicate the successful localization of the residual tumor (success = 1), and those under
this threshold value mean failure (success = 0). Patients 1 to 19 presented tumor residuals, while tumor
tissue was completely removed during the operation for Patients 20 to 23.

Patient Qualitative Overlap Success Acc AUC Err

1 1/−1 0.5307 1 0.9879 0.8405 0.0121
2 0/−1 0.3000 0 – – –
3 1/−1 0.6875 1 0.9795 0.899 0.0205
4 1/1 0.6666 1 0.9493 0.7650 0.0507
5 1/−1 0.7551 1 0.8105 0.8442 0.1895
6 1/−1 0.6913 1 0.9777 0.8803 0.0223
7 0/−1 0.2571 0 – – –
8 1/−1 0.8888 1 0.9618 0.6296 0.0382
9 1/−1 0.8500 1 0.9699 0.6642 0.0301

10 1/−1 1.0000 1 0.8794 0.8954 0.1206
11 1/−1 0.5053 1 0.9528 0.5367 0.0472
12 1/−1 1.0000 1 0.9522 0.5269 0.0478
13 1/−1 0.7173 1 0.9697 0.6257 0.0303
14 −1/1 0 0 – – –
15 1/−1 0.7222 1 0.9347 0.6571 0.0653
16 1/−1 0.7741 1 0.9864 0.7869 0.0135
17 1/-1 0.8000 1 0.9721 0.5914 0.0279
18 −1/1 0 0 – – –
19 1/−1 0.6464 1 0.9766 0.8837 0.0234
20 /1 – – – – –
21 /−1 – – – – –
22 /−1 – – – – –
23 /1 – – – – –

Additionally, three cases that include false positives were found (Patients 4, 14, 18). These areas
correspond to hyperechogenic structures (for example, bone and blood on the cavity border) in both
iB-mode and iCEUS image data, and they are therefore extracted by the method. However, when the
false positives are detected in areas far away from the resection cavity (e.g., Patients 4 and 18), these
outcomes do not affect the clinical interpretation of the data because tumor residuals can be found
only in the cavity.

In general, the quantitative metric used for estimating the tumor residuals’ localization sustains
the expert classifications. Overlap values lower than 0.5 were obtained when areas with tumor residuals
were partly or not detected by the approach (Patients 2, 7, 14 and 18). However, the absolute value of
the Overlap coefficients does not provide a quality rate about the segmentation of tumor remnants.
For instance, a value of 1 was reached for Patient 10 because the boxes were included in each other,
but this case does not show the best visual result. The other metrics measure objectively the voxel
classification quality. The highest accuracy values (Acc ≥ 0.97) and lowest error rate (Err < 0.03)
were obtained for Patients 1, 3, 6, 16, 17 and 19, because the algorithm detected correctly most of the
true positives. Moreover, good accuracy scores (0.93 ≤ Acc ≤ 0.96) and error rates (Err < 0.08) were
reached in the cases of Patients 4, 8, 9, 11, 12, 13 and 15. Additionally, the lowest scores (Acc of 0.8105
and 0.8794, Err of 0.1895 and 0.1206) were achieved for Patients 5 and 10. In addition, the AUC rates
show how well true positives and false positives can be properly distinguished by the method.

4. Discussion

4.1. General Approach

The automatic detection of brain areas including tumor residuals is based on the representation
of tumor tissue in iB-mode and iCEUS image data. Ultrasound contrast enhancement is visible
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only in vascularized tissue, like tumors or vascular structures. Therefore, these structures are easily
distinguishable from surrounding lobar parenchyma in the iCEUS data. In some cases, local brain tissue
edema and local small blood layers show a slight enhancement, but they are different in echogenity
to normal tissue in B-mode. Besides, with our linear probe, we have focused on the tumor and the
surrounding tissue. Therefore, the basal ganglia area was mainly out of our focus, and in the remaining
cases, we found no remarkable higher enhancement. Because this region plays a relevant role in
the brain [43], a study taking into account the problem of tumor residual detection based on CEUS
close to this area is important in the future. However, the iCEUS modality is still at the evaluation
stage for brain tumor applications. The comparison of highlighted areas in the iCEUS data with their
histological findings on the same patient dataset was performed previously [16]. A sensitivity of 85%
and a specificity of 28% were obtained. Moreover, the evaluation of the approach was performed
using manual segmentation, the reliability of which is questionable. As described previously, four
experts (neurosurgeons and scientists) with experience with intraoperative ultrasound imaging were
involved in the manual segmentation. Postoperative MR data and radiological findings were used
to confirm the annotations. Even if the certainty about the manual segmentation of tumor residuals
has not been proven, no better validation method is currently available. Therefore, first, a global
quantitative evaluation method based on an overlap similarity measure was used. It quantified the
position agreement of two regions, rather than the number of common elements (or voxels). This
method is more suitable when uncertainties on the target regions are obvious. Second, additional
metrics were used to evaluate the method in terms of voxel classification.

The manual and quantitative validation results showed three limitations in the approach of tumor
residual detection. Firstly, the current algorithm may miss residual tumors. Secondly, the algorithm
extracts extra regions, which were not labeled as residual tumors by the expert. Thirdly, regions
including tumor remnants segmented by the algorithm and in the ground truth have different sizes
and positions. These three points are discussed in the next paragraphs.

4.2. Influence of the Parameter Values in the Algorithm

The surgeon is sterile during the operation. Therefore, tactile interactions with the software
have to be limited. Fixed values for the parameters are required to increase the automation of tools.
Values of parameters in the pre-processing and post-processing steps were experimentally defined.
High intensity structures, in particular tumor residuals, are finer and thinner in the CEUS image
data. Thus, filters of smaller sizes than those needed in B-mode are required to keep them. The other
parameters of the method are the number of classes in the segmentation process. Our tests showed
that the Acc values increase with a larger number of classes, while at the same time, the AUC values
decrease. Large AUC values lead to the detection of many voxels labeled as tumor residuals, but as
well as many false positives, which is not wished. The choice of 4–3 classes showed a good compromise.
This can be interpreted as the ability of the algorithm to localize regions with tumor residuals in the
images, rather than to provide an accurate segmentation of the tumor remnants. Moreover, the B-mode
modality is able to represent much more information (different anatomical structures) than the CEUS
technique (contrast agent). This explains that the optimal class number is smaller in CEUS than
in B-mode.

4.3. Failure of Residual Tumor Identification

The method failed at identifying the residual tumors correctly in four out of 19 patients (Patients 2,
7, 14 and 18). A first reason for failing is the image quality. The approach was tested on 3D US
volumes built based on acquired 2D images. The 3D reconstruction algorithm makes use of smoothing
functions; therefore, hyperechogenic structures appear to have lower contrasts in the 3D volumes.
Moreover, the time window of maximal contrast agent enhancement in the CEUS image data is short,
and the 3D acquisition requires a couple of seconds. This maximal enhancement time point may be
missed during the acquisition. This image quality drawback can be addressed by using directly raw
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data (2D images). However, with the current neuronavigation system used at the clinical University of
Leipzig, we have only access to the 3D iUS reconstructed volume and not to the original 2D iUS data.
A second reason is due to the algorithm itself. Artifacts located at the image borders are removed in
the preprocessing step (Section 2.2). In addition, through this process, tumor areas can be lost, as well.
Therefore, improvements in the pre-processing step and in the characterization of tumor residuals in
the iUS images are needed.

4.4. Extraction of Extra Regions by the Algorithm

Figure 10 depicts an example where extra regions, here the falx, are identified by the fusion method.
These structures are obviously not tumorous tissue because they are located far from the resection
cavity. Moreover, the elongated and indented shape of the extracted region is not characteristic of
tumor residuals whose shape is rather compact. However, this area was enhanced in the 3D iB-mode
and iCEUS image data and therefore extracted by the algorithm. A semi-automatic approach could be
suggested by interactively defining a region of interest enclosing the surrounding of the resection cavity
in order to limit the search volume of tumor residuals. Furthermore, Figure 10 gives an illustration
of the results reached with the automatic and semi-automatic methods for a specific case. The first
and second rows show the results obtained by using the automatic and semi-automatic methods,
respectively. The automatic method result is sufficient for the neurosurgeon, because he/she refers to
his knowledge to extract the correct information among the set that the algorithm suggests. Moreover,
the semi-automatic process could be automated by extracting the hole of the cavity.

Figure 10. Results of residual tumor identification from Patient 4: automatic versus semi-automatic
approaches. The automatic proposed method where the white arrows show extra regions detected
by the algorithm (Row 1). Correction of over residual tumor identification by using a semi-automatic
method based on an ROI (Row 2). The algorithm outcomes (in green) are superimposed with the expert
manual segmentation (in red).

4.5. Differences between the Brain Areas Detected by the Algorithm and in the Ground Truth

The quantitative evaluation showed that brain areas detected by the algorithm and segmented by
the experts have different positions and sizes. The algorithm extracts essentially image regions with
high intensities. On the other hand, the experts considered in addition the postoperative MR data
and the radiological findings to refine the regions including tumor tissue. The extraction of additional
features (e.g., texture and shape) could improve the tissue classification by using the automatic
approach. In conclusion, our approach is capable, at this current step, to point out suspicious brain
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areas in the iUS images rather than to segment the residuals of tumors. A better characterization of
tumor tissue by using shape descriptors and additional intraoperative ultrasound modalities, like
ultrasound perfusion, should improve the performance of automatic methods.

5. Conclusions

The problem of identifying the presence or the absence of residual brain tumor in iUS image
data was addressed in this work. Our hypothesis is: (1) residual tumorous tissue is most of the
time located beyond the borders of the resection cavity, which is well visible in B-mode modality
and (2) tumor tissue is highlighted in B-mode and CEUS modalities. Firstly, the approach consists
of extracting relevant information from the iUS image data. Moreover, secondly, it allows keeping
possible tumor remnants using image fusion techniques. Two kinds of evaluation were performed,
i.e., in terms of region localization containing the tumor residuals and in terms of the voxel being
correctly classified. The experiment showed that the method was able to successfully localize brain
regions, which possibly include tumor residuals for 15 out of 19 patients (Set A). Average values
of the accuracy, the area under the ROC curve and the error rate were 0.9507, 0.7351 and 0.0493,
respectively. A better characterization of the tumor residuals including texture descriptors, for example,
and additional intraoperative ultrasound modalities should improve the performance of the new
automatic approaches. Our approach represents a considerable advance in the computer-assisted
surgery field for automatic detection of residual brain tumors. Nevertheless, at this stage, it is important
to note that the method was tested “offline”, and it is still far from clinical application. Future works
will focus on method improvements and on its validation of a large patient database.
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