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Abstract: This paper analyzes the underlying complexity and non-linearity of electroencephalogram
(EEG) signals by computing a novel multi-scale entropy measure for the classification of seizure,
seizure-free and normal EEG signals. The quality factor (Q) based multi-scale entropy measure
is proposed to compute the entropy of the EEG signal in different frequency-bands of interest.
The Q -based entropy (QEn) is computed by decomposing the signal with the tunable-Q wavelet
transform (TQWT) into the number of sub-bands and estimating K-nearest neighbor (K-NN) entropies
from various sub-bands cumulatively. The optimal selection of Q and the redundancy parameter (R) of
TQWT showed better robustness for entropy computation in the presence of high- and low-frequency
components. The extracted features are fed to the support vector machine (SVM) classifier with
the wrapper-based feature selection method. The proposed method has achieved accuracy of 100%
in classifying normal (eyes-open and eyes-closed) and seizure EEG signals, 99.5% in classifying
seizure-free EEG signals (from the hippocampal formation of the opposite hemisphere of the brain)
from seizure EEG signals and 98% in classifying seizure-free EEG signals (from the epileptogenic zone)
from seizure EEG signals, respectively, using the SVM classifier. We have also achieved classification
accuracies of 99% and 98.6% in classifying seizure versus non-seizure EEG signals and the individual
three classes, namely normal, seizure-free and seizure EEG signals, respectively. The performance
measure of the proposed multi-scale entropy has been found to be comparable with the existing state
of the art epileptic EEG signals classification methods studied using the same database.

Keywords: Tunable-Q wavelet transform; K-nearest neighbor entropy; EEG signal; wrapper-based
feature selection; support vector machine; epileptic EEG classification

1. Introduction

Worldwide, around 60 million people are affected by epilepsy disorder, indicating frequent
occurrence of seizure events due to hyper-synchronous firing of neuron clusters [1]. Electroencephalogram
(EEG) signals are frequently used as a convenient and inexpensive tool for the diagnosis of
epilepsy. Manual monitoring of EEG signals for the detection of epileptic seizure is a time-consuming
task even for highly-trained neurologists. Thus, automated methods of seizure detection based on
advanced signal processing techniques will significantly reduce the burden of monitoring lengthy EEG
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signals by clinicians. Many studies have been carried out in developing automated systems, which
extract discriminative features for the classification of epileptic EEG signals [2,3]. Classification of
epileptic seizure EEG signals has been performed by exploiting the underlying non-stationarity and
nonlinearity of EEG signals in previous studies. In [2], the authors used the area of the phase space
representations of the intrinsic mode functions (IMFs) as features and achieved a classification accuracy
of 98.67% in classifying seizure-free and seizure EEG signals. In [3], bandwidth contributions due to
amplitude and frequency modulations of IMFs have been considered as features for the classification
of non-seizure and seizure EEG signals and achieved classification accuracy of 99.5–100%. Epileptic
seizure EEG signal classification has been performed by extracting area features from the second
order difference plot and analytic signal representation of IMFs extracted from EEG signals using
empirical mode decomposition (EMD) [4]. Non-stationary signal decomposition techniques and
time-frequency domain analysis for the classification of epileptic EEG signals have been studied
extensively. In [5], the features extracted from time-frequency distributions, namely Wigner–Ville
distribution and short time Fourier transform (STFT), are used for the classification of epileptic seizure
EEG signals with the artificial neural-network classifier. They achieved 100% classification accuracy
when classifying seizure EEG signals from normal EEG signals. Acharya et al. [6] have extracted
texture features from scalogram images of EEG signals with higher order spectra (HOS) features
and classified seizure, seizure-free and normal EEG signals with a classification accuracy of 96%.
In [7], the authors applied wavelet transform on EEG signals to decompose into sub-bands and
computed statistical features from these sub-bands. The data dimension was reduced using linear
discriminant analysis (LDA), independent component analysis (ICA) and principal component analysis
(PCA) followed by support vector machine (SVM) and obtained the highest classification of 100% in
classifying seizure and normal classes of EEG signals. In [8], epileptic seizure EEG signals have been
classified using discrete wavelet transform and generalized fractal dimensions method. In [9], the
authors decomposed EEG signals using tunable-Q wavelet transform (TQWT) and extracted Kraskov
entropy (measured from the mathematical expression of K-nearest neighbors (K-NN) entropy) features
from the decomposed sub-band signals to classify seizure and seizure-free EEG signals. They achieved
classification accuracy of 97.75% with the least squares support vector machine (LS-SVM) classifier.
In [10], the authors decomposed EEG signals using TQWT and extracted spectral features from the
TQWT decomposed sub-band signals followed by the bagging algorithm to classify epileptic EEG
signals. They achieved classification accuracy of 98.40% in classifying seizure, seizure-free and the
normal classes of EEG signals. The classification of epileptic seizure EEG signals has been carried
out by several other nonlinear features, namely recurrence quantification analysis (RQA) [11], Hurst
exponent [12] and approximate entropy (ApEn) [13]. Local binary pattern (LBP)-based methods
have been suggested in recent studies for the classification of epileptic seizure EEG signals. In [14],
one-dimensional (1D) LBP-based features are extracted for the classification of epileptic seizure EEG
signals and obtained classification accuracy of 95.67% when classifying seizure, seizure-free and the
normal classes of EEG signals. In [15], the authors have developed a method based on the LBP of
the Gabor filter-decomposed EEG signals followed by the nearest neighbor classifier and classified
seizure-free and seizure EEG signals with a classification accuracy of 98.33%. In a recent study [16],
key-point-based LBP has been used for the classification of seizure EEG signals. The authors obtained
classification accuracy of 98.80% with a standard deviation (SD) of 0.11% in classifying seizure,
seizure-free and normal groups of EEG signals. In [17], the authors modeled EEG signals by the
linear prediction (LP) process, and the energy of the modeling error was used for the epileptic seizure
EEG signal classification task. They achieved classification accuracy of 94% in classifying seizure and
seizure-free EEG signals. Epileptic seizure EEG signal classification has been performed using the
fractional LP model in [18]. They computed signal energy and fractional LP error energy as features for
the classification of seizure-free and seizure EEG signals with the SVM classifier and obtained 95.33%
classification accuracy in classifying seizure and seizure-free EEG signals. The PCA has been used with
the cosine radial basis function (RBF) neural network for the classification of epileptic EEG signals
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in [19], and the authors yielded classification accuracy of 96.6% in classifying seizure, seizure-free and
normal EEG signals. The short-term maximum Lyapunov exponent (STLmax) has been estimated from
the EEG recordings of intractable epilepsy patients in [20]. They estimated low STLmax in the focal
area of the brain during the pre-ictal or inter-ictal state. In [21], the authors processed one hour-long
pre-ictal segments and estimated the STLmax profiles from them. They modeled spatial STLmax maps
with the combination of two Gaussian functions to extract parameters of the fitted models, which in
turn helped to extract quantitative information about the spatial distribution of the STLmax. For three
out of four patients, the authors found low STLmax levels in the brain regions of seizure origination.
In [22], the authors have used permutation entropy (PE)-based [23] spatio-temporal analysis for EEG
synchronization activity in 24 patients suffering from absence seizures and 40 healthy subjects. They
found a higher PE value for fronto-temporal areas, and it showed a lower value when computed from
the parietal/occipital area. In [24], the authors proposed the permutation Rényi entropy (PEr) for the
classification of seizure and seizure-free EEG signals of patients diagnosed with childhood absence
epilepsy. Their proposed algorithm performed better than conventional PE.

In this paper, we have presented a new method for the classification of seizure, seizure-free and
normal classes of EEG signals. The proposed method computes the complexity of the analyzed signals
in multi-level oscillatory scales. Entropy features have been used extensively as a measure of the
complexity in biomedical signal processing [25–28]. Traditional measures of entropies, namely Shannon
entropy [29], Kolmogorov–Sinai (K-S) entropy [30], approximate entropy (ApEn) [31] and sample
entropy (SEn) [32], quantify the complexity of time series. These methods measure the complexity
of the time series in a single scale, which may not be able to quantify the underlying dynamics
of real time series [33]. The signals generated from complex biological systems consist of more
than one spatiotemporal scales [33]. In [33], the authors have proposed multi-scale entropy (MSEn),
which computed SEn over different scales of a signal as a measure of complexity. The multi-scale
version of SEn has been utilized for the complexity measure of multivariate EEG signals in [34].
In [35], the authors proposed multi-scale PE for the classification of epileptic events in EEG signals and
distinguishing healthy controls from patients. The underlying idea of MSEn is based on coarse graining
(computation of the average over an increasing number of samples), which computes a smaller value
of entropy following the increment of the time scale [36]. The MSEn approach, proposed in [33],
introduces oscillations due to the presence of significant side-lobes in the finite impulse response (FIR)
filter of varying transfer function length. In [36], the authors replaced the FIR filter by the low-pass
Butterworth filter to rectify the problem of aliasing associated with FIR filter frequency response.
As an improvement of MSEn, intrinsic mode entropy (IMEn) [37] is proposed based on EMD, which
computes complexity in high frequency scales of the signal, as well as being robust to dominating
low-frequency components by combining the group of IMFs. The concept of multilevel filtering has
been applied in the EMD domain [38] and in the flexible analytic wavelet transform (FAWT) [39]
domain [40]. However, in some cases, the EMD method failed to extract low-energy components from
the analyzed time series [41], and hence, low-energy components are absent in the time-frequency
plane. Secondly, the EMD method may not be suitable for signals consisting of singularities and
localized waves [42]. Keeping in mind the above constraints of existing multi-scale entropy measures,
we have proposed a novel multi-scale K-NN entropy measure based on the multi-level filtering
approach using the TQWT [43]. The K-NN entropy has been used as a discriminative feature in the
area of biomedical signal processing [9,25]. However, in the current study, it has been presented
that the conventional K-NN entropy feature is not sufficient enough to provide good classification
accuracy in classifying three EEG classes, namely seizure, seizure-free and normal. Thus, in this
work, the conventional K-NN entropy has been enhanced with multi-scale filtering using TQWT,
which provided a significant discrimination among seizure, seizure-free and normal EEG signals.
Recently, in [44], the authors proposed multivariate sub-band fuzzy entropy based on TQWT and
applied their proposed entropy for the discrimination of focal and non-focal EEG signals. In this paper,
the TQWT-based multi-scale K-NN entropy is computed by generating sub-bands (SBs) of the signal
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to be analyzed by proper selection of the quality factor (Q), the redundancy parameter (R) and the
number of levels of decomposition (J) using TQWT, followed by computation of K-NN entropy for the
cumulative addition of each sub-band signal. Optimal performance can be achieved in this method by
optimal selection of the Q and R parameters. The MSEn measures are used to distinguish seizure EEG
signals from normal and seizure-free EEG signals automatically. Figure 1 presents the block diagram
of the proposed method.
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Figure 1. Block diagram of the proposed epileptic EEG classification method.

The remainder of the paper is organized as follows. A brief description of K-NN entropy,
TQWT-based multi-scale K-NN entropy and the details of the EEG database used are provided in
Sections 2–4, respectively. Section 5 briefly describes the feature selection method and classifier used
in this study. Section 6 presents the results obtained using the proposed method, Section 7 discusses
the effectiveness of the proposed method in discriminating the normal, seizure-free and seizure classes
of EEG signals, and the paper concludes in Section 8.

2. K-Nearest Neighbor Entropy Estimation

The K-NN estimate of the differential entropy of a d-dimensional random variable Y with
unspecified density function f (y) is defined as [45,46]:

H(Y) = φ(N)− φ(K) + log(Cd) +
d
N

N

∑
i=1

log(εK
i ) (1)

where N is the number of samples of the random variable Y and φ(x) is the digamma function
expressed as follows [46]:

φ(x) =
1

Γ(x)
dΓ(x)

dx
(2)

where Γ(x) is mathematically defined as Γ(x) =
∫ ∞

0 e−ttx−1dt.
Here, εK

i is the distance between the sample yi of random variable Y and its K nearest neighbors
in d-dimensional space.
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Cd denotes the volume of a d-dimensional unit ball. For the Euclidean norm, Cd is defined as [45]:

Cd =
π

d
2

Γ(1 + d
2 )

(3)

In order to study the estimation of K-NN entropy for a highly random signal in the presence of
a dominant low-frequency component with different weights, we have studied the similar example
used to estimate the sample entropy in [37]. It has been found that K-NN entropy estimation is highly
affected by the low-frequency signal component of the analyzed signal. Even though the analyzed
signal is highly random, the K-NN entropy estimates the value closer to the K-NN entropy estimate of
the dominant low-frequency component present in that analyzed signal.

Figure 2 shows the K-NN entropy estimates with varying nearest neighbors for dominant
low-frequency component signal x1(t), highly random signal x2(t) (Gaussian noise) and their weighted
sums expressed as x3(t; w) = wx1(t) + x2(t). It is clear from the figure that though x3(t; w) is
highly random in nature, the K-NN entropy estimate of x3(t; w) (with increased value of the weight
parameter w) is closer to the K-NN entropy estimate of x1(t). Therefore, the conventional measure of
K-NN entropy may not be well suitable for physiological signals where the dominance of low-frequency
trends is high. Therefore, a multilevel filtering approach prior to the computation of entropy is
necessary for the discriminant analysis of biomedical signals. In the next section, we propose the
multilevel filtering concept using TQWT for the computation of multi-scale K-NN entropy.
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Figure 2. Random signals with increasing weights of dominant low-frequency component and their
K-NN entropy estimates.

3. TQWT-Based K-NN Entropy

In this work, we have analyzed the signals using TQWT prior to the computation of K-NN.
The TQWT is built with the help of the two-channel filter bank method. Let the low-pass and high-pass
scale factors of the two-channel filter bank be denoted by ν and µ, respectively. The low-pass filter
frequency response is mathematically expressed as [43]:

G0(ω) =


1, if |ω| ≤ (1− µ)π

θ
(

ω+(µ−1)π
ν+µ−1

)
, if (1− µ)π < |ω| < νπ

0, if νπ ≤ |ω| ≤ π

(4)
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The high-pass filter frequency response can be formulated as [43]:

G1(ω) =


0, if |ω| ≤ (1− µ)π

θ
(

νπ−ω
ν+µ−1

)
, if (1− µ)π < |ω| < νπ

1, if νπ ≤ |ω| ≤ π

(5)

where θ(ω) is considered as the Daubechies filter frequency response [43]. The high-pass scale factor
(0 ≤ µ ≤ 1) and low-pass scale factor (0 ≤ ν ≤ 1) are to be selected in order to follow the condition
ν + µ > 1 [43].

The Q and R of TQWT are mathematically expressed as:

Q =
2− µ

µ
; R =

µ

1− ν
(6)

Detailed mathematical expressions of Q, R, center frequency ( fc) and the bandwidth (B) of TQWT
are provided in [43].

The computation algorithm of Q-based entropy (QEn) can be summarized as follows:

1. Sub-band signals denoted as s(n) are reconstructed by applying the inverse TQWT operation.
2. To measure the complexity at multiple oscillatory levels, K-NN entropy has been computed on

the signals, generated by cumulatively summing the reconstructed sub-band signals. We have
formulated two kinds of multilevel filtering approaches as follows:

(a) Detailed sub-band to approximate sub-band: The multilevel filtering starts from the highest
oscillatory level sub-band to the dominant low-frequency trend sub-band (QEnHL). Finally,
QEnHL can be mathematically formulated as follows:

QEnHL(Q, R, τ, l) = K-NN entropy of(Reconsτ
HL(n), l); τ = 1 . . . J (7)

Reconsτ
HL(n) =

τ

∑
j=1

sj(n) (8)

where j = 1 corresponds to highest oscillatory sub-band and j = J corresponds to the
dominant low-frequency trend, τ is the scale factor and l is the number of nearest neighbors.

(b) Approximate sub-band to the detailed sub-band: The multilevel filtering starts from
the dominant low-frequency trend sub-band to the highest oscillatory level sub-band
(QEnLH). Finally, QEnLH can be expressed as follows:

QEnLH(Q, R, τ, l) = K-NN entropy of(Reconsτ
LH(n), l); τ = 1 . . . J. (9)

Reconsτ
LH(n) =

τ

∑
j=1

sj(n) (10)

where j = 1 corresponds to the dominant low-frequency trend and j = J corresponds to the
highest oscillatory sub-band, τ denotes the scale factor and l represents number of nearest
neighbors. In this work, we have set l = 4 for K-NN entropy estimation.

In Figures 3 and 4, we have graphically presented the frequency responses of successive scale
factors corresponding to different values of Q parameters for this operation. In these figures, S1, S2,
and so on, represent Scale 1, Scale 2, and so on, respectively.
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Figure 3. TQWT-based multi-scale filtering operation starting from the detailed sub-band to the
approximate sub-band: (a) for Q = 1, R = 3, J = 8; (b) for Q = 2, R = 3, J = 8; (c) for Q = 3, R = 3,
J = 8.
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Figure 4. TQWT-based multi-scale filtering operation starting from the approximate sub-band to the
detailed sub-band: (a) for Q = 1, R = 3, J = 8; (b) for Q = 2, R = 3, J = 8; (c) for Q = 3, R = 3, J = 8.

4. EEG Dataset

The public EEG database is provided by the University of Bonn, Germany [47]. The database
has five sets known as Z, O, N, F and S. Each of these sets contains 100 single-channel recordings of
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EEG signals with a sampling rate of 173.61 Hz and a duration of 23.6 s. The sets Z and O contain the
surface EEG recording, acquired from five healthy volunteers in eyes-open and eyes-closed conditions,
respectively, using the standard 10–20 electrode placement scheme. Hence, the EEG signals of sets
Z and O are considered as normal EEG signals. Sets N and F contain seizure-free intracranial EEG
signals, whereas set S contains intracranial seizure EEG signals. The three sets, namely N, F and S, were
recorded from five epileptic patients in their presurgical evaluation of epilepsy. The EEG signals of set
N were acquired from the hippocampal formation, opposite hemisphere of the brain. The EEG signals
of set F were recorded from the epileptogenic zone. In Table 1, we have summarized the information
of the above-mentioned EEG database. Figure 5 shows sample EEG signals belonging to the S, F, N,
Z and O sets. In this study, we have performed six classification problems as follows:

1. (S-Z): classification of two classes, namely seizure (S) EEG signals and normal eyes-open (Z) EEG
signals.

2. (S-O): classification of two classes, namely seizure (S) EEG signals and normal eyes-closed (O)
EEG signals.

3. (S-N): classification of two classes, namely seizure (S) EEG signals and seizure-free (N) EEG
signals.

4. (S-F): classification of two classes, namely seizure (S) EEG signals and seizure-free (F) EEG signals.
5. (S-FNZO): classification of two classes, namely seizure (S) EEG signals and non-seizure (F, N,

Z and O) EEG signals.
6. (S-FN-ZO): classification of three classes, namely seizure (S) EEG signals, seizure-free (F and N)

EEG signals and normal (Z and O) EEG signals.

Table 1. Information of the EEG datasets publicly made available by the University of Bonn, Germany [47].

Dataset Type of Recording Subjects Total Number of Signals Predetermined Class

S Intracranial 5 patients 100 Seizure

F Intracranial (Epileptogenic zone) 5 patients 100 Seizure-free

N
Intracranial (Hippocampal

5 patients 100 Seizure-freeformation opposite
hemisphere of the brain)

Z Surface (with eyes open) 5 healthy 100 Normalvolunteers

O Surface (with eyes closed) 5 healthy 100 Normalvolunteers
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Figure 5. Sample EEG signals: (a) seizure (S); (b) seizure-free (F); (c) seizure-free (N); (d) normal
eyes-open (Z); (e) normal eyes-closed (O).
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5. Classification of EEG Records

After finding the MSEn features from the EEG signals, they are classified into three different
categories, namely normal, seizure-free and seizure.

We have selected the optimal set of MSEn features using the wrapper-based feature selection
method [48] and classified using the SVM [49] classifier with the radial basis function (RBF) kernel [50].

The classification performance measurement metrics [51], namely accuracy (Acc), sensitivity (Sens)
and specificity (Spec), are obtained using the ten-fold cross-validation method [51,52]. The ten-fold
cross-validation method has been used widely to get unbiased performance of the classifier in the area
of bio-medical signal processing [50,51]. All of the classification tasks along with wrapper-based feature
selections have been performed using the WEKA machine learning toolbox (Weka 3.6.13, University of
Waikato, Hamilton, New Zealand) [53]. For all of the classification tasks, the cost parameter of SVM is
set to one and gamma parameter of the RBF kernel to 1

number of selected features (default in WEKA).

6. Experimental Results

In this section, we have presented the performance evaluation of the proposed multi-scale K-NN
entropy features for epileptic EEG classification. In Figures 6 and 7, the multilevel filtered signals
of the seizure EEG signals (a–i) and their corresponding frequency spectrums (j–r) are presented.
The distinguishing ability of the conventional K-NN entropy feature and proposed multi-scale K-NN
entropy features have been tested using the confidence interval plot (99% confidence level) of the three
mentioned classes (normal, seizure-free, seizure) in Figure 8a–c.

In Figure 8a, the confidence interval plot of K-NN entropy features for three classes is shown.
We have computed K-NN entropies of high-pass filtered EEG signals with cut-off frequency of 0.1 Hz,
instead of raw EEG signals. The EEG signal samples in this database are integers, and in many
cases, the Euclidean distances between nearest neighbor samples and the current sample are zero.
In that case, K-NN entropies of raw EEG signals are not a finite quantity, and hence, high-pass filtered
EEG signals are considered. It can be observed from Figure 8a that the confidence interval of the
seizure class has a clear separation with the other two classes (seizure-free and normal), but the
confidence interval of seizure-free and normal EEG signals overlaps significantly. This limits the
applicability of K-NN entropy to clearly distinguish three classes. Figure 8b shows the confidence
interval plot of three classes using our proposed QEnLH features. It is clear from Figure 8b that the
confidence intervals of seizure-free and normal classes are well separated in only the first two levels
(Recons1

LH and Recons2
LH). We have also plotted the confidence interval of three classes using the

proposed QEnHL feature in Figure 8c, where all three classes are well separated in terms of their
confidence intervals at each level. Thus, the proposed multi-scale K-NN entropy is robust to the
dominant low-frequency component in the signal. In Table 2, the mean and SD of the proposed MSEn
features, namely QEnLH and QEnHL, are presented. This indicates that the SD computed using the
proposed method for normal categories of EEG signals are smaller than expected, due to the absence
of abnormalities in the signals. In Table 3, we have presented the classification performance using the
conventional K-NN entropy feature computed from high-pass filtered (cut-off frequency = 0.1 Hz) EEG
signals. Though we achieved reasonably good classification accuracies for most of the classification
problems, the classification accuracy for seizure, seizure-free and normal (S-FN-ZO) EEG signals is
64.8%, which is significantly low. As compared to conventional K-NN entropy, the performance of
the proposed multi-scale K-NN entropy features is very promising. In Table 4, we have presented the
the classification performance measures using our proposed method. In our method, the parameter
(Q) is varied to get better discrimination among three classes. The number of decomposition levels of
TQWT are set to 8 and 16, respectively, to put forward the importance of the number of sub-bands
in the proposed MSEn based classification. In most of the classification tasks, we have achieved
better classification results by considering J = 16. For Q = 2, R = 3 and J = 16, we have achieved
significant improvement in classification accuracies for the majority of classification tasks, namely
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S-Z, S-O, S-N and S-FN-ZO, using the proposed QEnHL feature. The highest classification accuracy
of 100% is obtained for both classification tasks, namely S-Z and S-O. We have obtained the highest
classification accuracy of 98.6% and 99.5% for S-FN-ZO and S-N, respectively. For the S-F classification
task, the highest classification accuracy reported is 98% using the QEnHL (Q = 3, R = 3 and J = 16)
feature. The classification performance using proposed feature QEnLH is also noteworthy. For the
S-FNZO classification task, the highest classification accuracy of 99% is achieved using the proposed
QEnLH feature (Q = 1, R = 3 and J = 16). It is clear from Tables 3 and 4 that there is significant
improvement in classification accuracies for most of the considered classification tasks, except S-Z.
In Table 5, we have summarized the comparison of the proposed method with the existing methods
using the same EEG database. In most of the classification tasks, our proposed MSEn has shown
comparable performance with the existing state of the art methods reported in Table 5.
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LH); and (j)–(r) are their corresponding spectrums.
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interval plot (with 99% confidence) of TQWT-based multi-scale entropy (Q = 2; R = 3; J = 8) for
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of TQWT-based multi-scale entropy (Q = 2; R = 3; J = 8) for three classes (normal, seizure-free
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Table 2. Mean and SD of the extracted MSEn features (Q = 2, R = 3, J = 8).

Scale No.
QEnLH QEnHL

Seizure Seizure-Free Normal Seizure Seizure-Free Normal

1 0.52± 1.89 −5.39± 1.90 −6.83± 0.95 −15.48± 2.63 −18.68± 1.89 −17.61± 1.71
2 0.77± 1.90 −5.25± 1.89 −6.29± 1.03 −13.74± 2.62 −17.87± 1.85 −16.37± 1.78
3 1.02± 1.93 −5.17± 1.89 −5.64± 1.31 −10.63± 2.70 −16.68± 1.99 −14.52± 1.60
4 1.25± 2.01 −5.13± 1.89 −5.37± 1.34 −7.77± 2.72 −15.10± 2.09 −12.18± 1.44
5 1.34± 2.04 −5.09± 1.89 −5.22± 1.31 −5.29± 2.88 −13.62± 2.12 −10.32± 1.23
6 1.37± 2.03 −5.09± 1.89 −5.15± 1.29 −3.38± 3.07 −12.33± 2.13 −9.02± 1.37
7 1.38± 2.03 −5.09± 1.89 −5.12± 1.28 −1.92± 2.91 −11.19± 2.09 −7.54± 1.65
8 1.38± 2.03 −5.07± 1.89 −5.09± 1.28 −1.13± 2.78 −10.04± 2.09 −6.64± 1.79

Table 3. Classification results using the conventional K-NN entropy feature.

Feature Experiment Type Acc (%) Sens (%) Spec (%)

K-NN entropy computed

S-Z 100 100 100
S-O 96.5 93 100
S-N 98.5 100 97
S-F 93 97 89

S-FNZO 96.4 91 97.8

S-FN-ZO 64.8
93 96.33
47 79.67

68.5 65.33

Table 4. Summary of the classification results for various tuning parameters.

Filtering Type Parameters Experiment Number of Levels J = 8 Number of Levels J = 16

(Q and R) Type Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%)

Approximation to detail

Q = 1; R = 3

S-Z 100 100 100 100 100 100
S-O 99 99 99 99 99 99
S-N 98.5 99 98 99 100 98
S-F 95 96 94 97.5 97 98

S-FNZO 98 96 98.5 99 96 99.8

S-FN-ZO 93.4
95 98.25

95.6
95 99.25

94 93.33 96.5 95
92 98 95 98.67

Q = 2; R = 3

S-Z 100 100 100 100 100 100
S-O 99 99 99 99.5 100 99
S-N 98.5 100 97 99 99 99
S-F 92.5 96 89 96 96 96

S-FNZO 97 92 98.3 98.2 96 98.8

S-FN-ZO 93.4
95 97.25

95.8
97 98.5

91 95 95.5 96
95 97.67 95.5 99

Q = 3; R = 3

S-Z 100 100 100 100 100 100
S-O 96.5 95 98 99.5 99 100
S-N 98 99 97 98 99 97
S-F 92.5 96 89 96 98 94

S-FNZO 97 93 98 97.8 97 98

S-FN-ZO 74.6
93 97.25

94.2
95 98.25

77.5 76.33 93.5 94.67
62.5 85 94.5 98
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Table 4. Cont.

Filtering Type Parameters Experiment Type Number of Levels J = 8 Number of Levels J = 16

(Q and R) Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%)

Detail to approximation

Q = 1; R = 3

S-Z 100 100 100 100 100 100
S-O 99.5 99 100 99.5 99 100
S-N 98.5 98 99 99 99 99
S-F 97.5 97 98 97.5 97 98

S-FNZO 98.4 95 99.3 98.8 95 99.8

S-FN-ZO 97.2
95 99.25

97.2
95 99

95.5 98.66 95.5 98.67
100 97.66 100 98

Q = 2; R = 3

S-Z 98.5 98 99 100 100 100
S-O 95.5 94 97 100 100 100
S-N 99.5 100 99 99.5 99 100
S-F 97 96 98 97.5 97 98

S-FNZO 98.2 92 99.8 98.8 96 99.5

S-FN-ZO 92.2
94 99.75

98.6
96 99.75

86.5 98.33 98.5 98.67
97 89 100 99.33

Q = 3; R = 3

S-Z 97 95 99 98.5 98 99
S-O 96 92 100 97 94 100
S-N 99.5 99 100 99.5 99 100
S-F 97 96 98 98 98 98

S-FNZO 98.2 91 100 98.8 96 99.5

S-FN-ZO 92.2
89 100

97.4
96 99.5

88.5 98.33 96 99
97.5 88.66 99.5 97.33

7. Discussion

The performance of the proposed multi-scale K-NN entropy is enhanced using the TQWT-based [43]
multilevel filtering approach. The multi-level filtering based on TQWT has some major benefits.
For analyzing signals of an oscillatory nature, a higher value of the Q factor is well suited. This is
because with the increased value of the Q factor, the generated wavelets will be more oscillatory
with increased center frequency and relatively narrow frequency responses. On the other hand, for
a lower value of Q factors, the generated wavelets are less oscillatory and posses a wider frequency
response as compared to their center frequencies. Thus, a lower value of the Q factor may be chosen
for non-oscillatory transient signals [44]. These properties of the Q factor motivated us to use TQWT
in our multi-scale analysis.

In this work, the multi-scaling operation is carried out starting from the low-frequency component
and gradually introducing high frequency components cumulatively in successive scales. This is useful
when analyzed signals have dominant high-frequency components. In multi-scaling with a lower
scale factor, the reconstructed signal components after accumulation do not posses high-frequency
components. Thus, with a lower scale factor, the complexity of low-frequency components can be
computed. We have also performed the multi-scaling operation in the reverse direction, starting
from the very high-frequency component signal and added low-frequency components in successive
scales. This enables us to analyze high-frequency components of the signals without including the
low-frequency component, which is predominant. As a result, the use of TQWT-based multilevel
filtering enhances the discriminating ability of the conventional K-NN entropy features. In the previous
studies, the TQWT framework together with K-NN entropy [9] and spectral features [10] have been
proposed for epileptic EEG classification. The proposed method in this paper presents a generalized
form of K-NN entropy in the TQWT framework, which has also been studied for the classification of
seizure and seizure-free EEG signals [9]. Moreover, the proposed entropy feature has been applied
for multiple classification problems associated with epileptic EEG signals. The proposed method also
incorporates the feature selection technique before classifying EEG signals using the SVM classifier.



Appl. Sci. 2017, 7, 385 14 of 18

Table 5. Comparison of the proposed method with the existing methods studied using the same
EEG dataset.

Authors Method Training and Testing Experiment Accuracy
(Data Selection) Type (%)

Tzallas Time-frequency analysis 50% training and 50% testing
S-Z 100

et al. [54] (2007) and artificial neural network S-FNZO 97.73
S-FN-ZO 97.72

Tiwari Key-point-based LBP and SVM 10-fold cross-validation S-FNZO 99.31
et al. [16] (2016) S-FN-ZO 98.80

Peker Dual tree complex wavelet transform
10-fold cross-validation

S-Z 100

et al. [55] (2016) (DTCWT) and complex valued S-FNZO 99.15
neural networks S-FN-ZO 98.28

Chen [56] (2014) DTCWT and Fourier features with First half of the signals for S-Z 100
nearest neighbor classifier training and the rest for testing S-FNZO 100

Orhan et al. K-means clustering and
Randomly selected

S-Z 100

[57] (2011) multilayer perceptron (MLP) S-FNZO 99.60
neural network model S-FN-ZO 95.60

Samiee Rational discrete STFT and MLP classifier Randomly selected

S-Z 99.80

et al. [58] (2015) 50% data for training

S-O 99.30
S-N 98.50
S-F 94.90

S-FNZO 98.100

Bajaj and Amplitude and frequency modulation 10-fold cross-validation S-FNZO 99.50-100Pachori [3] (2012) bandwidths of IMFs and least-squares SVM (LS-SVM)

Guo Line length feature and Randomly selected S-Z 99.6
et al. [59] (2010) artificial neural networks 50% data for training S-FNZO 97.77

Kaya 1D LBP and functional tree 10-fold cross-validation S-Z 99.50
et al. [14] (2014) 1D LBP and BayesNet S-F 95.50

Acharya RQA features, 3-fold cross-validation S-FN-ZO 95.6et al. [11] (2009) SVM classifier

Acharya ApEn, SEn, phase entropy features, 3-fold cross-validation S-FN-ZO 98.1et al. [60] (2012) and fuzzy classifier

Yuan ApEn, Hurst exponent, scaling exponents of EEG, 50% data for training S-F 96.5et al. [61] (2011) and extreme learning machine (ELM) algorithm

Ghayab Simple random sampling, Not specified S-Z 99.9et al. [62] (2016) sequential feature selection and LS-SVM

Our work TQWT-based multi-scale K-NN entropy 10-fold cross-validation

S-Z 100
S-O 100
S-N 99.50
S-F 98

S-FNZO 99
S-FN-ZO 98.60

The highest performance of the proposed MSEn is achieved by optimal selection of input
parameters Q, R and J. If any input parameter changes, the corresponding effect will be seen in
the TQWT filter-bank, which in turn leads to a different multi-level filtering, and the computed
entropy values will change accordingly. We have distinguished three classes (seizure, seizure-free
and normal) with 99% confidence using confidence interval plots, which gives a clear separation
between the classes. In this work, we have achieved the highest three-class classification accuracy
of 98.60% (detailed to approximation multi-scale filtering) for Q = 2, R = 3, and J = 16, which is
comparable with the existing classification methods using the same database in Table 5. The advantage
of the proposed method is that it can discriminate the EEG classes by optimal selection of the Q and
R parameters. It should be noted that intracranial seizure (dataset S) and seizure-free (datasets F
and N) EEG recordings are clean signals due to their way of recording, thus having a high signal
to noise ratio [63]. The seizure and seizure-free EEG signals from scalp EEG recordings may be
more susceptible to noise, thus requiring an additional noise reduction process [64] before the feature
extraction step to improve the classification performance. Due to the presence of the multi-level
filtering step, our method is also suitable for the analysis of scalp EEG signals. Hence, our proposed
method can be used for the classification of epileptic seizure EEG signals irrespective of the method
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used to record the EEG signals. The proposed multi-scale K-NN entropy can be applied for diagnostic
application of diseases using electrocardiogram (ECG), electromyogram (EMG) and respiratory signals.
The proposed framework in this paper can be used for automated diagnosis of abnormalities using
biomedical signals.

8. Conclusions

In this paper, a new entropy measure Q-based K-NN entropy (QEnHL and QEnLH) has been
proposed to compute K-NN entropy at different frequency scales of the EEG signal. The proposed
method works better for analysis of the high frequency scale of the signal and is robust to dominant
local trends with optimal selection of the Q and R parameters, which makes the proposed entropy
measure more generalized. Higher values of Q are chosen for multi-scale analysis to analyze oscillatory
signals. However, the selection of the Q and R parameters is application specific. Our proposed
method achieved improvement in classification accuracies using multi-scale K-NN entropy features
over conventional K-NN entropy features. In future, this proposed entropy can be used as a feature
for the analysis and classification of other physiological signals. This proposed algorithm needs to
be tested with long duration EEG recordings with more patients before using it for clinical applications.
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