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Abstract: In this study, a radial basis function (RBF) neural network with three-layer feed forward 

architecture was developed to effectively predict the viscosity ratio of different ethylene 

glycol/water based nanofluids. A total of 216 experimental data involving CuO, TiO2, SiO2, and SiC 

nanoparticles were collected from the published literature to train and test the RBF neural network. 

The parameters including temperature, nanoparticle properties (size, volume fraction, and 

density), and viscosity of the base fluid were selected as the input variables of the RBF neural 

network. The investigations demonstrated that the viscosity ratio predicted by the RBF neural 

network agreed well with the experimental data. The root mean squared error (RMSE), mean 

absolute percentage error (MAPE), sum of squared error (SSE), and statistical coefficient of 

multiple determination (R2) were respectively 0.04615, 2.12738%, 0.46007, and 0.99925 for the total 

samples when the Spread was 0.3. In addition, the RBF neural network had a better ability for 

predicting the viscosity ratio of nanofluids than the typical Batchelor model and Chen model, and 

the prediction performance of RBF neural networks were affected by the size of the data set. 
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1. Introduction 

As a very important heat transfer medium, ethylene glycol/water mixtures are widely used in 

many different kinds of industrial equipment including car radiators, air conditioning systems, and 

liquid cooled computers [1]. In the past few decades, with the rapid development of various 

compact heat exchange components, the conventional ethylene glycol/water mixtures have been 

unable to effectively meet the ever-increasing demand for cooling due to their lower thermal 

conductivity. Therefore, how to develop enhanced heat transfer technology has become a very 

important problem in the fields of thermal engineering [2].  

Nanofluids, a special liquid-solid mixture containing a base fluid and nanoparticles (usually 

less than 100 nm), have drawn increasing attention recently because of their advantages in thermal 

conductivity and stability [3]. Many investigations indicated that nanofluids could be an effective 

technology to improve the heat transfer performance of systems using ethylene glycol/water 

mixtures as coolant [4]. For example, the experimental results of Vajjha and Das [5] showed that at 

the temperature of 299 K, the thermal conductivities of the 60:40 (by weight ratio) ethylene glycol/water 

mixture could be increased by about 12.3% by adding ZnO nanoparticles (29 nm) with a volume 

fraction of 2%. Sundar et al. [6] experimentally investigated the effects of Fe3O4 nanoparticles (13 nm) 

on three different kinds of ethylene glycol/water mixtures with weight ratios of 20:80, 40:60,  

and 60:40. They found that at the temperature of 60 °C and the nanoparticle volume fraction of 2%, 
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the thermal conductivity enhancements of the above three ethylene glycol/water mixtures were 46%, 

42%, and 33%, respectively. 

Thermo-physical parameters are very important factors that affect the heat and mass transfer 

performance of nanofluids [7–9]. Due to the fact that viscosity can significantly affect the flow 

internal resistance, inlet Reynolds number, and pressure drop, many experimental investigations 

have been carried out regarding the viscosity of different nanofluids. As reported by Azmi et al. [10], 

the viscosity of the 40:60 (by volume ratio) ethylene glycol/water mixture could be increased 

obviously by dispersing TiO2 nanoparticles. For example, the viscosity enhancement was about 12% 

when the nanoparticle volume fraction changed from 0.5% to 1.5%. Sundar et al. [11] investigated 

the viscosity variations of Fe3O4-ethylene glycol/water nanofluids with different nanoparticle 

fractions and working temperatures. Their experimental results indicated that the viscosity of 

ethylene glycol/water based nanofluids could be increased by increasing the nanoparticle volume 

fraction and decreasing temperature. At a nanoparticle volume fraction of 1%, the viscosity of the 

base fluid could be enhanced by 2.9 times. Chen et al. [12], Jamshidi et al. [13], Kulkarni et al. [14], 

Rudyak et al. [15], Namburu et al. [16], Lim et al. [17], Chiam et al. [18], and Li et al. [19] respectively 

measured the viscosity of various ethylene glycol/water mixture based nanofluids with the effects of 

different factors. According to their experimental results, it was found that a suspension of 

nanoparticles could enhance the viscosity of the base fluid in different degrees. Additionally, 

temperature, base fluid, and nanoparticle properties including volume fraction, size, type, and shape 

were the important factors affecting the enhancement of nanofluids’ viscosity.  

For the basis of the experimental research, the modeling and prediction of viscosity is also very 

important for understanding the rheological behavior of nanofluids. Murshed and Estellé [20] 

reviewed the latest developments of viscosity models for nanofluids. Their analysis indicated that 

although many theoretical models and empirical correlations have been developed for nanofluid 

viscosity, only a few of them were used for ethylene glycol/water based nanofluids. Additionally, 

since the effects of different factors on nanofluid viscosity were usually coupled and uncertain, it 

was still very difficult to accurately describe the viscosity characteristics of different nanofluids in a 

wide range of nanoparticle volume fractions, sizes, temperatures, etc. Therefore, how to develop an 

effective solution for the viscosity prediction of nanofluids is a hot topic in the field of nanofluids. 

Artificial neural networks (ANN), a black box data analysis approach, has a strong nonlinear 

mapping ability to establish the relationship between input and output variables without 

considering the detailed physical process. Due to the advantages of ANNs such as high speed, 

simplicity, and large capacity, various ANNs were put forward to solve the modeling and prediction 

problems of nanofluid viscosity [21]. Selecting five variables (temperature, nanoparticle volume 

fraction, nanoparticle size, viscosity of the base fluid, and relative density of the base fluid) and 

nanoparticles as the input, Yousefi et al. [22] developed a diffusional neural network (DNN) to 

predict the viscosity of six different types of nanofluids. As reported in their analysis, DNN could be 

used for predicting the viscosity of nanofluids with satisfactory accuracy. On this basic, Mehrabi et 

al. [23] analyzed the application of a Fuzzy C-Means-based Adaptive neuro-fuzzy inference system 

(FCM-ANFIS) for the viscosity prediction of various water based nanofluids. They found that the 

FCM-ANFIS predicted values agreed well with the experimental data. Attracted by the better 

nonlinear mapping and recognition abilities of ANN, Zhao et al. [24,25] investigated the feasibility of 

RBF neural networks for predicting the viscosity of two water based nanofluids containing Al2O3 

and CuO nanoparticles. Their results demonstrated that ANN was an effective tool in comparison 

with the traditional model-based approach for describing the enhancement behavior of nanofluid 

viscosity. They indicated that the addition of temperature as an input variable could improve the 

prediction performance of the RBF neural network.  

To the best of the authors’ knowledge, there are few publications that study the modeling and 

prediction of different ethylene glycol/water based nanofluids using ANN. Considering the 

advantages of RBF neural networks that are easier to design, and have faster training speed, higher 

training accuracy, stronger generalization ability, and stronger tolerance for input noise [26], this 

paper selects a RBF neural network as a competitive method for predicting the viscosity 
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characteristics of different ethylene glycol/water based nanofluids with different influence factors. 

Firstly, the basis theory and modeling process of the RBF neural network are introduced briefly.  

On this basis, the available measurements from various published studies are obtained to establish 

the data sample sets and train the RBF neural network for determining the network configuration. 

Finally, the RBF neural networks’ predicted results are compared with the experimental data to 

evaluate the prediction performance of the proposed model. 

2. Basic Theory of a RBF Neural Network 

Benefiting from the inspiration of the human brain’s structure and activity mechanism, many 

different artificial neural networks have been developed for different purposes including 

classification and regression. In the fields of curve-fitting and nonlinear predictive modeling, the 

RBF neural network proposed by Broomhead and Lowe [27] can exhibit a good ability because of its 

high accuracy and stability [28]. 

Figure 1 presents the basic structure of a typical three-layer RBF neural network. The input and 

output layers respectively correspond to the dendrite and synapse of biological neurons, which are 

used to mathematically describe the modeling object. The hidden layer, similar to the function of the 

cyton, plays a role of intermediation to process the input-output information and deliver it to the 

output layer. The connections between different layers are established through a series of artificial 

neurons and weights. 

···
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Figure 1. A typical three-layer RBF neural network. 

Theoretically, the modeling process of the RBF neural network is to solve the mapping from 
nX  to qY  ( , 1n q  ) in Euclidean space. Assuming that the input vector of the RBF neural network is 

X , the response of the k th neuron in the output layer ( q
ky Y ) can be obtained by using the 

following linear weighting function [29]. 

1

( ), ( 1,2, , )
m

k jk j

j

y R X k q


   (1) 

where jk  is the connection weight between the j th hidden layer neuron and the k  th output 

layer neuron. m  and q are the numbers of neurons in the corresponding layer, respectively. 

Different from many other ANNs, the response of the RBF neural network’s j th hidden layer 

neuron is usually determined by the RBF. When it selects a Gaussian function, the corresponding 

( )jR X  can be defined as, 
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where  is the Euclidean distance between the input vector X  and the j th neuron center jc . 

j  is the width of the j th neuron. 

Analyzing Equations (1) and (2), it can be easily found that the key of RBF neural network 

training is how to determine jk , jc , and j . In the past few decades, different unsupervised and 

supervised algorithms have been developed to solve this problem [30]. In this study, the network 

parameters are updated by using an orthogonal least squares (OLS) approach, of which the 

minimizing function is shown in Equation (3). More detailed information about OLS can be found  

in [31].  

2

1

min ( )
q

nk dk

k

J y y


   (3) 

where nky  and dky  are the network output and desired output of the k th output layer  

node, respectively. 

3. Modeling Implementation of a RBF Neural Network 

According to the above theory, the modeling process of the RBF neural network involves three 

main parts which are data preparation, training, and testing. Figure 2 depicts the basic applied flow 

chart of the RBF neural network for predicting the relative viscosity of ethylene glycol/water based 

nanofluids. The specific implementations are discussed in the following. 
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Figure 2. Implementation process of a RBF neural network for viscosity prediction. 
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3.1. Preparation of Viscosity Data 

As previously mentioned, many experimental investigations have been published to discuss the 

effects of different factors including temperature and nanoparticle properties (such as type, size, 

concentration, and shape) on the viscosity of ethylene glycol/water based nanofluids. Considering 

the integrity of the measuring information, a total of 216 viscosity data involving TiO2, CuO, SiO2, 

and SiC are obtained to establish the sample sets. The detailed information of the nanofluids 

regarding nanoparticle diameter ( pd ), nanoparticle volume fraction (φp), nanoparticle density ( p ), 

temperature (T ), and viscosity of the base fluid ( f ) and nanofluids ( nf ) are listed in Table 1. 

According to the modeling principle, 198 data (about 90%) are selected to train the RBF neural 

network, and the remaining 18 data (about 10%) are used to test the performance of the trained RBF 

neural network. 

Table 1. Viscosity information of ethylene glycol/water based nanofluids. 

Nanofluids 
TiO2-EG 

[12] 

SiO2-EG/W a 

[13] 

SiO2-EG/W b 

[13] 

CuO-EG/W c 

[14] 

SiO2-EG  

[15] 

CuO-EG/

W c [16] 

SiC-EG/W d 

[19] 

dp (nm) 25 10 10 30/45/50 18.1/28.3/45.6 29 30 

φp (%) 0.1–1.8 0.1 0.1 1–6 0.6–8.4 1–4 0.1–0.5 

ρp (kg/m3) 4230 2650 2650 6310 2650 6310 110 

T (°C) 20.1–60.2 28.45–59 28–59 −35–50 25–59 0–40 10–50 

μf (mPa.s) 3.87–23 0.98–1.68 1.6–3.11 2.33–99.5 4.08–18.5 4.35–11.5 9.2–11.34 

μnf/μf 0.81–1 1–1.15 1.05–1.13 1.1–4.65 1.04–2.02 1.14–2.09 1.13–1.29 

No. of data 27 11 10 80 31 12 45 

a EG/W: 25:75 by volume ratio; b EG/W: 50:50 by volume ratio; c EG/W: 60:40 by weight ratio; d EG/W: 

40:60 by weight ratio. 

To improve the learning and training performances of the RBF neural network, the following 

equation is used to normalize the input and output variables. 

min

max min

'
x x

x
x x





 (4) 

where x is the original value, x’ is the normalized value, and maxx  and minx  are the corresponding 

maximum and minimum of x. 

3.2. Configuration of a RBF Neural Network 

Considering the nonlinear characteristics of the ethylene glycol/water based nanofluid viscosity 

ratio with different factors, a three layer RBF neural network is developed in the present 

investigation. Temperature, nanoparticle diameter, nanoparticle volume fraction, nanoparticle 

density, and viscosity of the base fluid are selected as the input variables. The objective output of the 

RBF neural network is the viscosity ratio between the nanofluids and the base fluid. Therefore, the 

basic structure of the developed RBF neural network for predicting the viscosity ratio of ethylene 

glycol/water based nanofluids is 5-m-1, as illustrated in Figure 3. For the neurons, the numbers in 

the hidden layer (m) and other parameters are determined in the training process.  
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Figure 3. RBF neural network developed in this study. 

3.3. Evaluation Criteria 

To effectively evaluate the training and prediction performance of the RBF neural network, the 

following four important parameters are used. 

Root mean squared error (RMSE), 

2 1 2

1

1
( )

t

l l

l

RMSE P Q
t 

   (5) 

Mean absolute percentage error (MAPE),  

1

100% t
l l

l l

P Q
MAPE

t P


   (6) 

Sum of squared error (SSE), 

2

1

( )
t

l l

l

SSE P Q


   (7) 

Statistical coefficient of multiple determination (R2), 

2

2 1

2

1

( )

1

( )

t

l l

l

t

l

l

P Q

R

P







 



 (8) 

where P is the desired value, Q is the network output value, and t is the number of samples. 

4. Results and Discussion 

For the RBF neural network, the Spread is usually a very important factor influencing the 

training process. Figure 4 shows the relationships of the mean square error (MSE) and the number of 

hidden layer neurons with different Spreads. Analyzing the results reported in Figure 4, it is found 
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that for the same converged target, the neuron numbers in the hidden layer need to be increased 

obviously with the decrease of the Spread. When the Spread varies from 1 to 0.1, the corresponding 

neuron configuration of the RBF neural network are 5-38-1, 5-40-1, 5-56-1, 5-67-1, and 5-105-1, 

respectively. With the decrease of the Spread, the CPU time for computing the RBF neural network 

will also increase. At a Spread of 1, 0.5, 0.3, 0.2, and 0.1, the corresponding CPU times are 6.318, 

6.396, 8.798, 10.827, and 15.772 s, respectively. In addition, Table 2 lists the values of four evaluation 

criteria for predicting the viscosity ratio of ethylene glycol/water based nanofluids by using the RBF 

neural network with different Spreads. It can be seen from Table 2 that although all 
2R  are within 

the acceptable level of 0.99, the prediction performance of the RBF neural network is still affected by 

the value of the Spread, especially for the testing samples. Based on the comprehensive 

considerations of modeling complexity, prediction accuracy, and CPU time, the RBF neural network 

with the neuron configuration of 5-56-1 and Spread of 0.3 is used in this study. The related weights 

and biases of the 5-56-1 RBF neural network can be found in Table 3.  
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Figure 4. The relationships of mean square error (MSE) and the number of hidden layer neurons with 

different Spreads. 

Table 2. Performance evaluation of RBF neural networks with different Spreads. 

Object Evaluation Criteria 
Spread 

1 0.5 0.3 0.2 0.1 

Training samples 

RMSE 0.04651 0.04460 0.04630 0.04502 0.04400 

MAPE (%) 2.3335 2.27321 2.09967 1.93784 2.00530 

SSE 0.42829 0.39383 0.42454 0.40125 0.38337 

R2 0.99925 0.99932 0.99927 0.99930 0.99934 

Testing samples 

RMSE 0.09190 0.07035 0.04443 0.05124 0.10061 

MAPE (%) 4.65795 3.90042 2.43228 2.67720 4.27471 

SSE 0.15201 0.08908 0.03553 0.04727 0.18221 

R2 0.99590 0.99760 0.99904 0.99872 0.99508 

Total samples 

RMSE 0.05183 0.04728 0.04615 0.04557 0.05117 

MAPE (%) 2.52721 2.40881 2.12738 1.99945 2.19442 

SSE 0.58030 0.48291 0.46007 0.44852 0.56558 

R2 0.99906 0.99921 0.99925 0.99927 0.99908 

Table 3. Weight and bias coefficients of the developed RBF neural network. 

Neuron 

Hidden Layer Output Layer 

Weights (wij) a and Biases Weights (wij) b and Biases 

T dp φp ρp μf Biases μnf/μf Biases 

1 0.1616 0.6000 0.5952 1.0000 0.0817 2.7752 1.5072 0.0163 

2 −0.4874 0.6000 0.7143 1.0000 0.6859 2.7752 2.5903  
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3 0.6452 0.5660 0.3214 0.4200 0.0973 2.7752 0.0601  

4 0.8200 0.6000 0.7143 1.0000 0.0233 2.7752 3.4089  

5 0.4080 0.6000 0.0119 0.0174 0.1053 2.7752 −0.4782  

6 −0.1629 0.6000 0.7143 1.0000 0.2041 2.7752 24.6321  

7 0.4080 0.5660 0.9881 0.4200 0.1861 2.7752 −0.1055  

8 0.7818 0.2000 0.0119 0.4200 0.0211 2.7752 −0.0298  

9 −0.5716 0.6000 0.5952 1.0000 1.0000 2.7752 −2.4385  

10 0.4892 0.6000 0.1190 1.0000 0.0403 2.7752 0.0877  

11 0.3270 0.6000 0.7143 1.0000 0.0559 2.7752 2.0103  

12 −0.1629 0.6000 0.1190 1.0000 0.2041 2.7752 −16.7539  

13 0.8159 0.6000 0.0595 0.0174 0.0925 2.7752 0.2123  

14 0.3264 0.6000 0.0595 0.0174 0.1075 2.7752 1.5469  

15 0.4080 0.9120 0.4762 0.4200 0.1861 2.7752 0.1479  

16 0.9620 0.5660 0.5714 0.4200 0.0410 2.7752 0.2334  

17 0.4080 0.3620 0.1548 0.4200 0.1861 2.7752 −0.0212  

18 −0.1629 0.6000 0.5952 1.0000 0.2041 2.7752 −75.1746  

19 −0.4905 0.6000 0.1190 1.0000 0.6952 2.7752 −0.0522  

20 −0.4874 0.6000 0.5952 1.0000 0.6859 2.7752 −3.3888  

21 0.9819 0.5000 0.0476 0.6704 0.0389 2.7752 0.0377  

22 −0.1629 0.6000 0.4762 1.0000 0.2041 2.7752 115.2566  

23 0.6540 1.0000 0.7143 1.0000 0.0301 2.7752 1.0610  

24 0.6540 0.9000 0.7143 1.0000 0.0301 2.7752 −1.1272  

25 −0.3251 0.6000 0.5952 1.0000 0.3582 2.7752 0.2584  

25 −0.5685 0.6000 0.7143 1.0000 0.9855 2.7752 2.1391  

26 −0.5716 0.6000 0.4762 1.0000 1.0000 2.7752 1.2104  

27 0.4080 0.3620 1.0000 0.4200 0.1861 2.7752 0.4979  

28 0.4080 0.9120 1.0000 0.4200 0.1861 2.7752 0.2536  

29 0.6562 0.5000 0.2143 0.6704 0.0945 2.7752 −0.0974  

30 0.3270 0.6000 0.5952 1.0000 0.0559 2.7752 −3.6703  

31 0.4080 0.9120 0.0714 0.4200 0.1861 2.7752 0.1275  

32 0.4080 0.3620 0.4762 0.4200 0.1861 2.7752 0.2454  

33 0.4553 0.2000 0.0119 0.4200 0.0172 2.7752 0.1747  

34 1.0000 0.2000 0.0119 0.4200 0.0161 2.7752 0.1852  

35 0.1616 0.6000 0.4762 1.0000 0.0817 2.7752 −0.5112  

36 0.8169 0.6000 0.1190 1.0000 0.0234 2.7752 0.4325  

37 −0.4874 0.6000 0.4762 1.0000 0.6859 2.7752 1.6740  

38 −0.1629 0.6000 0.3571 1.0000 0.2041 2.7752 −107.8889  

39 0.3270 0.6000 0.4762 1.0000 0.0559 2.7752 1.4652  

40 0.1632 0.6000 0.0595 0.0174 0.1139 2.7752 0.9067  

41 0.8169 0.6000 0.5952 1.0000 0.0234 2.7752 −6.2589  

42 0.8169 0.6000 0.4762 1.0000 0.0234 2.7752 5.5200  

43 0.5739 0.5000 0.0119 0.6704 0.1182 2.7752 0.0349  

44 0.4080 0.3620 0.8095 0.4200 0.1861 2.7752 −0.1272  

45 0.4892 0.6000 0.5952 1.0000 0.0403 2.7752 0.6498  

46 −0.1629 0.6000 0.2381 1.0000 0.2041 2.7752 61.3817  

47 0.3283 0.5000 0.0119 0.6704 0.2312 2.7752 0.0577  

48 0.4080 0.5660 0.3095 0.4200 0.1861 2.7752 −0.1083  

49 0.2448 0.6000 0.0595 0.0174 0.1096 2.7752 −1.7397  

50 −0.4855 0.9000 0.7143 1.0000 0.6804 2.7752 −0.7083  

51 −0.4886 1.0000 0.7143 1.0000 0.6896 2.7752 0.6218  

52 −0.0007 0.6000 0.7143 1.0000 0.1252 2.7752 −0.7176  

53 −0.5692 0.9000 0.7143 1.0000 0.9885 2.7752 −0.0385  

54 0.6514 0.6000 0.2381 1.0000 0.0302 2.7752 −0.1993  

55 0.8169 0.6000 0.3571 1.0000 0.0234 2.7752 −2.0841  

56 0.1616 0.6000 0.5952 1.0000 0.0817 2.7752 1.5072  

a Weight connection from the input layer to the hidden layer; b Weight connection from the hidden 

layer to the output layer. 
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Figure 5 compares the predicted viscosity ratio of the RBF neural network and the experimental 

data involving the training and testing samples. It can be seen that all the prediction errors of the 

RBF neural network are within the ±10% error bands. As shown in Table 2, the values of the four 

evaluation criteria are RMSE = 0.04630, MAPE = 2.09967%, SSE = 0.42454, and R2 = 0.99927 for the 

training samples, and RMSE = 0.04443, MAPE = 2.43228%, SSE = 0.03553, and R2 = 0.99904 for the 

testing samples, which preliminarily indicates that the RBF neural network has a good ability to 

predict the viscosity ratio of ethylene glycol/water based nanofluids. 
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Figure 5. Scatter plots of (a) training and (b) testing μnf/μf for the RBF predicted results and 

experimental data. 

To further evaluate the prediction performance of the RBF neural network for nanofluid 

viscosity, the following typical viscosity models which consider the effects of nanoparticle Brownian 

motion and aggregation are selected for analysis. 

Batchelor model [32]: 

2(1 2.5 6.25 )nf p p f       (9) 

Chen model [33]: 

1.2 1.5125[1 ( ) ]
0.605

p a

nf f

p

r

r


    (10) 

where rp and ra are the radius of nanoparticle and nanoparticle aggregation, respectively. 

Figure 6 and Table 4 respectively compare the prediction performances of the different models 

for the total viscosity data. It is easily seen that the RBF neural network has a better prediction 
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accuracy than the above two typical models. The main reason is that the Batchelor model and Chen 

model cannot fully quantitatively describe the relationship between the nanofluid viscosity ratio and 

the various factors including the nanoparticle properties, temperature, and base fluid.  
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Figure 6. Prediction relative errors of different models for the total viscosity data. 

Table 4. Performance evaluation of different modes for the total viscosity data. 

Evaluation Criteria RBF Neural Network Batchelor Model Chen Model 

RMSE 0.04615 0.82200 0.77129 

MAPE (%) 2.12738 24.2349 21.79539 

SSE 0.46007 145.94871 128.49640 

R2 0.99925 0.76244 0.79085 

Moreover, Tables 5–7 respectively present the comparisons between the predicted viscosity 

ratio of the RBF neural network and the corresponding experimental data of Chen et al. [12], 

Jamshidi et al. [13], and Namburu et al. [16]. It can be seen that there is good agreement between the 

RBF predicted and the experimental viscosity ratio of the different ethylene glycol/water based 

nanofluids. At the temperature range of 20–40 °C, the maximum and minimum prediction errors of 

the RBF neural network are respectively 5.788% and 0.434% for the experimental data of Chen et al. [12]. 

For the viscosity ratio of the SiO2-ethylene glycol/water (50:50 by volume ratio) nanofluid provided 

by Jamshidi et al. [13], the RBF neural network can accurately predict the viscosity ratio with an 

average error of 1.772% at the nanoparticle volume fraction of 0.1%. Moreover, the comparisons 

shown in Table 7 further illustrate that the developed RBF neural network has high accuracy 

(average error: 2.097%) for predicting the viscosity ratio of CuO-ethylene glycol/water (60:40 by 

weight ratio) nanofluids. 

Table 5. Comparisons of the RBF predicted viscosity ratio of TiO2-ethylene glycol nanofluids with 

the experimental data of Chen et al. [12]. 

T (°C) φp (%) Experiment (P) RBF Prediction (Q) 100%
P Q

P


  

60.17 1.8 0.994  0.990 0.434 

55.26 1.8 1.000 1.023 2.330 

50.03 1.8 1.000 1.005 0.488 

45.27 1.8 0.994 0.974 2.090 

40.21 1.8 1.000 0.961 3.875 

35.17 1.8 1.000 0.985 1.529 

30.16 1.8 0.994 1.025 3.055 

25.19 1.8 1.000 1.041 4.068 
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20.12 1.8 0.994 0.995 0.082 

60.17 0.4 0.852 0.850 0.270 

55.10 0.4 0.862 0.872 1.217 

50.03 0.4 0.862 0.855 0.829 

45.12 0.4 0.857 0.830 3.173 

40.07 0.4 0.847 0.825 2.603 

35.17 0.4 0.852 0.848 0.424 

30.16 0.4 0.847 0.880 3.868 

25.19 0.4 0.847 0.881 4.038 

20.12 0.4 0.837 0.819 2.193 

60.17 0.1 0.833 0.822 1.268 

55.10 0.1 0.828 0.846 2.220 

50.19 0.1 0.828 0.833 0.609 

45.12 0.1 0.819 0.810 1.011 

40.07 0.1 0.814 0.806 1.020 

35.17 0.1 0.814 0.824 1.284 

30.16 0.1 0.814 0.847 4.039 

25.19 0.1 0.814 0.836 2.675 

20.12 0.1 0.805 0.758 5.788 

Table 6. Comparisons of the RBF predicted viscosity ratio of SiO2-ethylene glycol/water (50:50 by 

volume ratio) nanofluids with the experimental data of Jamshidi et al. [13]. 

T (°C) φp (%) Experiment (P) RBF Prediction (Q) 100%
P Q

P


  

28.65 0.1 1.082 1.099 1.549 

38.18 0.1 1.076 1.073 0.258 

47.91 0.1 1.064 1.063 0.067 

55.81 0.1 1.100 1.098 0.202 

61.28 0.1 1.132 1.078 4.746 

28.45 0.1 1.128 1.098 2.703 

36.55 0.1 1.119 1.082 3.323 

45.07 0.1 1.054 1.056 0.196 

50.95 0.1 1.091 1.078 1.243 

58.85 0.1 1.134 1.095 3.432 

Table 7. Comparisons of the RBF predicted viscosity ratio of CuO-ethylene glycol/water (60:40 by 

weight ratio) nanofluids with the experimental data of Namburu et al. [16]. 

T (°C) φp (%) Experiment (P) RBF Prediction (Q) 100%
P Q

P


  

9.970 1.000 1.204 1.181 1.940 

20.305 1.000 1.187 1.217 2.547 

29.860 1.000 1.170 1.174 0.308 

40.196 1.000 1.136 1.123 1.195 

0.006 2.000 1.596 1.511 5.307 

10.146 2.000 1.596 1.508 5.504 

20.288 2.000 1.528 1.528 0.019 

30.040 2.000 1.477 1.459 1.216 

−0.199 3.000 1.817 1.789 1.566 

10.137 3.000 1.783 1.809 1.451 

20.082 3.000 1.749 1.803 3.085 

29.620 4.000 2.089 2.068 1.028 
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Figure 7 compares the experimental viscosity ratio of Rudyak et al. [15] with the predicted 

values of the RBF neural network for the SiO2-ethylene glycol nanofluids at T = 25 °C as a function of 

the nanoparticle volume fraction and diameter. It can be found from Figure 7a that the RBF 

predicted viscosity ratio of nanofluids are obviously enhanced with the increase of the SiO2 

nanoparticle volume fraction and the decrease of the nanoparticle size, which are consistent with the 

experimental results. All the prediction relative errors are within ±8%, as shown in Figure 7b. On this 

basis, Figure 8 illustrates the comparisons between the RBF predicted values and the corresponding 

experimental data of Li et al. [19]. The results indicate that the RBF neural network developed in this 

study can be applied successfully for predicting the effects of the nanoparticle volume fraction and 

temperature on the viscosity ratio of SiC-ethylene glycol/water (40:60 by weight ratio) nanofluids 

with a satisfactory accuracy. In addition, a similar analysis is performed for the CuO-ethylene 

glycol/water (60:40 by weight ratio) nanofluids as a function of temperature, which is presented in 

Figure 9. It is demonstrated that the viscosity ratio characteristics of the above nanofluids are 

effectively predicted by the RBF neural network in a wide range of nanoparticle volume fractions 

(from 1% to 6%) and temperatures (from −35 to 50 °C). The maximum prediction relative errors are 

only 4.2%. All the above analyses further demonstrate that the RBF neural network is one of the 

potential tools to quantitatively establish nonlinear relationships between inputs and outputs. 
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Figure 7. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the 

experimental data [15] for SiO2-ethylene glycol nanofluids at T = 25 °C. 
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Figure 8. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the 

experimental data [19] for SiC-ethylene glycol/water (40:60 by weight ratio) nanofluids at dp = 30 nm. 
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Figure 9. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the 

experimental data [14] for CuO-ethylene glycol/water (60:40 by weight ratio) nanofluids at dp = 30 nm. 

Table 8 shows the prediction performance of the RBF neural network using different viscosity 

data sets. It is worth noting that the data sets are selected randomly. From Table 8, we found that the 

size of the data set can affect the modeling and prediction of the RBF neural network significantly. 

With the decrease of the data set size, the prediction accuracy will decrease. This may mean that to 

accurately predict the viscosity of ethylene glycol/water based nanofluids using the RBF neural 

network, a large enough data set is necessary. 

Table 8. Performance evaluation of the RBF neural network with different viscosity data. 

Evaluation Criteria 216 Data 200 Data 160 Data 120 Data 

RMSE 0.04615 0.07017 0.09547 0.37982 

MAPE (%) 2.12738 2.88920 3.64470 8.75159 

SSE 0.46007 0.98468 1.45844 17.31116 

R2 0.99925 0.99832 0.99505 0.90323 

5. Conclusions 

To accurately predict the viscosity ratio between ethylene glycol/water nanofluids and a base 

fluid, a RBF neural network based model was developed and evaluated in the present study. Based 

on the comparative analysis, the following conclusions were obtained. 

(1) Considering the complex effects of different factors including temperature, nanoparticle properties 

(such as volume fraction, density, diameter), and viscosity of the base fluid on the viscosity 

ratio and the effect of Spread on modeling performance of the RBF neural network, the final 

network structure was determined to be 5-56-1 neurons. 

(2) By comparing the RBF predictive values and the experimental data published in various 

studies, it was demonstrated that the RBF neural network not only exhibited good modeling 

accuracy (RMSE = 0.04615, MAPE = 2.12738%, SSE = 0.46007, R2 = 0.99925), but also could 

effectively predict the influences of temperature, nanoparticle volume fraction, and diameter on 

the viscosity ratio of different ethylene glycol/water based nanofluids.  

(3) Compared to the typical viscosity models, namely the Batchelor model and Chen model,  

the RBF neural network has a good ability to predict the viscosity ratio of different ethylene 

glycol/water based nanofluids. However, the prediction performance can be affected by the size 

of the data set. 

(4) The present investigation may play an active role for developing the modeling of nanofluid 

viscosity. However, how to extend the application of ANN to predict other thermo-physical 

properties of nanofluids is still worthy of study in the future. 



Appl. Sci. 2017, 7, 409 15 of 16 

Acknowledgments: The authors acknowledge the financial support by the Fundamental Research Funds for 

the Central Universities (No. HEUCF160307). 

Author Contributions: Ningbo Zhao was responsible for the main parts of this manuscript, which includes the 

collection of viscosity data and the results analysis. Zhiming Li provided the program codes of RBF neural 

network and the conventional viscosity models, and wrote the basic theory of the RBF neural network. 

Conflict of interest: We declare that we have no conflict of interest. 

References 

1. Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Hoseini, S.M.; Jamnani, M.S. Experimental study of heat 

transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int. 

Commun. Heat Mass 2011, 38, 1283–1290.  

2. Garoosi, F.; Jahanshaloo, L.; Rashidi, M.M.; Badakhsh, A.; Ali, M.E. Numerical simulation of natural 

convection of the nanofluid in heat exchangers using a Buongiorno model. Appl. Math. Comput. 2015, 254, 

183–203. 

3. Zhao, N.B.; Li, S.Y.; Yang, J.L. A review on nanofluids: Data-driven modeling of thermalphysical 

properties and the application in automotive radiator. Renew. Sustain. Energy Rev. 2016, 66, 596–616. 

4. Hussein, A.M.; Kadirgama, K.; Noor, M.M. Nanoparticles suspended in ethylene glycol thermal properties 

and applications: An overview. Renew. Sust. Energy Rev. 2016, 69, 1324–1330. 

5. Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and 

development of new correlations. Int. J. Heat Mass Transf. 2009, 52, 4675–4682. 

6. Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity of ethylene glycol and water mixture based 

Fe3O4 nanofluid. Int. Commun. Heat Mass 2013, 49, 17–24. 

7. Bég, O.A.; Rashidi, M.M.; Akbari, M.; Hosseini, A. Comparative numerical study of single-phase and 

two-phase models for bio-nanofluid transport phenomena. J. Mech. Med. Biol. 2014, 14, 1450011. 

8. Garoosi, F.; Rohani, B.; Rashidi, M.M. Two-phase mixture modeling of mixed convection of nanofluids in a 

square cavity with internal and external heating. Powder Technol. 2015, 275, 304–321. 

9. Sheikholeslami, M.; Rashidi, M.M.; Hayat, T.; Ganji, D.D. Free convection of magnetic nanofluid 

considering MFD viscosity effect. J. Mol. Liq. 2016, 218, 393–399. 

10. Azmi, W.H.; Hamid, K.A.; Mamat, R.; Sharma, K.V.; Mohamad, M.S. Effects of working temperature on 

thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene 

glycol mixture. Appl. Therm. Eng. 2016, 106, 1190–1199.  

11. Sundar, L.S.; Ramana, E.V.; Singh, M.K.; de Sousa, A.C.M. Viscosity of low volume concentrations of 

magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem. Phys. Lett. 2012, 554, 

236–242. 

12. Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9, 367. 

13. Jamshidi, N.; Farhadi, M.; Ganji, D.; Sedighi, K. Experimental investigation on viscosity of nanofluids. Int. 

J. Eng. 2012, 25, 201–209. 

14. Kulkarni, D.P.; Das, D.K.; Vajjha, R.S. Application of nanofluids in heating buildings and reducing 

pollution. Appl. Energy 2009, 86, 2566–2573. 

15. Rudyak, V.Y.; Dimov, S.V.; Kuznetsov, V.V. On the dependence of the viscosity coefficient of nanofluids 

on particle size and temperature. Tech. Phys. Lett. 2013, 39, 779–782. 

16. Namburu, P.K.; Kulkarni, D.P.; Misra, D.; Das, D.K. Viscosity of copper oxide nanoparticles dispersed in 

ethylene glycol and water mixture. Exp. Therm. Fluid Sci. 2007, 32, 397–402. 

17. Lim, S.K.; Azmi, W.H.; Yusoff, A.R. Investigation of thermal conductivity and viscosity of 

Al2O3/water–ethylene glycol mixture nanocoolant for cooling channel of hot-press forming die application. 

Int. Commun. Heat Mass 2016, 78, 182–189. 

18. Chiam, H.W.; Azmi, W.H.; Usri, N.A.; Mamat, R.; Adam, N.M. Thermal conductivity and viscosity of 

Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp. Therm. Fluid Sci. 2017, 

81, 420–429. 

19. Li, X.; Zou, C.; Qi, A. Experimental study on the thermo-physical properties of car engine coolant 

(water/ethylene glycol mixture type) based SiC nanofluids. Int. Commun. Heat Mass 2016, 77, 159–164. 

20. Murshed, S.S.; Estellé, P. A state of the art review on viscosity of nanofluids. Renew. Sust. Energy Rev. 2017, 

76, 1134–1152. 



Appl. Sci. 2017, 7, 409 16 of 16 

21. Heidari, E.; Sobati, M.A.; Movahedirad, S. Accurate prediction of nanofluid viscosity using a multilayer 

perceptron artificial neural network (MLP-ANN). Chemom. Intell. Lab. 2016, 155, 73–85. 

22. Yousefi, F.; Karimi, H.; Papari, M.M. Modeling viscosity of nanofluids using diffusional neural networks. 

J. Mol. Liq. 2015, 175, 85–90. 

23. Mehrabi, M.; Sharifpur, M.; Meyer, J.P. Viscosity of nanofluids based on an artificial intelligence model. 

Int. Commun. Heat Mass 2013, 43, 16–21. 

24. Zhao, N.B.; Li, S.Y.; Wang, Z.T.; Cao, Y.P. Prediction of viscosity of nanofluids using artificial neural 

networks. In Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition, 

Montreal, QC, Canada, 14–20 November 2014. 

25. Zhao, N.B.; Wen, X.Y.; Yang, J.L.; Li, S.Y.; Wang, Z.T. Modeling and prediction of viscosity of water-based 

nanofluids by radial basis function neural networks. Powder Technol. 2015, 281, 173–183. 

26. Yang, S.; Cao, Y.; Peng, Z.; Wen, G.; Guo, K. Distributed formation control of nonholonomic autonomous 

vehicle via RBF neural network. Mech. Syst. Signal Process. 2017, 87, 81–95. 

27. Broomhead, D.S.; Lowe, D. Radial basis functions, multi-variable functional interpolation and adaptive 

networks. Complex Syst. 1988, 2, 321–355. 

28. Li, M.M.; Verma, B. Nonlinear curve fitting to stopping power data using RBF neural networks. Expert 

Syst. Appl. 2016, 45, 161–171. 

29. Turnbull, D.; Elkan, C. Fast recognition of musical genres using RBF networks. IEEE Trans. Knowl. Data 

Eng. 2005, 17, 580–584. 

30. Iliyas, S.A.; Elshafei, M.; Habib, M.A.; Adeniran, A.A. RBF neural network inferential sensor for process 

emission monitoring. Control Eng. Pract. 2013, 21, 962–970. 

31. Chen, S.; Cowan, C.F.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function 

networks. IEEE Trans. Neural Netw. 1991, 2, 302–309. 

32. Batchelor, G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. 

Fluid Mech. 1977, 83, 97–117. 

33. Chen, H.; Ding, Y.; He, Y.; Tan, C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem. 

Phys. Lett. 2007, 444, 333–337. 

©  2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


