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Abstract: The surface finishing and stock removal of complicated geometries is the principal 
objective for grinding with compliant abrasive tools. To understand and achieve optimum material 
removal in a tertiary finishing process such as Abrasive Belt Grinding, it is essential to look in more 
detail at the process parameters/variables that affect the stock removal rate. The process variables 
involved in a belt grinding process include the grit and abrasive type of grinding belt, belt speed, 
contact wheel hardness, serration, and grinding force. Changing these process variables will affect 
the performance of the process. The literature survey on belt grinding shows certain limited 
understanding of material removal on the process variables. Experimental trials were conducted 
based on the Taguchi Method to evaluate the influence of individual and interactive process 
variables. Analysis of variance (ANOVA) was employed to investigate the belt grinding characteristics 
on material removal. This research work describes a systematic approach to optimise process 
parameters to achieve the desired stock removal in a compliant Abrasive Belt Grinding process. 
Experimental study showed that the removed material from a surface due to the belt grinding 
process has a non-linear relationship with the process variables. In this paper, the Adaptive  
Neuro-Fuzzy Inference System (ANFIS) model is used to determine material removal. Compared with 
the experimental results, the model accurately predicts the stock removal. With further verification 
of the empirical model, a better understanding of the grinding parameters involved in material 
removal, particularly the influence of the individual process variables and their interaction,  
can be obtained. 

Keywords: belt grinding; ANOVA; parameter analysis; material removal; predictive model 
 

1. Introduction 

Abrasive grinding is a widely employed finishing process, with abrasive grains being used as 
the cutting edge to accomplish close tolerances and excellent dimensional correctness and surface 
integrity. Abrasive Belt Grinding is a modification of the traditional grinding processes in which the 
contact wheel is made of polymer backing material. The grinding belt is formed of abrasives coated 
on a backing material and fastened around at least two rotating polymer contact wheels, which make 
it a compliant tool, as shown in Figure 1. The soft contact polymer wheel enables this machining 
process to be appropriate to machine free-form surfaces due to its versatility, efficiency, and ability 
to machine workpieces of intricate shapes and geometry [1]. Understanding of such a process is one 
of the most delicate problems in the industry due to the high complexity and nonlinearity. The 



Appl. Sci. 2017, 7, 363  2 of 17 

process parameters affecting material removal belt grinding are that the complex and non-linear 
behaviour of the belt grinding tool is predominantly dependent on the contacts amid the workpiece 
and abrasive belt. Jourani et al. [2] have presented a three-dimensional numerical model, which could 
determine pressure distribution along with the distribution of real contact to study the contact 
between the belt constituted by abrasive grains and the surface to understand the material removal 
mechanism. Zhang et al. [1] have stated that force distribution in the contact area between the 
workpiece and the elastic contact wheel determines the ratio of material removal in the belt grinding 
process. Ren et al. [3,4] developed a local process model to predict the material removal rate before 
machining, making it suiT for the robot programmer to optimize the tool path based on simulation 
results. Hamann [5] had proposed a linear mathematical model for material removal based on cutting 
parameters. However, the proposed equation is no longer adequate for intricate surfaces, as both 
complete removal and local removals are not equivalently distributed in the entire contact area due 
to the complex geometry of the workpiece that is machined. According to the brief literature review 
above, it can be concluded that most of the previous research works concentrated on cutting path 
optimization, thereby making regular contact resulting in constant material removal [6–9]. Though 
the removal of material in the belt grinding process from the workpiece surface can be written as a 
function of several parameters, their influence and interaction have not been reported in the literature 
that will be covered and bridged in this research work. The material removal volume depends mainly 
on the contact force between the tool and the workpiece, the belt speed, and the feed rate in the 
tangential direction. The influences of these parameters on the material removal rate were examined 
experimentally. Orthogonal arrays of Taguchi, analysis of variance (ANOVA), and regression 
analyses are employed to analyse the effect of the belt grinding parameters on the depth of cut, i.e., 
metal removal rate. The Taguchi Method uses orthogonal arrays in experimental design for a 
significant reduction in the number of experimental runs to find the optimal solution. Taguchi 
methods have been widely utilised in engineering analysis to obtain information about the behaviour 
of a given process [10]. ANOVA is a statistical based analysis employed to indicate the impact of 
process parameters on the process output and helps in predicting the significance of all factors and 
their interactions [11]. In this research, we have also proposed a numerical model to predict material 
removal as a function of process parameters, namely, hardness, force, rotation speed, grit size, and 
feed rate, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS technique has 
been used in the past for the prediction and modelling of material removal as a function of the process 
parameters [12,13]. The Adaptive Neuro-Fuzzy Inference System (ANFIS) conjoins the benefits of the 
neural network and fuzzy systems [14]. When experimental data and model results are compared, it 
is observed that the developed regression model is within the limits of the acceptable error. 

 
Figure 1. Principle of belt grinding process. 

The paper is organised as follows; a brief overview of the Abrasive Belt Grinding process and 
the problem statement is presented in Section 1, followed by a brief outline of the belt grinding 
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process and the Adaptive Neuro-fuzzy Inference System (ANFIS) in Section 2. The machining 
conditions, experimental setup, process parameter and the Taguchi orthogonal array design to 
minimise the number of grinding experiments are reported in Section 3. The results of the belt 
grinding tests are analysed using the signal to noise ratio (S/N) and ANOVA in Section 4, followed 
by a summary of the predictive modelling of material removal using ANFIS. Finally, the conclusions 
of this research work are reviewed in Section 5. 

2. Theoretical Basis 

2.1. Abrasive Belt Grinding Process 

Abrasive Belt Grinding is a tertiary polishing process with a geometrically indeterminate 
machining edge with multiple grains. The belt grinding setup has an elastic contact roller wheel made 
up of thermosetting polyurethane elastomer, which can be deformed to assist the coated abrasive belt 
that functions as the cutting edge, as illustrated in Figure 1. Compliant belt grinding corresponds to 
elastic grinding and has the capabilities of grinding, milling, and polishing [15]. 

The belt grinding process has characteristics of good workpiece-shape adaptability with uniform 
material removal, low grinding temperature, maintenance of residual compressive stresses, and 
resistance to workpiece burning like any other tertiary finishing process. The belt grinding process 
can quickly generate surfaces with high levels of precision and smoothness. Presently, about one-
third of abrasive wheel grinding has been substituted by belt grinding [15]. Similar to any other 
abrasive machining process, many process parameters in belt grinding impact the last ground surface 
quality, including the grinding belt topography features and cutting parameters. The process 
parameters include belt speed, belt preloaded tension, the force imparted, feed rate, workpiece 
geometry, polymer hardness, and belt topography features such as grit size [3]. Hamann [5] had 
proposed a linear mathematical model as shown below as Equation (1), which states that the overall 
material removal rate (MRR) r is either relative or inversely proportional to parameters such as CA 
(constant of the grinding process), KA (combination constant of resistance factor of the work coupon 
and grinding ability factor of the belt), kt (belt wear factor), Vb (grinding rate), Vw (feed-in rate), Lw 
(machining width), and FA (normal force). = . . . . .  (1) 

The material removal intensifies when the number of the interactions of the abrasive grains per 
unit time gets maximised [16]. Therefore it is evident that material removal is directly proportional 
to the cutting speed (grinding rate) of the polymer contact wheel on the belt grinder. The depth of 
penetration depends on the topography and the geometry of the belt/wheel surfaces, which serves as 
an undefined cutting-edge. The coarser grain sizes exhibit a greater ability to achieve higher cutting 
depth, which results in higher material removal than finer sizes. Material removal increases with a 
higher dwell time of interaction between the cutting grain edges, and workpiece surface, i.e., material 
removal, is inversely proportional to the feed-in rate [16]. Adequate force is required for the cutting 
edge to penetrate deeply into the workpiece to achieve grain cutting depth resulting in material 
removal. The penetration depth of the grains into the work coupon surface predominantly depends 
on the force imparted for grinding [16]. Belt finishing with contact wheels of different hardnesses 
results in dynamic changes in contact pressure, leading to a change in the mechanism of wear. This 
hints that the parameters discussed govern the belt grinding process, and changing any of the 
parameters will have a resultant shift in the output. Stock removal commonly requires a harder 
polymer contact wheel, coarse abrasive grains, greater force, reduced feed, and better cutting speed. 
Finishing requires the use of a softer contact wheel and fine grade abrasive grains. However, the 
degree of the effect will vary parameter to parameter. The amount of material removed from the 
workpiece surface results from the distinct local contact conditions, which are completely influenced 
by the process parameters/variables. The relationship between the material removal rate and process 
parameters is not well grasped, even though machining by belt grinding is remarkably 
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straightforward and inexpensive. Belt grinding is used in industries based on operator’s skill and 
knowledge, making the process inherently exhibit poor stability and reproducibility. 

2.2. Adaptive Neuro-Fuzzy Inference System 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a blend of the neural network and 
fuzzy inference system. Fuzzy inference systems have no learning capabilities regarding the input-
output space and no standard tuning methods for their rule bases, which make system adaptations 
difficult. The ANFIS technique offered a method for the fuzzy systems to acquire knowledge 
regarding the dataset to calculate the membership function parameters that permitted Fuzzy 
Inference System (FIS) for automatic system adaption. ANFIS architecture is a superimposition of FIS 
on the Artificial Neural Network (ANN) architecture, which will enable FIS to optimise its rule base 
based on the output to learn like an ANN eliminating its inherent disadvantage. The ANFIS 
algorithm has an in-built advantage compared to fuzzy models as it holds the learning competencies 
of the ANN, which augments the system performance using a priori understanding [17]. Using an 
input and output space relation, ANFIS forms an FIS, the membership function of which is altered 
by exploiting the back-propagation algorithm and least square method available with ANN [18]. 

In this section, the ANFIS architecture and its learning algorithm for the Sugeno fuzzy model 
will be described primarily. The ANFIS architecture is shown in Figure 2; ANFIS normally has five 
layers of neurons, of which neurons in the same layer are of the same function family. Assume that 
the FIS under consideration has two inputs, x and y, which form two fuzzy if–then rules based on 
first-order Sugeno fuzzy model [19]. 

Rule 1: If x is A1 and y is B1, then f1 = p1x +q1y + r1; 
Rule 2: If x is A2 and y is B2, then f2 = p2x +q2y + r2; 
where p1, p2, q1, q2, r1, and r2 are linear parameters and A1, A2, B1, and B2 are nonlinear parameters. 
The output of the ith node in layer 1 is denoted as Ol,i. 

Layer 1: Every adaptive node i in the layer 1 has a node function. 

, = ( )	 = 1, 2, , = ( ) = 3, 4 (2) 

where x (or y) is the input to nodes i and Ai (or Bi–2) generating a linguistic label coupled with the 
node as given by Equation (2). The membership function for A (or B) can be any, parameterized as a 
sigmoidal membership function given by Equation (3). ( ) = 11 + ( ) (3) 

where (ci, ai) is the parameter set. These are called premise parameters. As the values of the 
parameters change, the shape of the membership function varies. 

Layer 2: Every node in layer 2 is a fixed node labelled ∏. Each node calculates the firing strength of 
each rule, which is the output using the simple product operator. Evaluating the rule premises results 
as a product of all of the incoming signals given by Equation (4) 

, = = (x) × ( ) = 1,2 (4) 

Layer 3: The ratio of the ith rule’s firing strength to the sum of all of the rule’s firing strengths is 
calculated by Equation (5) in layer 3. The output of this layer is called normalized firing strengths. 

, = = Σ = + = 1,2 (5) 

Layer 4: Every node i in layer 4 is an adaptive node with a node function. The nodes compute  
a parameter function on the layer output. Parameters in this layer will be referred to as  
consequent parameters. 

, = = ( + + ) (6) 
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where wi is a normalised firing strength from layer 3 and (pi, qi, ri) is the parameter set for the node. 

Layer 5: This layer has a fixed single node labelled Σ, which computes the overall output as the 
summation of all of the incoming signals, as shown in Equation (7). The Σ gives the overall output of 
the constructed adaptive network, having same functionality as the Sugeno fuzzy model. 

, = = ∑∑  (7) 

From Figure 2, it can be noticed that the input membership functions of the Takagi-Sugeno 
model are non-linear, whereas the output membership functions are linear. 

 
Figure 2. Adaptive neuro-fuzzy inference system structure. 

3. Experimental Procedures 

3.1. Experiment Design Based on Taguchi Method 

3.1.1. Experimental Setup 

Belt grinding is a modification of the traditional grinding processes, with the contact wheel being 
made of compliant polymer material. The abrasive belt sander, as shown in Figure 3, is customised 
with a fixture design such that it can be used as a belt grinding tool. A belt sander is an electrically 
powered abrasive belt tool that can be run at different variable speeds at unloading conditions. Ester 
polyurethane polymer of different Shore A hardnesses is used as a contact wheel, which forms the 
part of the contact arm, which is used as the machining end of the custom belt grinder setup, as shown 
in Figure 3. The use of robots or multiple-axes machining centres improves the finishing efficiency. 

 
Figure 3. Belt Sander customised to perform grinding experimental trials. 

The experimental trials were conducted on coupling the belt sander and an ABB 6660-205-193 
multi-axes robot using a suitable fixture, as shown in Figure 4. The ABB 6660-205-193 has a parallel 



Appl. Sci. 2017, 7, 363  6 of 17 

arm structure, powerful gears, and motors for handling fluctuating process forces prevalent within 
applications such as milling, deburring, and grinding. An ATI force sensor (Omega 160) connects the 
fixture and the robot arm end effector. This is accomplished by mounting the force sensor to the ABB 
robots end-effector and then attaching the customised belt grinding tool to the force sensor, as shown 
in Figure 4. The robot controller continuously receives the force/torque signal, compares it with the 
users input, and achieves force compensation. The system is close looped, and this ensures that the 
force programmed and the force exerted are the same. The robot arm is primarily used for toolpath 
control and force control. 

 
Figure 4. Experimental setup for compliant Abrasive Belt Grinding. 

3.1.2. Toolpath Planning 

Force control is essential for avoiding over and under-cutting of the material. Force control is 
particularly used for uniform material removal along the whole toolpath. Such an adaptive tool for 
path generation in the system was realised with (ATI Omega 160) force control in the experimental 
trials. A constant contact force throughout the abrasive belt finishing the process in the normal 
direction (Z-axis) is achieved by using a force sensor (ATI Omega 160) attached to the end effector of 
the robotic arm of an ABB 6660 robot. The force sensor maintains an adequate in-feed in the normal 
direction. Tool path planning has five different zones, as shown in Figure 5. Zone A and Zone B are 
when the abrasive belt tool enters the machining region, zone C is where the actual machining 
happens in force control mode, and zones D and E are where the abrasive belt tool exits the machining 
region. ABB Robot Studio executes tool path planning. Most of belt grinding processes are done on 
complicated geometries, and maintaining uniform material removal can be realised only when tool 
centre point (machining end) interacts with the surface normally, which is the current industrial 
practice employing highly automatic robotic arm manipulators. 
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Figure 5. Toolpath planning in force control mode by ABB Robot Studio. 

3.1.3. Taguchi Based DoE (Design of Experiments) 

As the knowledge of the likely interactions of the belt grinding parameters was not known 
initially, trials were planned using Taguchi orthogonal array design, showing only the effects of the 
individual parameters. To evaluate the effect of the belt grinding process parameters on material 
removal, Taguchi’s L27 orthogonal array (five-factor, three-level) model is selected, and experiments 
were performed based on it. In this study, the process parameters such as grit size, rubber shore A 
hardness, force, feed, and wheel speed are considered to analyse material removal. Table 1 shows a 
summary of process parameters and their level used for performing grinding trials. The experimental 
layout for the five cutting parameters using the L27 orthogonal array is provided in Table 2. The 
mean S/N ratio for each level of the other machining parameters is assessed based on the material 
removal, i.e., depth of cut, and a greater S/N ratio corresponds to better material removal 
characteristics. 

Table 1. Belt grinding parameters and their levels. 

Parameter Unit 
Levels

L1 L2 L3 
RPM (m/min) 250 500 700 
Feed (mm/s) 10 20 30 
Force (N) 10 20 30 

Rubber hardness (Shore A) 30 60 90 
Grit Size - 60 120 220 

3.2. Experimental Conditions 

The experimental studies were done on a belt grinding setup based on settings of machining 
parameters, which were defined by using the Taguchi experimental design method. In addition, the 
test conditions listed below were maintained constantly throughout to achieve a controlled 
experimental trial. 

• The contact head of the belt grinder is kept at normal angle to keep uniformity in contact 
conditions throughout machining. 

• Tool wear effect was ignored as the tests were conducted in the useful lifetime of the belt tool. 
• The surface condition of the machined aluminium 6061 coupons was uniform with a surface 

roughness of 0.8 microns (μm). 
• Experiments are carried out in dry conditions. 
• Experiments were carried out with three passes for each trial. On each pass, the depth of cut was 

measured at three different locations, as shown in Figure 6, resulting in nine measurements. 
According to the parameter combinations from the Taguchi method, which obtained 27 trials as 
presented in Table 2, 243 depth of cut readings were obtained. 
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Figure 6. Profilometer with the tactile stylus used to measure the depth of cut across the grinded path 
at three different locations A, B and C. 

Table 2. Taguchi Experimental design using the L27 orthogonal array and corresponding depth of 
cut and signal-to-noise (S/N) ratio. 

Trial No. 
Factors MRR 

RPM Feed Force Hardness Grit Depth of Cut S/N Ratio 
1 250 10 10 30 60 65.60076 36.338177 
2 250 10 10 30 120 25.87109 28.256295 
3 250 10 10 30 220 13.34471 22.506183 
4 250 20 20 60 60 86.10453 38.70052 
5 250 20 20 60 120 44.20156 32.908752 
6 250 20 20 60 220 23.53456 27.434122 
7 250 30 30 90 60 93.8753 39.451027 
8 250 30 30 90 120 54.33391 34.701419 
9 250 30 30 90 220 23.55062 27.440047 

10 500 10 20 90 60 142.9324 43.102614 
11 500 10 20 90 120 86.37583 38.727845 
12 500 10 20 90 220 59.38035 35.472855 
13 500 20 30 30 60 120.6638 41.63154 
14 500 20 30 30 120 57.50747 35.194485 
15 500 20 30 30 220 45.55799 33.171291 
16 500 30 10 60 60 77.47286 37.782992 
17 500 30 10 60 120 26.08495 28.3278 
18 500 30 10 60 220 13.54166 22.633438 
19 750 10 30 60 60 134.8952 42.59993 
20 750 10 30 60 120 76.88529 37.716865 
21 750 10 30 60 220 58.97687 35.413634 
22 750 20 10 90 60 103.8255 40.326081 
23 750 20 10 90 120 56.9663 35.11236 
24 750 20 10 90 220 35.31606 30.959445 
25 750 30 20 30 60 114.009 41.138783 
26 750 30 20 30 120 56.65924 35.065415 
27 750 30 20 30 220 44.31528 32.93107 

3.3. Prediction of Depth of Cut 

A Mitutoyo stylus profilometer with a stylus tip radius of 5 μm was used to measure the depth 
of cut across the grinded path. Mitutoyo profilometer primarily consists of a traverse unit and a 
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processor control module. The grinded workpieces are so adjusted that the area of interest of 
measurement is across the grinded path. The length is profiled across locations A, B, and C along the 
tool path, as shown in Figure 6. 3D and 2D profiles were extracted from the workpiece surface across 
the machined length, using the profilometer to measure the depth of cut, as illustrated in Figure 7. 

The depth of cut is measured as the distance between the deepest point in the grinded path and 
the surface of the word coupon. Each experimental trial was repeated three times to have consistency, 
and depth of cut was measured across three locations for each trial, resulting in a total of nine reading 
per test. Figure 8 shows the standard deviation of the depth of cut measure taken from Taguchi’s L27 
orthogonal array based experimental trials for all 27 test conditions. Table 2 shows the experimental 
results for the mean depth of cut and corresponding S/N ratios. The depth of cut, i.e., material removal, 
was identified as the process output as well as the quality characteristic with the concept ‘the larger-
the-better’. The S/N ratio for the larger-the-better is: S/N = −10 × log (mean square deviation): = 10 1 1

 (8) 

where n is the number of measurements in a trial/row, in this case, n = 1, and y is the measured value 
in a run/row. A higher S/N value agrees with a higher depth of cut. Consequently, the ideal level of 
the grinding parameters is the level with the most significant S/N value. 

 
Figure 7. (a) 3D profile extracted from the workpiece surface across the machined surface using  
Taly-scan; (b) 2D profile obtained from the workpiece surface across the grinded path to measure the 
depth of cut. 
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Figure 8. Standard deviation of the depth of cut taken from Taguchi based L27 orthogonal 
experimental trials. 

4. Results and Analysis 

Figure 9 presents the results of the S/N ratio for the five parameters at three levels. According to 
Figure 9, the optimal parameters for a higher material removal rate were obtained at 750 RPM  
(level 3), 10 mm/s feed rate (level 1), 30 N force (level 3), 90 Shore A hardness (level 3), and 60 grit 
(level 1). The Material Removal Rate (MRR) increases with increasing Rotation per Minute (RPM), 
force, and hardness. On the contrary, it increases with decreasing feed and grit size. With coarser 
grain, i.e., smaller grit size, the depth of cut increases. An increase in force imparted on the work 
coupon and hardness of contact wheel results in an increase of material removal. The increase of RPM 
in the contact wheel causes greater tangential force, thereby causing the enhancement of the depth of 
cut. The decrease in feed rate causes the contact time between the grains and work coupon to be 
maximized, resulting in a higher material removal rate. 

 
Figure 9. Mean signal-to-noise (S/N) ratio graph for depth of cut. 
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4.1. Analysis of Variance (ANOVA) 

To understand a detailed visualisation of the impact of various factors influencing the depth of 
cut, i.e., material removal, in the belt grinding of Aluminium 6061 specimen, ANOVA was used. 
Based on the ANOVA, the comparative significance of the grinding parameters on the depth of cut 
was examined to define more accurately the optimum combination of the grinding parameters for 
higher material removal. The analysis is carried out for the level of significance of 5% (the level of 
confidence is 95%); the results are shown in Table 3. The last column of Table 3 shows the percentage 
impact of each parameter on the total variation, signifying their degree of effect on the results.  
The larger the percentage contribution, the greater the influence a parameter has on the material 
removal. It can be observed from Table 3 that the grit size (F = 124.93) has the greater static influence 
of 63.93%, followed by RPM (F = 26.42), which has an influence of 13.54%, and Force (F = 25.00), which has 
an influence of 12.79% on material removal rate. The feed and wheel hardnesses have an insignificant 
effect on the material removal of 3.34% and 2.31%. 

Table 3. Results of analysis of variance (ANOVA) for depth of cut. 

Machining Parameter Degrees of Freedom Sum of Squares Mean Square F Ratio Contribution (%)
RPM 2 5055.5 2527.7 26.42 13.54 
Feed 2 1249.1 624.5 6.53 3.34 
Force 2 4782.8 2391.4 25.00 12.79 

Hardness 2 867.1 433.6 4.53 2.31 
Grit 2 23,903.7 11,951.9 124.93 63.93 

Error 16 1530.7 95.7 - 4.09 
Total 26 37,388.8 - - - 

Interaction plots are most often used to visualise interactions during ANOVA. The effect of one 
factor depends on the level of the other factor, and such possible interactions can be envisioned using 
an interaction plot. The two way interaction effects are shown as line plots in Figure 10. Figure 10, 
below, indicates the interaction plot among the five belt grinding parameters that have been 
considered in our study on the depth of cut. 

 
Figure 10. Two way interaction effect plots between RPM, feed, force, hardness, and grit and their 
influence on depth of cut at different initial levels of parameters. 
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4.2. Predictive Modelling of Material Removal Using ANFIS 

Adaptive neuro-fuzzy inference system (ANFIS) removes the primary problem in fuzzy if-then 
rules by using the learning ability of an artificial neural network (ANN) for automated tuning of 
fuzzy if-then rules during training, resulting in a change of the membership function of parameters, 
thus leading to the automatic adaptation of the fuzzy system based on inputs-output space. The initial 
step of the ANFIS modelling system is to decide the input and output variables of the fuzzy logic 
controller. The ANFIS model described in this paper has five input parameters; RPM, feed, force, 
hardness, grit, and the output as the depth of cut, i.e., material removal rate (MRR). 

The ANFIS model described in this paper is a Multiple Input Single Output (MISO) system with 
multiple inputs and a single output. Figure 11 shows real inputs and real output with fuzzy rule 
architecture of the ANFIS. A Taguchi based experimental design with 27 runs, as indicated in Table 2, 
is used as the inputs for the ANFIS model. 

 
Figure 11. Adaptive Neuro-Fuzzy Inference System (ANFIS) model for belt grinding showing 
inputs and output. 

4.2.1. Membership Functions for the Input and Output Variables 

A membership function allocates grades of membership extending from numbers between zero 
and one to the range of the possible values of the variable. Zero membership value specifies that it is 
not a member of the fuzzy-set; one signifies an extensive member. A membership function such as 
sigmoidal membership function is created for each input variable used in belt grinding, as illustrated 
in Figure 11. The sigmoid function is differentiable for all values of the inputs to allow the use of 
powerful back-propagation learning algorithms [20]. The application of general sigmoidal 
membership functions to the neuro-fuzzy modelling process is a very attractive methodology to 
characterise nonlinear processes [21]. The advantage of sigmoidal membership functions over other 
membership functions is the better approximation due to tapering edges. 

4.2.2. ANFIS Rules Employed in Model 

The fuzzy modelling of Abrasive Belt Grinding uses five input parameters and one output 
parameter. The five input parameters include cutting speed, shore A hardness, feed, force, and grit 
size, and the output parameter is the material depth of cut. Each parameter corresponds to six 
linguistic variables. These variables can generate a number of rules in the designed control rules of 
the system. The topology of ANFIS architecture that implements the sigmoidal membership function 
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designed with 243 fuzzy rules for depth of cut prediction used in this research is illustrated in Figure 12. 
Figure 12 present an ANFIS architecture that is equivalent to a five-input first-order Sugeno fuzzy 
model. The ANFIS used contains 243 rules, with sigmoidal membership functions assigned to each 
input variable. The total number of fitting parameters is 303, including 60 premise (nonlinear) 
parameters and 243 consequent (linear) parameters. The applicable control rules formulated along 
with the membership function for the model are shown in rule viewer of the fuzzy model, as presented 
in Figure 13. These rules were implemented in a MATLAB environment using a Sugeno-type fuzzy 
inference system in the fuzzy logic toolbox. 

 
Figure 12. Topology of adaptive neuro-fuzzy inference system architecture. 

 
Figure 13. A part of the rule viewer in the proposed fuzzy model. 

Figure 14 presents the initial and final membership functions of the five belt grinding input 
parameters derived by sigmoidal membership function training. It can be seen from Figure 14 that 
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the changes between the initial and final membership functions hardness and feed parameter are 
insignificant. 

 
Figure 14. Change in shape of the sigmoidal membership function for each input before and  
after Training. 

However, on comparing the shape of initial and final membership functions of belt grinding 
parameters such as grit size, RPM, and force, a considerable change in the final membership function 
after training can be seen. Analysis of the sigmoidal membership function after training indicates that 
the factor in the belt grinding parameters that has the most impact on material removal is grit size, 
followed by RPM and force, confirming the results of the ANOVA performed in Section 4.1. 

4.2.3. Training the Network and Prediction Performance 

Prediction of the depth of cut of the process by ANFIS consists of two main parts; training data 
and testing data. Hence, among data sets, 70% data is selected stochastically for the training of the 
ANFIS network and 30% for testing the developed model. 

During the training in ANFIS, 27 sets of data were used to conduct learning, and this ceased 
after 250 iterations, as shown in Figure 15. The step size for parameter adaptation had an initial value 
of 0.1. The proposed ANFIS training parameters are given in Table 4. Adaptive neuro-fuzzy inference 
system (ANFIS) learning in this work uses the hybrid method for updating membership function 
parameters, which are comprised of back-propagation for the parameters linked with the input 
membership and least-squares estimation for the parameters related to the output membership 
functions. The results projected from the fuzzy model of belt grinding have been assessed with the 
experimental data for validation. Figure 16 gives the comparison of the predicted depth of cut using 
the established fuzzy model and the data taken from the belt grinding experiments. 
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Table 4. Adaptive Neuro-Fuzzy Inference System (ANFIS) training parameters. 

Parameter Value
Neuron level 5 

Size of input data set 243 
Training Set 70% 
Testing Set 30% 
andMethod Prod 
orMethod Max 

defuzzMethod Wtaver 
impMethod Prod 
aggMethod Max 

Number of output 1 
Membership function Sigmoidal membership 

Learning rules Least square estimation-Gradient descent algorithm 
Number of epoch 250 

 
Figure 15. Plot of error versus epochs for modelling material removal. 

 
Figure 16. Comparison of predicted with actual experimental values for depth of cut. 

The developed ANFIS system gave an overall 93.5% accuracy, as illustrated in Figure 17. 
Comparing outputs generated by the fuzzy model with the experimental data from 27 test conditions 
based on Taguchi DoE (Design of Experiments), the variations are found to be minimum. Thus, it can 
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be inferred that there is a co-relation between the simulated results and the experimental results 
obtained at the same machining conditions. 

 
Figure 17. Correlation between actual and predicted values of test and train data set. 

5. Conclusions 

In this study, an investigation into the influence of belt grinding parameters on material removal 
depth based on the Taguchi parameter design method has been analysed and presented. In the belt 
grinding experiments, three levels of cutting wheel speed, feed rate, force, grit size, and polymer 
hardness were applied. Based on the experimental results and summarising the research, the following 
generalised conclusions are drawn: 

1. ANOVA determined the level of significance of the machining parameters on the material depth 
of cut. Based on the analysis of variance (ANOVA) results at a 95% confidence level, the highly 
dominant parameters of material removal are identified. Namely, the grit size grinding 
parameter is the primary factor that has the highest influence on the material removal, and this 
parameter is about five times greater than the second ranking parameters (RPM and force 
imparted). The feed rate and polymer wheel hardness parameters do not seem to have much of 
an influence on the depth of cut, i.e., material removal. Results from ANOVA interactions also 
suggests that the experimental trials can further be optimised using Taguchi Interaction instead 
of orthogonal design. 

2. Based on the signal-to-noise ratio results in Figure 9, we can construe that 750 RPM, 10 mm/s 
feed rate, 30 N force, 90 Shore A hardness, and 60 grit size are the optimal grinding parameters 
for achieving maximum depth of cut. 

3. A method of modelling and calculating the material removal using ANFIS is proposed in this 
paper. The ANFIS model developed is validated with experimental trials for given conditions. 
It has been identified that results produced by the designed regression model have acceptable 
deviations between the predicted and the actual experimental results with 93.5% accuracy. The 
ANFIS model developed in this research work is viable and could be used to predict the depth 
of cut, i.e., material removal for an Abrasive Belt Grinding process. 
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