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Abstract: This study analyzes the modeling and dynamics of a novel passive multi-degree-of-freedom
(MDOF) vibration isolation platform which can achieve a significant isolation effect. Symmetrical
scissor-like structures (SLSs) are utilized in the proposed MDOF isolation platform as the supporting
and isolation elastic components. Based on the mathematical modeling and theoretical analysis of the
MDOF vibration isolation system with SLSs, the effects of structural parameters and joint friction on
the stiffness and damping properties are investigated. It is shown that due to geometric relations
within the SLSs, the natural frequencies can be reduced via adjusting structural parameters of the
SLS for different direction vibration isolation. Theoretical and experimental results show that the
SLS isolation platform can achieve much better loading capacity and vibration isolation performance
simultaneously by only using linear passive components because of the MDOF adjustable stiffness
property. Therefore, with low cost and energy consumption, the proposed novel isolation platform
can improve the vibration suppression in various engineering practices.

Keywords: MDOF isolation platform; geometrical nonlinearity; vibration suppression; adjustable
stiffness property

1. Introduction

High stability and significant isolation performance are required for isolation systems because
they isolate vibration to protect instruments and equipment from many vibrational environments.
For different applications, different structures and control methods are carried out for different
vibration suppression mechanisms; for example, energy transferring between different vibration
modes [1–6], vibration suppression with absorbers [7–9], or utilizing semi-active/active vibration
control methods, etc. [10–12]. In most cases in vibration isolation, better isolation effectiveness can be
obtained by using elements with smaller restoring forces which results in a lower natural frequency of
the system, especially for microgravity environments in aerospace engineering [13–15].

For various vibration isolation purposes, quasi-zero-stiffness (QZS) vibration isolation systems
for one direction vibration have been extensively studied to improve working environments and
provide a better background for aerospace devices and precision instruments [16–24]. In order to
induce the adjustable stiffness property with sufficient loading capacity, a structure with springs,
called scissor-like structure (SLS), is proposed. The most obvious advantage of the vibration isolation
system with SLSs is that the natural frequency and nonlinear stiffness coefficients are dependent on
the structural parameters, which could realize high static and low dynamic properties. Considering
the advantages of the structure with SLSs, the SLSs are utilized to construct a novel MDOF vibration
isolation system. The proposed isolation system has nonlinear stiffness and damping characteristics in
six directions, which are all adjustable and can achieve superior vibration isolation using only pure
linear and passive elements in the system with a simple and flexible installation structure.
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In the literature, the techniques of vibration isolation for multi-direction excitation with
excellent isolation performance over a larger frequency region have always been an attractive and
difficult research topic. For the MDOF vibration isolation platform, active controllers are the chief
method [13–15,25–31]. The key point of the mechanism of active control in a MDOF isolator is to
generate anti-vibration forces in different directions by actuators and sensors in the designed system.
The studies of MDOF isolation systems are focused on the controllers and control strategies. Different
designs and the analysis of the dynamics of parallel mechanisms are studied [25–31], for example, a
hybrid magnet consisting of an electromagnet and permanent magnets is used as the active actuators
in [25,26]. Although active controllers can actively isolate vibration and control vibration in a timely
manner, considering the energy required by active actuators, passive isolation techniques provide
higher stability without any external power [32].

This paper proposed a MDOF isolation platform using SLSs as the elastic components. Then
the natural frequencies and vibration responses are studied to show the isolation effectiveness of the
proposed system. The multiple-degrees of freedom vibration isolation system can be achieved using
only pure linear and passive elements in the system with a simple and flexible installation structure
because of the adjustable stiffness. This system could provide an effective solution to many engineering
problems for excellent MDOF vibration suppression and sustainable development for microgravity
environments due to the multi-direction zero-stiffness property. The paper is organized as follows:
The prototype of the isolation platform with SLSs is carried out and its mathematical modeling is
obtained in Section 2. In Section 3, the responses of the isolation system obtained by the harmonic
balance method (HBM) [33] and experiments are conducted, and the isolation effectiveness of the
proposed isolation system is compared to the one using linear springs as isolators. A conclusion is
drawn at the last section.

2. The Prototype and Modeling of the Proposed Isolation Platform

2.1. Experimental Prototype

Figure 1 is the experimental prototype of the proposed MDOF isolation system with SLSs.
As shown in Figure 1, the up plate of the isolation platform is connected with the base by four
scissor-like structures (SLSs). The SLS consists of several connecting rods and a linear spring is
assembled in one layer in each SLS.
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2.2. Structural Diagram

Figure 2 is the structural diagram of the isolation system. Considering the isolation platform is
proposed for protecting an instrument (the isolation object) which is put in an arbitrary position on the
up plate, the location of the isolation object and the connecting point of the SLS are shown in Figure 3.
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In Figure 3, point (c) is the geometrical and mass center of the up plate M1 and point (m) is the 
center of isolation object with mass M2. The vector the origin of the up plate (c) and the isolation 
object (m) is as  = {L1, L2, L3}. The absolute motions of the platform x = {x, y, z, φx, φy, φz} are 
chosen as generalized coordinates. 
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2.3. Modeling 

Lagrange principle is used to obtain the model of the isolation platform. The mass of the 
connecting rods and joints in SLSs are neglected because their weights are much smaller compared 
to the up plate, base, and isolation object. The kinetic energy consists of the up plate and the isolation 
object M2, which are set as T1 and T2. The velocity of the up plate is the velocity at the center (c); thus, 
the kinetic energy T1 is: = 12 + + + 12  + 12  + 12   (1) 

For the isolation object M2 whose center has a distance from the center of the up plate, its 
velocity contains the translational velocity around point (c) and the rotational velocity around the 
center point (m). Figure 4 is the motions of the isolation object M2 which represents the isolation 
object (e.g., precise instruments etc.). 

Figure 2. The structural diagram of the MDOF isolation system.

In Figure 3, point (c) is the geometrical and mass center of the up plate M1 and point (m) is the
center of isolation object with mass M2. The vector the origin of the up plate (c) and the isolation object
(m) is as rmc = {L1, L2, L3}. The absolute motions of the platform x = {x, y, z, φx, φy, φz} are chosen as
generalized coordinates.

Appl. Sci. 2017, 7, 393  3 of 12 

 
Figure 2. The structural diagram of the MDOF isolation system. 

In Figure 3, point (c) is the geometrical and mass center of the up plate M1 and point (m) is the 
center of isolation object with mass M2. The vector the origin of the up plate (c) and the isolation 
object (m) is as  = {L1, L2, L3}. The absolute motions of the platform x = {x, y, z, φx, φy, φz} are 
chosen as generalized coordinates. 

 
Figure 3. Geometry of the up plate and the isolation object M2 and the coordinates. 

2.3. Modeling 

Lagrange principle is used to obtain the model of the isolation platform. The mass of the 
connecting rods and joints in SLSs are neglected because their weights are much smaller compared 
to the up plate, base, and isolation object. The kinetic energy consists of the up plate and the isolation 
object M2, which are set as T1 and T2. The velocity of the up plate is the velocity at the center (c); thus, 
the kinetic energy T1 is: = 12 + + + 12  + 12  + 12   (1) 

For the isolation object M2 whose center has a distance from the center of the up plate, its 
velocity contains the translational velocity around point (c) and the rotational velocity around the 
center point (m). Figure 4 is the motions of the isolation object M2 which represents the isolation 
object (e.g., precise instruments etc.). 

Figure 3. Geometry of the up plate and the isolation object M2 and the coordinates.

2.3. Modeling

Lagrange principle is used to obtain the model of the isolation platform. The mass of the
connecting rods and joints in SLSs are neglected because their weights are much smaller compared to
the up plate, base, and isolation object. The kinetic energy consists of the up plate and the isolation
object M2, which are set as T1 and T2. The velocity of the up plate is the velocity at the center (c); thus,
the kinetic energy T1 is:
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For the isolation object M2 whose center has a distance from the center of the up plate, its velocity
contains the translational velocity around point (c) and the rotational velocity around the center point
(m). Figure 4 is the motions of the isolation object M2 which represents the isolation object (e.g., precise
instruments etc.).
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Figure 4 is the motion of the isolation object M2 on the up plate whose moments of inertia in
different rotational directions are defined as Jxxm, Jyym, and Jzzm. Figure 5 is the deflection of one of the
SLSs in the isolator. From Figure 4, the kinetic energy T2 of the isolation object is:
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Therefore, the kinetic energy T of the system is:
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The potential energy V of the system is from the deformation of the springs in the SLSs.
The deflections of the SLSs in the system are shown in Figure 5. The points connected by the SLSs in
the base are defined as A0, B0, and C0; the points in the up plate are defined as A1, B1, and C1; and the
points in the up plate for deflections are defined as A′1, B′1, and C′1.
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Figure 5 shows the deflections of the MDOF vibration isolation system and each SLS. From
Figure 5a, it can be seen that the points A0, B0, C0, and D0 make a quadrilateral, and A1, B1, C1, and D1

also make a quadrilateral. From Figure 5b, which is the deflection of the SLS, the original length of the
springs in a SLS is 2lcosθ, and the length of the springs can be obtained by ‖A0A1‖. Since the absolute
motions of the up plate at the center x = {x, y, z, φx, φy, φz} are chosen as generalized coordinate where
x, y, and z are the absolute translational motions and φx, φy, and φz are absolute rotational motions, the
location of point A′1, B′1, and C′1 can be obtained by a coordinate transformation matrix. Due to the
six-excitation excitations from the base, which are xe = {xe, ye, ze, φxe, φye, φze}, the relative motions of
the up plate at the center are x̂ = {x̂, ŷ, ẑ, φ̂x, φ̂y, φ̂z}. The transformation matrices in the three rotational
directions are Rx, Ry, and Rz; thus, the rotational transformation matrix is defined as R, which is the
dot product of the three transformation matrices.

R = Rx ·Ry ·Rz =

 1 0 0
0 cos φ̂x sin φ̂x

0 − sin φ̂x cos φ̂x

 ·
 cos φ̂y 0 − sin φ̂y

0 1 0
sin φ̂y 0 cos φ̂y

 ·
 cos φ̂z sin φ̂z 0
− sin φ̂z cos φ̂z 0

0 0 1


=

 cos φ̂y cos φ̂z cos φ̂y sin φ̂z − sin φ̂y

sin φ̂x sin φ̂y cos φ̂z − cos φ̂x sin φ̂z cos φ̂x cos φ̂z + sin φ̂x sin φ̂y sin φ̂z sin φ̂x cos φ̂y

cos φ̂x sin φ̂y cos φ̂z + sin φ̂x sin φ̂z − sin φ̂x cos φ̂z + cos φ̂x sin φ̂y sin φ̂z cos φ̂x cos φ̂y


(4)

where Rx, Ry, and Rz are rotational transformation matrices in the φx, φy, and φz directions.
From Figure 5, assuming the coordinate of point (c) is {0, 0, 0}, for the generalization of the results,

the vector cA0, cB0, cC0, and cD0 are assumed as cA0 = {xa0, ya0, za0}, cB0 = {xb0, yb0, zb0}, cC0 = {xc0, yc0, zc0},
and cD0 = {xd0, yd0, zd0}, and the vector cA1, cB1, cC1, and cD1 are assumed as cA1 = {xa1, ya1, za1}, cB1

= {xb1, yb1, zb1}, cC1 = {xc1, yc1, zc1}, and cD1 = {xd1, yd1, zd1}. Therefore, the vector A0A′1, B0B′1, C0C′1,
and D0D′1 can be obtained by the translational motion matrix and rotational transformation matrix as:

A0A′1 = cA′0 − cA0 = {x̂, ŷ, ẑ}+ R · cA1 − cA0

B0B′1 = cB′0 − cB0 = {x̂, ŷ, ẑ}+ R · cB1 − cB0

C0C′1 = cC′0 − cC0 = {x̂, ŷ, ẑ}+ R · cC1 − cC0

D0D′1 = cD′0 − cD0 = {x̂, ŷ, ẑ}+ R · cD1 − cD0

(5)

From Equation (5), the deflection of the axis of an SLS is obtained, and then the deformations of
springs in an SLS can be obtained by the analysis of the shape of the SLS. Figure 6 shows the deflection
of one layer of the SLS.
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From Figure 6a, it can be seen that the original length of springs in the SLS is 2lcosθ. For deflection,
the lengths of the springs in the three SLS are defined as la, lb, lc, and ld, which can be obtained by the
triangular relationship shown in Figure 6b which is:
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l2
a + (‖A0A′1‖/n)2 = 4l2

l2
b + (‖B0B′1‖/n)2 = 4l2

l2
c + (‖C0C′1‖/n)2 = 4l2

l2
d + (‖D0D′1‖/n)2 = 4l2

(6)

The potential energy V of the system is consisted of the elastic energy of the four springs in SLSs,
which can be expressed as:

V = 1
2 k(la − 2l cos θ)2 + 1

2 k(lb − 2l cos θ)2 + 1
2 k(lc − 2l cos θ)2 + 1

2 k(ld − 2l cos θ)2

= 1
2 k

(√
4l2 − ‖A0A′1‖2

n2 − 2l cos θ

)2

+ 1
2 k

(√
4l2 − ‖B0B′1‖2

n2 − 2l cos θ

)2

+ 1
2 k

(√
4l2 − ‖C0C′1‖2

n2 − 2l cos θ

)2

+ 1
2 k

(√
4l2 − ‖D0D′1‖2

n2 − 2l cos θ

)2
(7)

Considering the air damping of the system, the dynamic equation can be obtained by the Lagrange
principle as:

d
dt

[
∂(T −V)

∂
.
x

]
− ∂(T −V)

∂x
= −C ·

( .
x− .

xe
)

(8)

where T is the kinetic energy and V is the potential energy shown as Equations (3) and (7), the mass
matrix M of the system is:

M =



M1 + M2 0 0
0 M1 + M2 0
0 0 M1 + M2

0 −M2L3 M2L2

M2L3 0 −M2L1

−M2L2 M2L1 0
0 M2L3 −M2L2

−M2L3 0 M2L1

M2L2 −M2L1 0
Jxc + Jxm + M2

(
L2

2 + L2
3
)

−M2L1L2 −M2L1L3

−M2L1L2 Jyc + Jym + M2
(

L2
1 + L2

3
)

−M2L2L3

−M2L1L3 −M2L2L3 Jzc + Jzm + M2
(

L2
1 + L2

2
)



(9)

After first-order Taylor series expansion, the stiffness matrix K is:

K =



k(l2−l1)
2

2l2n4 cos2 θ
0 0 0 kl1(l1−l2)H

2l2n4 cos2 θ
0

0 k(l2−l1)
2

2l2n4 cos2 θ
0 kl1(l2−l1)H

2l2n4 cos2 θ
0 0

0 0 kH2

l2n4 cos2 θ
0 0 0

0 kl1(l2−l1)H
2l2n4 cos2 θ

0 kl2
1 H2

2l2n4 cos2 θ
0 0

kl1(l1−l2)H
2l2n4 cos2 θ

0 0 0 kl2
1 H2

2l2n4 cos2 θ
0

0 0 0 0 0 0


(10)

where H =
√

4n2l2 sin2 θ − (l2 − l1)
2, and matrix C is the damping matrix of the system:
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C =



c1 · · · 0
c2

c3
...

... c4

c5

0 · · · c6


(11)

where ci (i = 1, . . . , 6) are damping coefficients in the six coordinates.
Due to the assumptions that the amplitudes of motions are sufficiently small, each term in

the dynamic equation can be expanded by a Taylor series and higher-order terms can be neglected.
Therefore, the dynamic equation of the system is:

M
..
x + Kx + C

.
x = Kxe + C

.
xe (12)

where M is the mass matrix, K is the stiffness matrix, and C is the damping matrix, respectively, and x
is the motion vector and xe is the base excitation vector. It can be seen that the stiffness coefficients
in the stiffness matrix K are dependent on the structural parameters. The parameters θ and n are
considered as adjustable parameters for the requirements of different applications.

According to the stiffness matrix K, the linear stiffness equals zero in the φz direction; thus, the
minimum natural frequency of the system is zero. Therefore, it defined the value of the frequency
where the first resonant peak occurs as the fundamental natural frequency of the proposed system.
In this six-direction isolation system, the structural parameters’ stiffness and damping coefficients k
and ci are difficult to be changed because the springs and dampers are fixed components, while the
structural parameters of SLSs n, θ, and l are easily adjusted. For M1 = 2.75 (kg), M2 = 0.34375 (kg),
k = 10,000 (N·m−1), L1 = 0.05 (m), L2 = 0.05 (m), L3 = 0.025 (m), Jxc = Jyc = 0.0573, Jzc = 0.11458, Jxm = Jym

= Jzm = 0.0001432, l1 = 0.2 (m), l2 = 0.5 (m), and ci = 2 (N·s·m−1), the values of the natural frequencies
of the system for different values of n, θ, and l are shown in Figure 7.
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θ = π/4 rad.

From Figure 7, the fundamental natural frequency of the isolation platform with SLSs can be
adjusted by different structural parameters n, θ, and l. It can be seen that the fundamental natural
frequency is reduced for increasing n or decreasing θ and l of the SLSs in the isolation platform. As the
layer of SLSs increases from one layer to five layers, the fundamental natural frequency reduces from
about 70 rad/s to 20 rad/s, as raising the assembly angle of the connecting rods in SLSs from 0.4 to
1.2 rad, the natural frequency increases to about 110 rad/s, and for increasing the length of the rods to
0.4 m, the natural frequency increases to 50 rad/s. Therefore, adjusting the structural parameters of
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the SLSs in the isolation platform system is effective in reducing the natural frequency, which could
improve the isolation effectiveness of the system.

3. Isolation Effect

3.1. Solutions of the System

The isolation effect of the proposed MDOF isolation platform with SLSs reflected by displacement
transmissibility is based on the dynamic equation (Equation (12)) and the responses for different
structural parameters can be obtained by solving the linearized dynamic equations. When vibration

only exits in one direction, the natural frequency in this direction follows
√

linear sti f f ness coe f f cient
equvalient mass , e.g.,

ωx =
√

2kl cos2 φ tan2 θ

Mn2 for zy = zϕ = ŷ = ϕ̂ = 0; ωy =
√

2kl sin2 φ tan2 θ

Mn2 for zx = zϕ = x̂ = ϕ̂ = 0;

ωϕ =

√
2kl L2 sin2 φ tan2

Jn2θ
for zx = zy = x̂ = ŷ = 0. While there are vibrations in all the three directions,

the stiffness matrix in Equation (13) reveals that the three-direction vibrations are coupled in linear
parts; thus, the anti-frequency band, where the amplitude of response is very small because of the
anti-frequency point, occurs and the bandwidth of the bandgap is dependent on the adjustable
structural parameters n, θ, and ϕ. When the excitation is harmonic excitation, such as xei = eicosωt, the
responses could be set as xi = aicos(ωt + φ). Then, the displacement transmissibility Ti (dB) could be
defined as the ratio between the amplitude of the response and the excitation in respective directions as:

Ti = 10 log10

(
|ai|
|ei|

)(
i = x, y, z, φx, φy, φz

)
(13)

where ai is the amplitude of response and ei is the amplitude of the harmonic excitation in different
directions. The dynamic equation (Equation (12)) and mass, stiffness, and damping matrices, reveal
that the values of the components of the dynamic equations of each degree of freedom can be adjusted
by changing the values of the structural parameters n, θ, and l. The isolation effects for different
structural parameters are shown in Figure 8.

Appl. Sci. 2017, 7, 393  8 of 12 

parameters of the SLSs in the isolation platform system is effective in reducing the natural 
frequency, which could improve the isolation effectiveness of the system. 

3. Isolation Effect 

3.1. Solutions of the System 

The isolation effect of the proposed MDOF isolation platform with SLSs reflected by 
displacement transmissibility is based on the dynamic equation (Equation (12)) and the responses 
for different structural parameters can be obtained by solving the linearized dynamic equations. 
When vibration only exits in one direction, the natural frequency in this direction follows 	 	 	 , e.g.,  = 	   for = = = = 0 ; 

 = 	   for = = = = 0 ;  = 	   for = = = = 0 . While  

there are vibrations in all the three directions, the stiffness matrix in Equation (13) reveals that the 
three-direction vibrations are coupled in linear parts; thus, the anti-frequency band, where the 
amplitude of response is very small because of the anti-frequency point, occurs and the bandwidth 
of the bandgap is dependent on the adjustable structural parameters n, θ, and φ. When the excitation 
is harmonic excitation, such as xei = eicosωt, the responses could be set as xi = aicos(ωt + ϕ). Then, the 
displacement transmissibility Ti (dB) could be defined as the ratio between the amplitude of the 
response and the excitation in respective directions as: 

( )1010log , , , , ,i
i x y z

i

a
T i x y z

e
φ φ φ

 
= =  

 
 (13) 

where ai is the amplitude of response and ei is the amplitude of the harmonic excitation in different 
directions. The dynamic equation (Equation (12)) and mass, stiffness, and damping matrices, reveal 
that the values of the components of the dynamic equations of each degree of freedom can be 
adjusted by changing the values of the structural parameters n, θ, and l. The isolation effects for 
different structural parameters are shown in Figure 8. 

 
Figure 8. Isolation effect in the x direction for different structural parameters: (a) different n;  
(b) different θ; and (c) different l. 

Figure 8. Isolation effect in the x direction for different structural parameters: (a) different n; (b) different
θ; and (c) different l.



Appl. Sci. 2017, 7, 393 9 of 12

From Figure 8, it can be seen that, firstly, the natural frequency where has largest peak is reduced
by increasing n, or decreasing θ and l, which verifies the analysis of natural frequencies in the previous
section. Secondly, the value of the peak is reduced by increasing n and l, while changing θ has no
obvious effect on the value of the peak and, thirdly, the response of the amplitudes are lower for larger
n and l, or smaller θ. Additionally, it demonstrates that the value of the displacement transmissibility
(dB) in the frequency range from zero to the first resonant peak could be controlled to less than zero
and the displacement transmissibility is always below zero after the first resonant peak for larger n or l
and smaller θ. Therefore, it can be concluded that the isolation effectiveness in a broad frequency band
of the proposed isolation platform with SLSs can be improved by adjusting the structural parameters
n, θ, and l easily.

3.2. Comparison with a Normal Spring-Mass Isolation Platform

The isolation effectiveness of the isolation platform with SLSs and springs are compared, which is
shown in Figure 9. For two cases, n = 2, θ = π/4, l = 0.2 (case 1) and n = 3, θ = π/6, l = 0.2 (case 2), the
performances of isolation platform with springs and SLSs are obtained and shown in Figure 9.
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springs and SLSs for n = 2, θ = π/4, and l = 0.2 (case 1) and n = 3, θ = π/6, and l = 0.2 (case 2).

From Figure 9, it can be seen that the isolation platform with springs has two obvious resonant
peaks are about 100 and 110 rad·s−1 expect zero. While for the two cases of the isolation platform
using SLSs, the fundamental natural frequency is much smaller than the one using springs. For case
1 as n = 2, θ = π/4 and l = 0.2, the first resonant peak is at about 50 rad·s−1, and for case 2 as n = 3,
θ = π/6 and l = 0.2, the first resonant peak is at 25 rad·s−1. Additionally, the values of displacement
transmissibility for the two cases of the platform with SLSs are much smaller than the case with springs
in a broad frequency domain.

3.3. Isolation Effectiveness

In order to obtain the natural frequency of the proposed MDOF isolation platform and its
isolation effectiveness, random excitation is proposed on the base and the response of the experimental
prototype. The frequency domain of the random excitation is from 0 to 100 Hz. The structural
parameters of the experimental prototype are n = 2, l = 0.1, l2 = 0.285, l1 = 0.105, M2 = 0.22, M1 = 0,
L1 = L2 = L3 = 0, and other structural parameters θ and kl could be adjusted easily for different isolation
requirements. In Figure 10, two cases of isolation effectiveness are shown with θ = π/3 and kl = 900.

Figure 11 shows the comparison between the theoretical results and experimental results for the
periodic excitation with ze = 0.03, xe = ye = φxe = φye = φze = 0, θ = π/3, and kl = 900. The signals of the
measured base and the up plate are acceleration signals and the acceleration signals are converted to
displacement signals by dividing the square of the frequency since the vibrations are periodic motions.
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From Figure 11, the natural frequency of the proposed isolation platform could be reduced by
adjusting the structural parameters of the SLSs for different structural parameters. When utilizing four
springs with kl = 900 in a normal spring-damping isolator, the vertical-direction natural frequency is as√

4×900
0.22 = 128 rad/s ≈ 20.38 Hz, while for utilizing the SLSs the natural frequency could be reduced

to about 6.4, Hz as shown in Figure 11 for θ = π/3, kl = 900. Therefore, using SLSs instead of springs
could improve the isolation effectiveness, based on the fact that the natural frequency is reduced and
the effective isolation range is increased.

4. Conclusions

This study proposed a MDOF vibration isolation platform with four symmetrical scissor-like
structures (SLSs), which is designed for multi-direction isolation applications, especially in
microgravity environments, such as protecting instruments and isolation devices in aerospace
applications. Theoretical modeling, analysis, and comparison studies demonstrated its advantages and
versatility in vibration isolation/control. The advantages of this isolation platform are listed as follows:

(a) By designing the structural parameters of SLSs, the proposed MDOF isolation platform can
achieve a lower natural frequency and a much larger effective isolation frequency range compared
with normal spring-mass isolators;
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(b) Due to the stiffness property with small linear coefficients in different directions of the proposed
isolation platform, the system becomes an improved MDOF adjustable isolation platform; and

(c) The adjustable stiffness coefficients in different directions and isolation effectiveness of the
isolation platform with SLSs are verified by an experimental prototype and experimental results.

Further studies will focus on the effect of active control for a MDOF vibration isolation system
using the scissor-like structures (SLSs) and the combined effect of control parameters and nonlinear
coefficients on isolation performance.
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