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Abstract:



In this study, a radial basis function (RBF) neural network with three-layer feed forward architecture was developed to effectively predict the viscosity ratio of different ethylene glycol/water based nanofluids. A total of 216 experimental data involving CuO, TiO2, SiO2, and SiC nanoparticles were collected from the published literature to train and test the RBF neural network. The parameters including temperature, nanoparticle properties (size, volume fraction, and density), and viscosity of the base fluid were selected as the input variables of the RBF neural network. The investigations demonstrated that the viscosity ratio predicted by the RBF neural network agreed well with the experimental data. The root mean squared error (RMSE), mean absolute percentage error (MAPE), sum of squared error (SSE), and statistical coefficient of multiple determination (R2) were respectively 0.04615, 2.12738%, 0.46007, and 0.99925 for the total samples when the Spread was 0.3. In addition, the RBF neural network had a better ability for predicting the viscosity ratio of nanofluids than the typical Batchelor model and Chen model, and the prediction performance of RBF neural networks were affected by the size of the data set.
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1. Introduction


As a very important heat transfer medium, ethylene glycol/water mixtures are widely used in many different kinds of industrial equipment including car radiators, air conditioning systems, and liquid cooled computers [1]. In the past few decades, with the rapid development of various compact heat exchange components, the conventional ethylene glycol/water mixtures have been unable to effectively meet the ever-increasing demand for cooling due to their lower thermal conductivity. Therefore, how to develop enhanced heat transfer technology has become a very important problem in the fields of thermal engineering [2].



Nanofluids, a special liquid-solid mixture containing a base fluid and nanoparticles (usually less than 100 nm), have drawn increasing attention recently because of their advantages in thermal conductivity and stability [3]. Many investigations indicated that nanofluids could be an effective technology to improve the heat transfer performance of systems using ethylene glycol/water mixtures as coolant [4]. For example, the experimental results of Vajjha and Das [5] showed that at the temperature of 299 K, the thermal conductivities of the 60:40 (by weight ratio) ethylene glycol/water mixture could be increased by about 12.3% by adding ZnO nanoparticles (29 nm) with a volume fraction of 2%. Sundar et al. [6] experimentally investigated the effects of Fe3O4 nanoparticles (13 nm) on three different kinds of ethylene glycol/water mixtures with weight ratios of 20:80, 40:60, and 60:40. They found that at the temperature of 60 °C and the nanoparticle volume fraction of 2%, the thermal conductivity enhancements of the above three ethylene glycol/water mixtures were 46%, 42%, and 33%, respectively.



Thermo-physical parameters are very important factors that affect the heat and mass transfer performance of nanofluids [7,8,9]. Due to the fact that viscosity can significantly affect the flow internal resistance, inlet Reynolds number, and pressure drop, many experimental investigations have been carried out regarding the viscosity of different nanofluids. As reported by Azmi et al. [10], the viscosity of the 40:60 (by volume ratio) ethylene glycol/water mixture could be increased obviously by dispersing TiO2 nanoparticles. For example, the viscosity enhancement was about 12% when the nanoparticle volume fraction changed from 0.5% to 1.5%. Sundar et al. [11] investigated the viscosity variations of Fe3O4-ethylene glycol/water nanofluids with different nanoparticle fractions and working temperatures. Their experimental results indicated that the viscosity of ethylene glycol/water based nanofluids could be increased by increasing the nanoparticle volume fraction and decreasing temperature. At a nanoparticle volume fraction of 1%, the viscosity of the base fluid could be enhanced by 2.9 times. Chen et al. [12], Jamshidi et al. [13], Kulkarni et al. [14], Rudyak et al. [15], Namburu et al. [16], Lim et al. [17], Chiam et al. [18], and Li et al. [19] respectively measured the viscosity of various ethylene glycol/water mixture based nanofluids with the effects of different factors. According to their experimental results, it was found that a suspension of nanoparticles could enhance the viscosity of the base fluid in different degrees. Additionally, temperature, base fluid, and nanoparticle properties including volume fraction, size, type, and shape were the important factors affecting the enhancement of nanofluids’ viscosity.



For the basis of the experimental research, the modeling and prediction of viscosity is also very important for understanding the rheological behavior of nanofluids. Murshed and Estellé [20] reviewed the latest developments of viscosity models for nanofluids. Their analysis indicated that although many theoretical models and empirical correlations have been developed for nanofluid viscosity, only a few of them were used for ethylene glycol/water based nanofluids. Additionally, since the effects of different factors on nanofluid viscosity were usually coupled and uncertain, it was still very difficult to accurately describe the viscosity characteristics of different nanofluids in a wide range of nanoparticle volume fractions, sizes, temperatures, etc. Therefore, how to develop an effective solution for the viscosity prediction of nanofluids is a hot topic in the field of nanofluids.



Artificial neural networks (ANN), a black box data analysis approach, has a strong nonlinear mapping ability to establish the relationship between input and output variables without considering the detailed physical process. Due to the advantages of ANNs such as high speed, simplicity, and large capacity, various ANNs were put forward to solve the modeling and prediction problems of nanofluid viscosity [21]. Selecting five variables (temperature, nanoparticle volume fraction, nanoparticle size, viscosity of the base fluid, and relative density of the base fluid) and nanoparticles as the input, Yousefi et al. [22] developed a diffusional neural network (DNN) to predict the viscosity of six different types of nanofluids. As reported in their analysis, DNN could be used for predicting the viscosity of nanofluids with satisfactory accuracy. On this basic, Mehrabi et al. [23] analyzed the application of a Fuzzy C-Means-based Adaptive neuro-fuzzy inference system (FCM-ANFIS) for the viscosity prediction of various water based nanofluids. They found that the FCM-ANFIS predicted values agreed well with the experimental data. Attracted by the better nonlinear mapping and recognition abilities of ANN, Zhao et al. [24,25] investigated the feasibility of RBF neural networks for predicting the viscosity of two water based nanofluids containing Al2O3 and CuO nanoparticles. Their results demonstrated that ANN was an effective tool in comparison with the traditional model-based approach for describing the enhancement behavior of nanofluid viscosity. They indicated that the addition of temperature as an input variable could improve the prediction performance of the RBF neural network.



To the best of the authors’ knowledge, there are few publications that study the modeling and prediction of different ethylene glycol/water based nanofluids using ANN. Considering the advantages of RBF neural networks that are easier to design, and have faster training speed, higher training accuracy, stronger generalization ability, and stronger tolerance for input noise [26], this paper selects a RBF neural network as a competitive method for predicting the viscosity characteristics of different ethylene glycol/water based nanofluids with different influence factors. Firstly, the basis theory and modeling process of the RBF neural network are introduced briefly. On this basis, the available measurements from various published studies are obtained to establish the data sample sets and train the RBF neural network for determining the network configuration. Finally, the RBF neural networks’ predicted results are compared with the experimental data to evaluate the prediction performance of the proposed model.




2. Basic Theory of a RBF Neural Network


Benefiting from the inspiration of the human brain’s structure and activity mechanism, many different artificial neural networks have been developed for different purposes including classification and regression. In the fields of curve-fitting and nonlinear predictive modeling, the RBF neural network proposed by Broomhead and Lowe [27] can exhibit a good ability because of its high accuracy and stability [28].



Figure 1 presents the basic structure of a typical three-layer RBF neural network. The input and output layers respectively correspond to the dendrite and synapse of biological neurons, which are used to mathematically describe the modeling object. The hidden layer, similar to the function of the cyton, plays a role of intermediation to process the input-output information and deliver it to the output layer. The connections between different layers are established through a series of artificial neurons and weights.


Figure 1. A typical three-layer RBF neural network.
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Theoretically, the modeling process of the RBF neural network is to solve the mapping from [image: there is no content] to [image: there is no content] ([image: there is no content]) in Euclidean space. Assuming that the input vector of the RBF neural network is [image: there is no content], the response of the [image: there is no content]th neuron in the output layer ([image: there is no content]) can be obtained by using the following linear weighting function [29].


[image: there is no content]



(1)




where [image: there is no content] is the connection weight between the [image: there is no content]th hidden layer neuron and the [image: there is no content]th output layer neuron. [image: there is no content] and q are the numbers of neurons in the corresponding layer, respectively.



Different from many other ANNs, the response of the RBF neural network’s [image: there is no content]th hidden layer neuron is usually determined by the RBF. When it selects a Gaussian function, the corresponding [image: there is no content] can be defined as,


[image: there is no content]



(2)




where [image: there is no content] is the Euclidean distance between the input vector [image: there is no content] and the [image: there is no content]th neuron center [image: there is no content]. [image: there is no content] is the width of the [image: there is no content]th neuron.



Analyzing Equations (1) and (2), it can be easily found that the key of RBF neural network training is how to determine [image: there is no content], [image: there is no content], and [image: there is no content]. In the past few decades, different unsupervised and supervised algorithms have been developed to solve this problem [30]. In this study, the network parameters are updated by using an orthogonal least squares (OLS) approach, of which the minimizing function is shown in Equation (3). More detailed information about OLS can be found in [31].


[image: there is no content]



(3)




where [image: there is no content] and [image: there is no content] are the network output and desired output of the [image: there is no content]th output layer node, respectively.




3. Modeling Implementation of a RBF Neural Network


According to the above theory, the modeling process of the RBF neural network involves three main parts which are data preparation, training, and testing. Figure 2 depicts the basic applied flow chart of the RBF neural network for predicting the relative viscosity of ethylene glycol/water based nanofluids. The specific implementations are discussed in the following.


Figure 2. Implementation process of a RBF neural network for viscosity prediction.
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3.1. Preparation of Viscosity Data


As previously mentioned, many experimental investigations have been published to discuss the effects of different factors including temperature and nanoparticle properties (such as type, size, concentration, and shape) on the viscosity of ethylene glycol/water based nanofluids. Considering the integrity of the measuring information, a total of 216 viscosity data involving TiO2, CuO, SiO2, and SiC are obtained to establish the sample sets. The detailed information of the nanofluids regarding nanoparticle diameter ([image: there is no content]), nanoparticle volume fraction (φp), nanoparticle density ([image: there is no content]), temperature ([image: there is no content]), and viscosity of the base fluid ([image: there is no content]) and nanofluids ([image: there is no content]) are listed in Table 1. According to the modeling principle, 198 data (about 90%) are selected to train the RBF neural network, and the remaining 18 data (about 10%) are used to test the performance of the trained RBF neural network.



Table 1. Viscosity information of ethylene glycol/water based nanofluids.







	
Nanofluids

	
TiO2-EG [12]

	
SiO2-EG/W a [13]

	
SiO2-EG/W b [13]

	
CuO-EG/W c [14]

	
SiO2-EG [15]

	
CuO-EG/W c [16]

	
SiC-EG/W d [19]






	
dp (nm)

	
25

	
10

	
10

	
30/45/50

	
18.1/28.3/45.6

	
29

	
30




	
φp (%)

	
0.1–1.8

	
0.1

	
0.1

	
1–6

	
0.6–8.4

	
1–4

	
0.1–0.5




	
ρp (kg/m3)

	
4230

	
2650

	
2650

	
6310

	
2650

	
6310

	
110




	
T (°C)

	
20.1–60.2

	
28.45–59

	
28–59

	
−35–50

	
25–59

	
0–40

	
10–50




	
μf (mPa.s)

	
3.87–23

	
0.98–1.68

	
1.6–3.11

	
2.33–99.5

	
4.08–18.5

	
4.35–11.5

	
9.2–11.34




	
μnf/μf

	
0.81–1

	
1–1.15

	
1.05–1.13

	
1.1–4.65

	
1.04–2.02

	
1.14–2.09

	
1.13–1.29




	
No. of data

	
27

	
11

	
10

	
80

	
31

	
12

	
45








a EG/W: 25:75 by volume ratio; b EG/W: 50:50 by volume ratio; c EG/W: 60:40 by weight ratio; d EG/W: 40:60 by weight ratio.








To improve the learning and training performances of the RBF neural network, the following equation is used to normalize the input and output variables.


[image: there is no content]



(4)




where x is the original value, x’ is the normalized value, and [image: there is no content] and [image: there is no content] are the corresponding maximum and minimum of x.




3.2. Configuration of a RBF Neural Network


Considering the nonlinear characteristics of the ethylene glycol/water based nanofluid viscosity ratio with different factors, a three layer RBF neural network is developed in the present investigation. Temperature, nanoparticle diameter, nanoparticle volume fraction, nanoparticle density, and viscosity of the base fluid are selected as the input variables. The objective output of the RBF neural network is the viscosity ratio between the nanofluids and the base fluid. Therefore, the basic structure of the developed RBF neural network for predicting the viscosity ratio of ethylene glycol/water based nanofluids is 5-m-1, as illustrated in Figure 3. For the neurons, the numbers in the hidden layer (m) and other parameters are determined in the training process.


Figure 3. RBF neural network developed in this study.
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3.3. Evaluation Criteria


To effectively evaluate the training and prediction performance of the RBF neural network, the following four important parameters are used.



Root mean squared error (RMSE),


[image: there is no content]



(5)







Mean absolute percentage error (MAPE),


[image: there is no content]



(6)







Sum of squared error (SSE),


[image: there is no content]



(7)







Statistical coefficient of multiple determination (R2),


[image: there is no content]



(8)




where P is the desired value, Q is the network output value, and t is the number of samples.





4. Results and Discussion


For the RBF neural network, the Spread is usually a very important factor influencing the training process. Figure 4 shows the relationships of the mean square error (MSE) and the number of hidden layer neurons with different Spreads. Analyzing the results reported in Figure 4, it is found that for the same converged target, the neuron numbers in the hidden layer need to be increased obviously with the decrease of the Spread. When the Spread varies from 1 to 0.1, the corresponding neuron configuration of the RBF neural network are 5-38-1, 5-40-1, 5-56-1, 5-67-1, and 5-105-1, respectively. With the decrease of the Spread, the CPU time for computing the RBF neural network will also increase. At a Spread of 1, 0.5, 0.3, 0.2, and 0.1, the corresponding CPU times are 6.318, 6.396, 8.798, 10.827, and 15.772 s, respectively. In addition, Table 2 lists the values of four evaluation criteria for predicting the viscosity ratio of ethylene glycol/water based nanofluids by using the RBF neural network with different Spreads. It can be seen from Table 2 that although all [image: there is no content] are within the acceptable level of 0.99, the prediction performance of the RBF neural network is still affected by the value of the Spread, especially for the testing samples. Based on the comprehensive considerations of modeling complexity, prediction accuracy, and CPU time, the RBF neural network with the neuron configuration of 5-56-1 and Spread of 0.3 is used in this study. The related weights and biases of the 5-56-1 RBF neural network can be found in Table 3.


Figure 4. The relationships of mean square error (MSE) and the number of hidden layer neurons with different Spreads.
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Table 2. Performance evaluation of RBF neural networks with different Spreads.







	
Object

	
Evaluation Criteria

	
Spread




	
1

	
0.5

	
0.3

	
0.2

	
0.1






	
Training samples

	
RMSE

	
0.04651

	
0.04460

	
0.04630

	
0.04502

	
0.04400




	
MAPE (%)

	
2.3335

	
2.27321

	
2.09967

	
1.93784

	
2.00530




	
SSE

	
0.42829

	
0.39383

	
0.42454

	
0.40125

	
0.38337




	
R2

	
0.99925

	
0.99932

	
0.99927

	
0.99930

	
0.99934




	
Testing samples

	
RMSE

	
0.09190

	
0.07035

	
0.04443

	
0.05124

	
0.10061




	
MAPE (%)

	
4.65795

	
3.90042

	
2.43228

	
2.67720

	
4.27471




	
SSE

	
0.15201

	
0.08908

	
0.03553

	
0.04727

	
0.18221




	
R2

	
0.99590

	
0.99760

	
0.99904

	
0.99872

	
0.99508




	
Total samples

	
RMSE

	
0.05183

	
0.04728

	
0.04615

	
0.04557

	
0.05117




	
MAPE (%)

	
2.52721

	
2.40881

	
2.12738

	
1.99945

	
2.19442




	
SSE

	
0.58030

	
0.48291

	
0.46007

	
0.44852

	
0.56558




	
R2

	
0.99906

	
0.99921

	
0.99925

	
0.99927

	
0.99908










Table 3. Weight and bias coefficients of the developed RBF neural network.







	
Neuron

	
Hidden Layer

	
Output Layer




	
Weights (wij) a and Biases

	
Weights (wij) b and Biases




	
T

	
dp

	
φp

	
ρp

	
μf

	
Biases

	
μnf/μf

	
Biases






	
1

	
0.1616

	
0.6000

	
0.5952

	
1.0000

	
0.0817

	
2.7752

	
1.5072

	
0.0163




	
2

	
−0.4874

	
0.6000

	
0.7143

	
1.0000

	
0.6859

	
2.7752

	
2.5903

	




	
3

	
0.6452

	
0.5660

	
0.3214

	
0.4200

	
0.0973

	
2.7752

	
0.0601

	




	
4

	
0.8200

	
0.6000

	
0.7143

	
1.0000

	
0.0233

	
2.7752

	
3.4089

	




	
5

	
0.4080

	
0.6000

	
0.0119

	
0.0174

	
0.1053

	
2.7752

	
−0.4782

	




	
6

	
−0.1629

	
0.6000

	
0.7143

	
1.0000

	
0.2041

	
2.7752

	
24.6321

	




	
7

	
0.4080

	
0.5660

	
0.9881

	
0.4200

	
0.1861

	
2.7752

	
−0.1055

	




	
8

	
0.7818

	
0.2000

	
0.0119

	
0.4200

	
0.0211

	
2.7752

	
−0.0298

	




	
9

	
−0.5716

	
0.6000

	
0.5952

	
1.0000

	
1.0000

	
2.7752

	
−2.4385

	




	
10

	
0.4892

	
0.6000

	
0.1190

	
1.0000

	
0.0403

	
2.7752

	
0.0877

	




	
11

	
0.3270

	
0.6000

	
0.7143

	
1.0000

	
0.0559

	
2.7752

	
2.0103

	




	
12

	
−0.1629

	
0.6000

	
0.1190

	
1.0000

	
0.2041

	
2.7752

	
−16.7539

	




	
13

	
0.8159

	
0.6000

	
0.0595

	
0.0174

	
0.0925

	
2.7752

	
0.2123

	




	
14

	
0.3264

	
0.6000

	
0.0595

	
0.0174

	
0.1075

	
2.7752

	
1.5469

	




	
15

	
0.4080

	
0.9120

	
0.4762

	
0.4200

	
0.1861

	
2.7752

	
0.1479

	




	
16

	
0.9620

	
0.5660

	
0.5714

	
0.4200

	
0.0410

	
2.7752

	
0.2334

	




	
17

	
0.4080

	
0.3620

	
0.1548

	
0.4200

	
0.1861

	
2.7752

	
−0.0212

	




	
18

	
−0.1629

	
0.6000

	
0.5952

	
1.0000

	
0.2041

	
2.7752

	
−75.1746

	




	
19

	
−0.4905

	
0.6000

	
0.1190

	
1.0000

	
0.6952

	
2.7752

	
−0.0522

	




	
20

	
−0.4874

	
0.6000

	
0.5952

	
1.0000

	
0.6859

	
2.7752

	
−3.3888

	




	
21

	
0.9819

	
0.5000

	
0.0476

	
0.6704

	
0.0389

	
2.7752

	
0.0377

	




	
22

	
−0.1629

	
0.6000

	
0.4762

	
1.0000

	
0.2041

	
2.7752

	
115.2566

	




	
23

	
0.6540

	
1.0000

	
0.7143

	
1.0000

	
0.0301

	
2.7752

	
1.0610

	




	
24

	
0.6540

	
0.9000

	
0.7143

	
1.0000

	
0.0301

	
2.7752

	
−1.1272

	




	
25

	
−0.3251

	
0.6000

	
0.5952

	
1.0000

	
0.3582

	
2.7752

	
0.2584

	




	
25

	
−0.5685

	
0.6000

	
0.7143

	
1.0000

	
0.9855

	
2.7752

	
2.1391

	




	
26

	
−0.5716

	
0.6000

	
0.4762

	
1.0000

	
1.0000

	
2.7752

	
1.2104

	




	
27

	
0.4080

	
0.3620

	
1.0000

	
0.4200

	
0.1861

	
2.7752

	
0.4979

	




	
28

	
0.4080

	
0.9120

	
1.0000

	
0.4200

	
0.1861

	
2.7752

	
0.2536

	




	
29

	
0.6562

	
0.5000

	
0.2143

	
0.6704

	
0.0945

	
2.7752

	
−0.0974

	




	
30

	
0.3270

	
0.6000

	
0.5952

	
1.0000

	
0.0559

	
2.7752

	
−3.6703

	




	
31

	
0.4080

	
0.9120

	
0.0714

	
0.4200

	
0.1861

	
2.7752

	
0.1275

	




	
32

	
0.4080

	
0.3620

	
0.4762

	
0.4200

	
0.1861

	
2.7752

	
0.2454

	




	
33

	
0.4553

	
0.2000

	
0.0119

	
0.4200

	
0.0172

	
2.7752

	
0.1747

	




	
34

	
1.0000

	
0.2000

	
0.0119

	
0.4200

	
0.0161

	
2.7752

	
0.1852

	




	
35

	
0.1616

	
0.6000

	
0.4762

	
1.0000

	
0.0817

	
2.7752

	
−0.5112

	




	
36

	
0.8169

	
0.6000

	
0.1190

	
1.0000

	
0.0234

	
2.7752

	
0.4325

	




	
37

	
−0.4874

	
0.6000

	
0.4762

	
1.0000

	
0.6859

	
2.7752

	
1.6740

	




	
38

	
−0.1629

	
0.6000

	
0.3571

	
1.0000

	
0.2041

	
2.7752

	
−107.8889

	




	
39

	
0.3270

	
0.6000

	
0.4762

	
1.0000

	
0.0559

	
2.7752

	
1.4652

	




	
40

	
0.1632

	
0.6000

	
0.0595

	
0.0174

	
0.1139

	
2.7752

	
0.9067

	




	
41

	
0.8169

	
0.6000

	
0.5952

	
1.0000

	
0.0234

	
2.7752

	
−6.2589

	




	
42

	
0.8169

	
0.6000

	
0.4762

	
1.0000

	
0.0234

	
2.7752

	
5.5200

	




	
43

	
0.5739

	
0.5000

	
0.0119

	
0.6704

	
0.1182

	
2.7752

	
0.0349

	




	
44

	
0.4080

	
0.3620

	
0.8095

	
0.4200

	
0.1861

	
2.7752

	
−0.1272

	




	
45

	
0.4892

	
0.6000

	
0.5952

	
1.0000

	
0.0403

	
2.7752

	
0.6498

	




	
46

	
−0.1629

	
0.6000

	
0.2381

	
1.0000

	
0.2041

	
2.7752

	
61.3817

	




	
47

	
0.3283

	
0.5000

	
0.0119

	
0.6704

	
0.2312

	
2.7752

	
0.0577

	




	
48

	
0.4080

	
0.5660

	
0.3095

	
0.4200

	
0.1861

	
2.7752

	
−0.1083

	




	
49

	
0.2448

	
0.6000

	
0.0595

	
0.0174

	
0.1096

	
2.7752

	
−1.7397

	




	
50

	
−0.4855

	
0.9000

	
0.7143

	
1.0000

	
0.6804

	
2.7752

	
−0.7083

	




	
51

	
−0.4886

	
1.0000

	
0.7143

	
1.0000

	
0.6896

	
2.7752

	
0.6218

	




	
52

	
−0.0007

	
0.6000

	
0.7143

	
1.0000

	
0.1252

	
2.7752

	
−0.7176

	




	
53

	
−0.5692

	
0.9000

	
0.7143

	
1.0000

	
0.9885

	
2.7752

	
−0.0385

	




	
54

	
0.6514

	
0.6000

	
0.2381

	
1.0000

	
0.0302

	
2.7752

	
−0.1993

	




	
55

	
0.8169

	
0.6000

	
0.3571

	
1.0000

	
0.0234

	
2.7752

	
−2.0841

	




	
56

	
0.1616

	
0.6000

	
0.5952

	
1.0000

	
0.0817

	
2.7752

	
1.5072

	








a Weight connection from the input layer to the hidden layer; b Weight connection from the hidden layer to the output layer.








Figure 5 compares the predicted viscosity ratio of the RBF neural network and the experimental data involving the training and testing samples. It can be seen that all the prediction errors of the RBF neural network are within the ±10% error bands. As shown in Table 2, the values of the four evaluation criteria are RMSE = 0.04630, MAPE = 2.09967%, SSE = 0.42454, and R2 = 0.99927 for the training samples, and RMSE = 0.04443, MAPE = 2.43228%, SSE = 0.03553, and R2 = 0.99904 for the testing samples, which preliminarily indicates that the RBF neural network has a good ability to predict the viscosity ratio of ethylene glycol/water based nanofluids.


Figure 5. Scatter plots of (a) training and (b) testing μnf/μf for the RBF predicted results and experimental data.
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To further evaluate the prediction performance of the RBF neural network for nanofluid viscosity, the following typical viscosity models which consider the effects of nanoparticle Brownian motion and aggregation are selected for analysis.



Batchelor model [32]:


[image: there is no content]



(9)







Chen model [33]:


[image: there is no content]



(10)




where rp and ra are the radius of nanoparticle and nanoparticle aggregation, respectively.



Figure 6 and Table 4 respectively compare the prediction performances of the different models for the total viscosity data. It is easily seen that the RBF neural network has a better prediction accuracy than the above two typical models. The main reason is that the Batchelor model and Chen model cannot fully quantitatively describe the relationship between the nanofluid viscosity ratio and the various factors including the nanoparticle properties, temperature, and base fluid.


Figure 6. Prediction relative errors of different models for the total viscosity data.
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Table 4. Performance evaluation of different modes for the total viscosity data.







	
Evaluation Criteria

	
RBF Neural Network

	
Batchelor Model

	
Chen Model






	
RMSE

	
0.04615

	
0.82200

	
0.77129




	
MAPE (%)

	
2.12738

	
24.2349

	
21.79539




	
SSE

	
0.46007

	
145.94871

	
128.49640




	
R2

	
0.99925

	
0.76244

	
0.79085










Moreover, Table 5, Table 6 and Table 7 respectively present the comparisons between the predicted viscosity ratio of the RBF neural network and the corresponding experimental data of Chen et al. [12], Jamshidi et al. [13], and Namburu et al. [16]. It can be seen that there is good agreement between the RBF predicted and the experimental viscosity ratio of the different ethylene glycol/water based nanofluids. At the temperature range of 20–40 °C, the maximum and minimum prediction errors of the RBF neural network are respectively 5.788% and 0.434% for the experimental data of Chen et al. [12]. For the viscosity ratio of the SiO2-ethylene glycol/water (50:50 by volume ratio) nanofluid provided by Jamshidi et al. [13], the RBF neural network can accurately predict the viscosity ratio with an average error of 1.772% at the nanoparticle volume fraction of 0.1%. Moreover, the comparisons shown in Table 7 further illustrate that the developed RBF neural network has high accuracy (average error: 2.097%) for predicting the viscosity ratio of CuO-ethylene glycol/water (60:40 by weight ratio) nanofluids.



Table 5. Comparisons of the RBF predicted viscosity ratio of TiO2-ethylene glycol nanofluids with the experimental data of Chen et al. [12].







	
T (°C)

	
φp (%)

	
Experiment (P)

	
RBF Prediction (Q)
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60.17

	
1.8

	
0.994

	
0.990

	
0.434




	
55.26

	
1.8

	
1.000

	
1.023

	
2.330




	
50.03

	
1.8

	
1.000

	
1.005

	
0.488




	
45.27

	
1.8

	
0.994

	
0.974

	
2.090




	
40.21

	
1.8

	
1.000

	
0.961

	
3.875




	
35.17

	
1.8

	
1.000

	
0.985

	
1.529




	
30.16

	
1.8

	
0.994

	
1.025

	
3.055




	
25.19

	
1.8

	
1.000

	
1.041

	
4.068




	
20.12

	
1.8

	
0.994

	
0.995

	
0.082




	
60.17

	
0.4

	
0.852

	
0.850

	
0.270




	
55.10

	
0.4

	
0.862

	
0.872

	
1.217




	
50.03

	
0.4

	
0.862

	
0.855

	
0.829




	
45.12

	
0.4

	
0.857

	
0.830

	
3.173




	
40.07

	
0.4

	
0.847

	
0.825

	
2.603




	
35.17

	
0.4

	
0.852

	
0.848

	
0.424




	
30.16

	
0.4

	
0.847

	
0.880

	
3.868




	
25.19

	
0.4

	
0.847

	
0.881

	
4.038




	
20.12

	
0.4

	
0.837

	
0.819

	
2.193




	
60.17

	
0.1

	
0.833

	
0.822

	
1.268




	
55.10

	
0.1

	
0.828

	
0.846

	
2.220




	
50.19

	
0.1

	
0.828

	
0.833

	
0.609




	
45.12

	
0.1

	
0.819

	
0.810

	
1.011




	
40.07

	
0.1

	
0.814

	
0.806

	
1.020




	
35.17

	
0.1

	
0.814

	
0.824

	
1.284




	
30.16

	
0.1

	
0.814

	
0.847

	
4.039




	
25.19

	
0.1

	
0.814

	
0.836

	
2.675




	
20.12

	
0.1

	
0.805

	
0.758

	
5.788










Table 6. Comparisons of the RBF predicted viscosity ratio of SiO2-ethylene glycol/water (50:50 by volume ratio) nanofluids with the experimental data of Jamshidi et al. [13].







	
T (°C)

	
φp (%)

	
Experiment (P)

	
RBF Prediction (Q)
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28.65

	
0.1

	
1.082

	
1.099

	
1.549




	
38.18

	
0.1

	
1.076

	
1.073

	
0.258




	
47.91

	
0.1

	
1.064

	
1.063

	
0.067




	
55.81

	
0.1

	
1.100

	
1.098

	
0.202




	
61.28

	
0.1

	
1.132

	
1.078

	
4.746




	
28.45

	
0.1

	
1.128

	
1.098

	
2.703




	
36.55

	
0.1

	
1.119

	
1.082

	
3.323




	
45.07

	
0.1

	
1.054

	
1.056

	
0.196




	
50.95

	
0.1

	
1.091

	
1.078

	
1.243




	
58.85

	
0.1

	
1.134

	
1.095

	
3.432










Table 7. Comparisons of the RBF predicted viscosity ratio of CuO-ethylene glycol/water (60:40 by weight ratio) nanofluids with the experimental data of Namburu et al. [16].







	
T (°C)

	
φp (%)

	
Experiment (P)

	
RBF Prediction (Q)
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9.970

	
1.000

	
1.204

	
1.181

	
1.940




	
20.305

	
1.000

	
1.187

	
1.217

	
2.547




	
29.860

	
1.000

	
1.170

	
1.174

	
0.308




	
40.196

	
1.000

	
1.136

	
1.123

	
1.195




	
0.006

	
2.000

	
1.596

	
1.511

	
5.307




	
10.146

	
2.000

	
1.596

	
1.508

	
5.504




	
20.288

	
2.000

	
1.528

	
1.528

	
0.019




	
30.040

	
2.000

	
1.477

	
1.459

	
1.216




	
−0.199

	
3.000

	
1.817

	
1.789

	
1.566




	
10.137

	
3.000

	
1.783

	
1.809

	
1.451




	
20.082

	
3.000

	
1.749

	
1.803

	
3.085




	
29.620

	
4.000

	
2.089

	
2.068

	
1.028










Figure 7 compares the experimental viscosity ratio of Rudyak et al. [15] with the predicted values of the RBF neural network for the SiO2-ethylene glycol nanofluids at T = 25 °C as a function of the nanoparticle volume fraction and diameter. It can be found from Figure 7a that the RBF predicted viscosity ratio of nanofluids are obviously enhanced with the increase of the SiO2 nanoparticle volume fraction and the decrease of the nanoparticle size, which are consistent with the experimental results. All the prediction relative errors are within ±8%, as shown in Figure 7b. On this basis, Figure 8 illustrates the comparisons between the RBF predicted values and the corresponding experimental data of Li et al. [19]. The results indicate that the RBF neural network developed in this study can be applied successfully for predicting the effects of the nanoparticle volume fraction and temperature on the viscosity ratio of SiC-ethylene glycol/water (40:60 by weight ratio) nanofluids with a satisfactory accuracy. In addition, a similar analysis is performed for the CuO-ethylene glycol/water (60:40 by weight ratio) nanofluids as a function of temperature, which is presented in Figure 9. It is demonstrated that the viscosity ratio characteristics of the above nanofluids are effectively predicted by the RBF neural network in a wide range of nanoparticle volume fractions (from 1% to 6%) and temperatures (from −35 to 50 °C). The maximum prediction relative errors are only 4.2%. All the above analyses further demonstrate that the RBF neural network is one of the potential tools to quantitatively establish nonlinear relationships between inputs and outputs.


Figure 7. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the experimental data [15] for SiO2-ethylene glycol nanofluids at T = 25 °C.
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Figure 8. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the experimental data [19] for SiC-ethylene glycol/water (40:60 by weight ratio) nanofluids at dp = 30 nm.
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Figure 9. (a) Predicted comparisons and (b) relative errors of the RBF predicted μnf/μf and the experimental data [14] for CuO-ethylene glycol/water (60:40 by weight ratio) nanofluids at dp = 30 nm.
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Table 8 shows the prediction performance of the RBF neural network using different viscosity data sets. It is worth noting that the data sets are selected randomly. From Table 8, we found that the size of the data set can affect the modeling and prediction of the RBF neural network significantly. With the decrease of the data set size, the prediction accuracy will decrease. This may mean that to accurately predict the viscosity of ethylene glycol/water based nanofluids using the RBF neural network, a large enough data set is necessary.



Table 8. Performance evaluation of the RBF neural network with different viscosity data.







	
Evaluation Criteria

	
216 Data

	
200 Data

	
160 Data

	
120 Data






	
RMSE

	
0.04615

	
0.07017

	
0.09547

	
0.37982




	
MAPE (%)

	
2.12738

	
2.88920

	
3.64470

	
8.75159




	
SSE

	
0.46007

	
0.98468

	
1.45844

	
17.31116




	
R2

	
0.99925

	
0.99832

	
0.99505

	
0.90323











5. Conclusions


To accurately predict the viscosity ratio between ethylene glycol/water nanofluids and a base fluid, a RBF neural network based model was developed and evaluated in the present study. Based on the comparative analysis, the following conclusions were obtained.

	(1)

	
Considering the complex effects of different factors including temperature, nanoparticle properties (such as volume fraction, density, diameter), and viscosity of the base fluid on the viscosity ratio and the effect of Spread on modeling performance of the RBF neural network, the final network structure was determined to be 5-56-1 neurons.




	(2)

	
By comparing the RBF predictive values and the experimental data published in various studies, it was demonstrated that the RBF neural network not only exhibited good modeling accuracy (RMSE = 0.04615, MAPE = 2.12738%, SSE = 0.46007, R2 = 0.99925), but also could effectively predict the influences of temperature, nanoparticle volume fraction, and diameter on the viscosity ratio of different ethylene glycol/water based nanofluids.




	(3)

	
Compared to the typical viscosity models, namely the Batchelor model and Chen model, the RBF neural network has a good ability to predict the viscosity ratio of different ethylene glycol/water based nanofluids. However, the prediction performance can be affected by the size of the data set.




	(4)

	
The present investigation may play an active role for developing the modeling of nanofluid viscosity. However, how to extend the application of ANN to predict other thermo-physical properties of nanofluids is still worthy of study in the future.
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