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Abstract: A control-structure interaction (CSI) effect commonly exists between an active mass
damper/driver (AMD) system with a DC motor and a controlled building. Additionally,
its higher-order component leads to the fact that the actual control force acts behind its theoretical
time; i.e., time delay. In this paper, the main influencing factors of a higher-order CSI effect are
analyzed, including the input frequency of the control voltage, the structural parametric uncertainties,
and the control gains. In addition, a new time-delay compensation controller based on a guaranteed
cost control (GCC) algorithm is designed, to consider the higher-order CSI effect for multi-level
steel frame structures. Experiments on a typical four-storey frame are conducted, to verify the
performances of the proposed method. The results show that the proposed controller has an excellent
control effect and stable control parameters, even under the situation of large parametric uncertainties
and long time-varying delays.

Keywords: vibration control; active mass damper/driver; control-structure interaction; time-varying
delay; guaranteed cost control

1. Introduction

A passive tuned mass damper (TMD) [1-3] and active mass damper/driver (AMD) [4-6] are used
to control the dynamic response of highly flexible buildings that are horizontally situated under a
strong load, e.g., wind and earthquake. Indeed, the application of TMD is more extensive than AMD.
Theoretically, the performance of an AMD control system is better than other forms of systems [7].
However, the negative influence of time-delay, which results in performance degradation and even in
the instability of the system, limits its development and practical application [8,9].

A time-delay effect mainly stems from the actuator response, which is primarily caused by a
Control-Structure Interaction (CSI) effect, which exists between any type of structural active control
system and its target structures. Therefore, the influence of the CSI effect on an AMD control
system should be carefully considered when designing such a system [10-13]. The actuator response
time-delay is due to negative phases existing in the transfer function from control voltage to control
force, but the influence of the frequency of control voltage on its phase (corresponding to actuator
response time-delay) has often been neglected. Obviously, the actuator response time-delay induced
by the CSI effect is affected by the sensitivity of the actuators, which is largely dependent on the drive
mode. An electromagnetic drive is one of the most common forms in AMD control systems [14,15],
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and the influence of the CSI effect on such systems needs to be focused on. In addition to these
above references, the research on the CSI effect mainly concentrates on its influence on the control
effect of control systems [16-18], or the impact of the CSI effect on structural dynamics [19]. Indeed,
the structural dynamics are coupled with the performance of an AMD system with a CSI effect, and its
performance is mainly connected with control gains. Meanwhile, different dynamical behaviors
of civil engineering structures may result from structural parametric uncertainties [20]. However,
the influences of control gains and uncertainties on the CSI effect remain unknown. In order to achieve
a higher performance of an AMD system with a CSI effect, it is necessary to investigate the influencing
factors of the CSI effect, including the input frequencies of control voltage, structural parametric
uncertainties, and control gains.

After analyzing such factors, several measures can be obtained to reduce this effect. In addition,
to further solve the CSI problem, a suitable compensation control strategy is needed. Firstly, a Linear
Quadratic Regulator (LQR) is a common control strategy for high-rise buildings [21], but it requires
an accurate mathematical model. As a parameter perturbation or time-varying delay exists in a
control system using LOQR, its expected performance and stability are difficult to guarantee [22].
At present, the Linear Matrix Inequality (LMI) [23] approach is widely applied to analyze the
stability of time-delay systems [24,25] or design a Hoo time-delay compensation controller [26,27].
However, Heo control mainly considers the robust stability of the system by sacrificing its performance.
To overcome this difficulty, a Guaranteed Cost Control (GCC) algorithm is proposed as a special
LOR control method [28,29]. In order to successfully apply the GCC algorithm for a high-rise
building with an AMD control system, a key step involves solving a positive-definite solution of
Riccati matrix equations. Previously, this problem has been based on the Riccati equation method,
whose convergence cannot be guaranteed [30,31]. However, an LMI approach can overcome this
difficulty [32]. Several above References [10-13] also indicate that classical algorithms cannot be
effectively applied to eliminate the negative influence of a higher-order CSI effect. Therefore, in view
of the structural parametric uncertainties and time-varying delays caused by a higher-order CSI effect,
a new time-delay compensation controller is needed. This paper proposes the combination of a GCC
algorithm and an LMI approach, to enhance the performance and robustness of the AMD system,
which is different from those in the above references and is of great significance for civil engineering.

In this paper, a mathematical model of the higher-order CSI effect is established for a multi-storey
steel frame with its AMD control system. The influences of the input frequencies of control voltage,
structural parameters, and control gains on a higher-order CSI effect, are analyzed. A new time-delay
compensation method based on a GGC algorithm and LMI approach is proposed for time-varying
delay systems with uncertain structural parameters. Numerical experiments are conducted on a
four-storey frame with its AMD control system. Further, the numerical model has been constructed
in the laboratory. Discussions and conclusions that are conducted to verify the performances of the
proposed method are presented based on both numerical and experimental results.

2. Experimental Model Considering CSI Effect

2.1. Time-Delay Sources of a Control System

According to the work flow of an AMD control system, the time-delay shown in Figure 1 mainly
results from: (1) Structural response d;; (2) Sensors monitoring dy; (3) Feedback signals are transmitted
from the sensors to the controller d3; (4) Control force calculation dy; (5) Control signals are transmitted
from the controller to the actuator ds; and (6) Actuator response d¢. The minimal delays (d3 and ds)
of the transmission of signals in wires can be ignored, in terms of the delays (dy, d», and d,) that are
basically unchanged. In this paper, the actuator response time-delay dg constitutes the important
research content.

An AMD control system that considers the CSI effect can be described in Figure 2. v, u, and w are
the control voltage, control force, and external excitation load, respectively. H,, denotes the transfer
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function from the structural response to the control voltage, H,, denotes the transfer function from the
control voltage to the control force, and Hy, denotes the transfer function from the control force and
the external excitation load to the structural response. A CSI effect occurs at the stage of H..

f (t-di-de-dle-ds)

Figure 1. Model of an AMD control system.

F(t) Y (t-du) Y (t-di-d2-dls)

U(t-drdz-ds-drds)

Controller

X
Figure 2. A Flow diagram of an AMD control system showing CSI.

2.2. Experimental System and Its Theoretical Model

The experimental model shown in Figure 3 is a four-storey shearing type structure made of
steel [6]. The columns and the floors of the test structure are made of two thin steel plates, which are
8 mm thick and 30 mm width. The length of the floors is 1400 mm, and the interstory height of the
structure is 800 mm.
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Figure 3. Pictures of the steel frame structure, (a) Practicality; (b) Exhibition.

In this experiment, four accelerometers are installed in the beam-column joints of each structural
floor to measure the structural response, respectively. Accelerometers with a type of GT02 and
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three Micro-Epsilon laser displacement sensors are used to measure the horizontal acceleration and
displacement of each floor, along the minor-axis. Here, the acceleration measurement is used as the
feedback signal to calculate the real-time control forces, and then, an EtherCAT bus system can be
used for transmitting the forces to a servo motor. The displacement measurement of the second, third,
and fourth floors are used for verifying the control effectiveness. The loading system is composed of a
reducer with an eccentric mass and an inverter. The frequency range of the inverter is 0-50 Hz, and the
speed range is 0-120 rpm. The AMD control system shown in Figure 3b mainly includes a servo motor
from a local company, an EtherCAT bus system, a dSPACE with a type of DS1103, and a computer.
During the tests, the chassis of the AMD control device is fixed on the fourth floor of the structure and
all of the motion signals are gathered by the dSPACE. An EL3008 input terminal, an EK1100 coupling
terminal, an EL4034 output terminal, and a servo controller with a type of AX5000 constitute the
EtherCAT bus system, which can be used to ensure the accuracy of signal transmission.
After calculating, its structural frequencies are listed in Table 1.

Table 1. Natural frequencies of the experimental system.

Order Frequency (Hz)

1 0.162
2 0.589
3 1.093
4 1.852

Regarding the simplified model of the experimental system, as shown in Figure 4, the control
force is exerted on the top floor. Therefore, the force equilibrium of the control system is:

MX(t) + CX(t) + KX(t) = Bgs¥g(t) + Bsu(t) (1)

where M, C, and K are the mass matrix, damping matrix, and stiffness matrix of the system, respectively.
X, X, and X are the acceleration, velocity, and displacement vectors of the system relative to the ground,
respectively. X, is the external excitation. Bs and Bgs are the position matrices of the control force and
earthquake, respectively. u is the active, controllable magnetic force of the AMD system.
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Figure 4. The simplified model of an AMD system.

The experimental structure is modeled as an in-plane lumped-mass shear structure, and the
matrices M, C, K, X, Bs, and Bgs are expressed as:
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mp O 0 0 0 1+ —Cy 0 0 0
0 mpy O 0 0 —Ccp Cp+tc3 —C3 0 0
M= 0 0 msg O 0 ,C= 0 —C3 3+ (4 —Cy4 0 ,
0 0 0 mg O 0 0 —C4 Ci+cCp —Cq
0 0 0 0 m, 0 0 0 —Cq Ca
5x5 5x5 (2)
k1 +ky —ko 0 0 0 Xs1 0
—ky ko + k3 —k3 0 0 Xs2 0
K= 0 —ks  ks+ky —kg 0 , X = xg3 ,Bs = 0 ,Bgs = —M[1]5,;.
0 0 —k4 k4 + kg —ka Xsq -1
0 0 0 ko ko Js.s Ya 1541 L odsg

where x;; are the relative displacements of the ith floor and x; is the relative displacement of the AMD.
My, ¢z, and k, are the mass, damping, and stiffness of the AMD, respectively. m;, k;, and c; are the mass,
interstorey stiffness, and damping of the ith floor, respectively.

T
The state vector of the system, which includes the displacement and velocity, is Z = [X X] ,
so Equation (1) can be expressed as the state-space equation, as follows:

Z(t) = AZ(t) + By¥,(t) + Bou(t) ©)

where A, Bj, and B, are the state matrix, the excitation matrix, and the control matrix, respectively,
which can be expressed as:

O5x5 x5 O5x1 05x1
A= , By = ,By=| 4
~M K —M7Ic "N T | MTIBg |V TP | MTUBs @)

2.3. CSI Effect Analysis

This section analyzes the essence of the CSI effect of an AMD control system with a DC motor,
shown in Figure 5. It is modeled as a permanent magnet DC motor that is usually used in the control
field of civil structures. Because there is a natural feedback path between the structure and the actuator,
the CSI effect is unavoidable and needs to be considered [13]. Since the AMD mass is embedded with
magnetic coil sets, the input-output relationship of a DC motor that allows for a concise analysis is:

Rq

. K, K;K
T@:—Eﬂﬂ—blg

Lot

2a(t) + V(0 ©)

where T is the motor torque, V is the applied voltage, L, = 0.00073 H is the armature inductance,
R, =0.0099 Q) is the armature resistance, K;, = 1.27 V/s is the back electromotive force constant,
K; =12 Nm/A is the motor torque constant, and K¢ =1 and r;;, = 0.15 m are the gear ratio and the lead
of the ball screw, respectively.

The absolute velocity of the AMD is:

J.CA = xa - J.554 (6)

where xg4 and x, are the relative velocities of the fourth floor and the AMD.
The horizontal control force produced by the rotary motor with its ball-screw can be defined as:

u(t) = &T(t) @)

'm
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Figure 5. A photograph of the DC motor.

An equation for the force and its transform can be obtained by substituting Equation (6) into
Equation (5).

. R, KpKiK3 . KiK,
Then: )
L, . KyKiKs KK,
u(t) = —gEi(t) — i kalt) + g EV(D) ©

where —KbKiKgic VA Rurfn and —L,u/R, are the control force loss caused by the reverse induction
voltage and the inductance of the motor coils, respectively.
The AMD is regarded as an analysis object, and the control force can be written as:

U=MmMgXp~+CaXq+kaxa (10)
By using the Laplace transform, Equation (10) can be written as:
U = s2mux 4 scaxa + kaX (11)

The absolute displacements x4 of the AMD is:

u

_ 12
s2mg + scq + ko (12)

XA
As can be seen from Equations (9) and (12), there is an additional variable (relative structural
velocity of the fourth floor) in Equation (9), meaning that the dynamical property of the AMD control
system is coupled with the structural dynamics. Furthermore, a first-order differential of force also
exists in Equation (9). As a result, corresponding to the different accuracy requirements of the
solution, three models with different CSI effects can be established. Thus, Figure 6 is a block diagram
representation of the different AMD models given in Equations (9) and (12).
Regarding the DC motor installed on the example frame, three models can be shown in Figure 6:
(1) Non-CSI effect only contains the item (a); (2) Considering the reduced-order CSI effect, the items (a)
and (b) are contained, and the higher-order item (c) is neglected; (3) Considering the higher-order CSI
effect, the items (a—c) are all considered. Different transfer functions from the control voltage to the
control force are shown in Figures 7 and 8.
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Figure 6. Block diagram of three CSI models.

2.3.1. Non-CSI Effect

In this case, the AMD control system can be regarded as an ideal linear actuator, and the
relationship between the control force and voltage is:

_ Kikg ) (13)
"= Ratm
The state equation of this system is:
0o I KiKg 0 1.
M M M M
The observation equation is:
I 0 0 0
, 0 I 0 KiKq 0 )
=| _K _C|Z2F ) B | V| By X (15)
M M M| M
0 0 1 0

Since the relationship between the control force and control voltage is linear, the magnitude of
the transfer function is a constant. A non-CSI effect is considered, which means that the phase of
the transfer function is zero and the control force maintains the same phase with the control voltage,
resulting in a transformation process that does not contain a time-delay.

2.3.2. Considering Reduced-Order CSI Effect

In this case, the differential term of the control force is neglecting, namely —(L,/R;)u = 0. Then,
the relationship between the input and output of the DC motor is:

—K K-K2. K:K
U= b $xa Ly
Ra72, Rarm

(16)

The state equation of this system is:
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, 0 KyKiK2\ | 0 | kK, 0 1.
7 = K c |Z+| B, “R2 XA+ | B R, V+ | Bgs |Xg
—_— —_ —_— a'm —_— a'm e
M M M M | M
0 I K. K:K2 0 0 | kK 0
_ bINg g T 1IhNg .
(| ko Tt B L0 B )z | B | V| B |
M M L M M
The observation equation is:
-0 0 ;
I 0 0 0 0
0 I 2 0 .
B KpKiKg T Bgs KKy Bs Xg
Y = K S B || 0 BT [ |z+ | =& 258
“ M R,72, M M  Ryrm M 4
0o 0 1 KiKg
L Rty

8 of 21

(17)

(18)

From Figure 7, with the increase of frequency, the magnitude of the transfer function becomes
larger, before tending to a definite value. The phase transforms from a minus value to zero; a minus
phase indicates that a control force lags behind control voltage. Therefore, the time-delay of the control
voltage to the control force gradually reduces to zero, with the increasing frequency of the control
voltage. The nonlinear relationship between the control force and control voltage is influenced by the
changing frequency of the control voltage (or feedback signal), which is consistent with Equation (17).
Additionally, as the frequency of the control voltage is consistent with the natural frequency of the
experimental frame, a sudden change in the transfer function is generated.

()60

£1=0.162 Hz
@ 40
% f=1.852 H
3 20 4=1. z
=
¥
S o £>=0.589 Hz £3=1.093 Hz
10™ 10° 10" 107 10
Frequency (Hz)
Figure 7.

(a) Magnitude; (b) Phase.

2.3.3. Considering Higher-Order CSI Effect

In this case, the relationship between the

® 7
&0 90t
T
(9]}
2]
& -180r
[a M)
-270 ‘ ‘ ‘
¥ 10" 10° 10" 10° 10
Frequency (Hz)

Transfer function from control voltage to control force (Reduced-order CSI effect),

input and output of the DC motor is:

KyKiKZ . KK, .
R,72, Rutm
0 0 0
B B .
_° N 8 X
N VA vV
R KiKg
_a 0
Lu Lai’m

(19)

(20)
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5 . T
where Z = { X X u } . The observation equation is:

I 0 0 0 0
I 0|, 0 013
Y=| K _C B |Z+| B ||y 21)
M M M M
0 0 1 0 0

From Figure 8, with the increasing frequency of the control voltage, the magnitude and phase
of the transfer function initially increase and then decrease. This phenomenon indicates that a long
time-delay exists when the frequency is relatively large or small.

(a) 40 (b) 90
% 30
= o5 135
L 200 3
=]
Z 10, 2 a0
g & -180
S =
= O
-225/
-10 I | - . . .
10" 10° 10 107 10° 10" 10° 10" 10° 10°
Frequency (Hz) Frequency (Hz)

Figure 8. Transfer function from control voltage to control force (Higher-order CSI effect),
(a) Magnitude; (b) Phase.

From Figures 7 and 8, as the AMD system does not consider the CSI effect, the control force
generated by a unit control voltage is the largest, and the time-delay is close to zero. This means that
the performance of the servo motor without the CSI effect is preferable to that of the reduced-order
CSI effect, and the worst performance is seen by the higher-order CSI effect. When the worst condition
occurs, system time-delay always exists (negative phases), and the frequency of the control voltage
needs to be decreased or increased properly to near the value which is located at the peak of the
magnitude and phase curves. Finally, in order to obtain the largest magnitude and the smallest phase,
the frequency of the experimental system is taken as 10 Hz. An influence analysis of the frequency
on the magnitude of the transfer function from the control voltage to the control force can be found
in much literature. However, the basic conception of its negative influence on the phase has been
introduced here. In sum, as a suitable frequency of the control voltage is selected, a unit control voltage
can be converted into a relatively large control force, and the additional time-delay is relatively short.

The influence of external disturbance on an AMD system can also be attributed to an impact on the
transfer function from the control voltage to the control force. The magnitude affects the control force,
which corresponds to the control gain. The phase corresponds to the time-delay in the control system.

3. Influence Factors of Higher-Order CSI Effect

The influencing analysis of several factors, such as structural parametric uncertainties and control
gains, on a higher-order CSI effect remain unknown. This section analyzes these influencing factors.
Following this, several measures to reduce this effect can be obtained. A SDOF structure with an AMD
system is intended to be a numerical example. Its parameters are listed in Table 2. Its Feedback gain G
is calculated by an LQR algorithm, and the weight matrices Q and R are shown in Table 2.
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Table 2. Parameters of the control system.

Structure The AMD System
Mass m (kg)  Rigidity k (N/m)  Damping Ratio = AMD Mass m, (kg AMD Rigidity k, (N/m) Q R
2 x 10° 5 x 107 0.05 250 0.001 108 1074

3.1. Influence Analysis of Structural Parameters

The force equilibrium of a SDOF system can be described as:
mx(t) + c'x(t) + K x(t) = —u(t) + X4 (t) (22)

where m, ¢/, and k’ are the nominal mass, damping, and stiffness of the SDOF system, respectively.
Since the uncertainties of structural damping or stiffness exist, the transfer functions of an AMD
system from the control voltage to the control force can be obtained. The change in the stiffness and

damping are described as:
K =Bk ¢ =ac(a,p=12,--,5) (23)

where 3 and « are the amplification factors of stiffness and damping, respectively.
Substituting Equation (23) into Equation (20) leads to:

0 I 0 0 0
O 1 i
7= - p m |2+, © ‘f (24)
0 K, K;K3 r  Ra 0 KiKq
L,ﬂ’% $ L, Lot
Its observation equation is:
I 0 0 0 0
I 0 0 0 3
Y = Z g 25
L e [Vl @)
m m m m
0 0 1 0 0

The changes in the transfer functions from the control voltage to the control force of the AMD
system with different stiffnesses and dampings are shown in Figures 9 and 10.

From Figure 9, with the increase of structural stiffness, its fundamental frequency becomes
larger. When the frequency of the control voltage is consistent with the structural frequency, a sudden
change in the transfer function is generated. Meanwhile, mutation positions gradually shift to the
right side, which is shown in Figure 9a. Furthermore, as the frequency of the control voltage is
smaller than the fundamental frequency, the system has a long time-delay (negative phase). Therefore,
the chosen frequency should be greater than the fundamental structural frequency. For example,
a suitable frequency of the control voltage of the experimental system is 10 Hz, which is larger than its
fundamental frequency (0.162 Hz).

From Figure 10, because structural damping cannot change the structural fundamental frequency,
the mutation positions of these transfer functions remain unchanged when the damping increases.
Additionally, when the chosen frequency is greater than the fundamental frequency, the phase
(negative value) of the transfer function becomes smaller with the increase in structural damping.
This indicates that the CSI effect becomes more significant.
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Figure 10. Transfer functions from control voltage to control force with different dampings,
(a) Magnitude; (b) Phase.
3.2. Influence Analysis of Control Gains

The control force of a SDOF system is:
U= —(gxx + g;X) (26)

where ¢y and g, are the control gain according to displacement and velocity, respectively.
The force equilibrium of a SDOF system can be described by substituting Equation (26) into
Equation (22).
mx(t) + cx(t) + kx(t) = — [gux(t) + g, %(£)] + Xg(t) (27)

Negative feedback control is commonly used in civil engineering, so two cases are analyzed for a
SDOF system, namely:
gx:ykl gjczec (Ylszllzl”'IS) (28)

When a higher-order CSI effect is considered, the state equation of the SDOF system is:

0 I 0 0 0
k c 1 1 .
5 —— - — |4 2 X
7= - . m |2+ 5 O 5 ] (29)
Reo Ry KiKikG o o Kk
LS L5 L2 s Laf'm
Its observation equation is:
I 0 0 0 0
0 I 0 0 0 3
Y = Z g 30
L R R (30)
m m m m
0 0 1 0 0

The changes of the phase transfer functions from the control voltage to the control force of
the AMD system with different displacement and velocity gains are shown in Figures 11 and 12.
From Figure 11, with the increase of the displacement gain, the absolute value of the phase
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transfer function becomes smaller, which means that the time-delay of the system becomes shorter.
From Figure 12, with the increase of the velocity gain (the equivalent damping of the system becomes
larger), the absolute value of the phase transfer function becomes bigger, and indicating that the
time-delay of the unstable system becomes longer.

In sum, system time-delay is inversely proportional to displacement gain, and is proportional to
velocity gain. Therefore, for considering the stability of the system, when an algorithm is used in the
design of a controller, it is necessary to guarantee that the weight coefficient according to displacement
in the Q matrix is large and that the weight coefficient according to the velocity is small.

-180

1820
-184
-186

-188

Phase (deg)

~—gamma=1.0
~—egamma=2.0
-192-.—gamma=3.0
_194 | 9amma=4.0
gamma=5.0

-190

-196,
10 10

Frequency (rad/s)

Figure 11. Phase transfer functions from control voltage to control force with different
displacement gains.

-90 P o E—o-a—+os
135 .
g ~—epsilon=1.0
Pt = epsilon=2.0
é -180¢ ~—epsilon=3.0| |

—epsilon=4.0

205 -—epsilon=5.0

-270 —
10 10

Frequency (rad/s)

Figure 12. Phase transfer functions from control voltage to control force with different velocity gains.

4. Time-Delay Compensation Control Gain Design by GCC Algorithm

From Figures 7 and 8, when the frequency of the control voltage is determined, the phase from
the input to output remains unchanged, meaning that the time-delay of the system is a certain
value. However, as the frequency of the control voltage (affected by external excitation) is changed,
the time-delay of the system is always changed. In this section, the time-delay resulted from a
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higher-order CSI effect that can be calculated through numerical analysis. The process is coincident
with the actual situation in civil engineering.

An El Centro seismic wave (SN direction) in Reference [19] is taken as an example. Three scenarios
are analyzed for the seismic wave, namely: (1) Non-CSI effect; (2) Reduced-order CSI effect;
and (3) Higher-order CSI effect. Using these systems, comparisons of control voltages and control
forces are shown in Figure 13.

From Figure 13, under the excitation of the Centro El seismic wave, when the non-CSI effect
and reduced-order CSI effect are considered, the control force and control voltage are basically in
synchronization. Compared to the higher-order CSI effect, the time-delay between the control force and
the control voltage is comparatively obvious, where the result is consistent with engineering practices.
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Figure 13. Control voltage and control force induced by the El Centro seismic wave, (a,b) Non-CSI
effect; (c,d) Reduced-order CSI effect; (e f) Higher-order CSI effect.

As the Higher-order CSI effect is considered, the time-varying delays of the experimental system
are shown in Figure 14. From these figures, under the excitation of the El Centro seismic wave,
the biggest time-delay is 0.11 s. Additionally, after the earthquake, the maximum time-delay (0.11 s)
remains unchanged. As the excitation frequency (the frequency of control voltage) is zero, according to
Figure 8, the phase is the largest, which means that this time-delay is the longest.
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Figure 14. Time-varying delays of the experimental system.

Due to an external excitation with a changed frequency, the absolute velocity of the AMD mass
is not zero and a higher-order CSI effect exists, which means that a time-varying delay also exists.
The time-varying delay includes a constant part d = (d1 + dy + d3 + d4 + ds) and a time-varying part de(t).

The control force considering time-varying delay is:

ua(t) = ~GZ[t —d(t)] G31)

where d(t) is the time-varying delay.
Structural parameters M’ and K’, considering uncertainty, are:

M = M+ AM = (1+5y)M, K' = K+ AK = (1+ 6g)K. (32)

where J3; and Jk are the variation coefficients of the structural mass and stiffness, respectively.
The closed-loop system with uncertain parameters and a time-varying delay can be described as:

Z(t) = (A+ AA)Z(t) + (By + ABy)ug(t) + (Ba + ABy)ul(t) (33)
Supposing AA = —AB,G, system (33) is:
Z(t) = (A+AA)Z(t) + (A + AA)Z[t — d(t)] + (Ba + AB)u(t) (34)
The perturbation matrix is assumed follow the form described in Reference [33].
[ AA ABy AA ] :DF[ E, Ey Eg ] (35)

where F is an uncertain matrix satisfying F = 61,

5| < 1and ¢ is an uncertain constant. Moreover:

(bk+1) 0
OK OC ‘|1E1: |: {((SMJFU 1}1 ’ ]/EZZEd: { BS[(5m+1)71—1] } (36)
M 0 (@1 =11 e

D=

M M

By substituting Equation (35) into Equation (34), and letting u(t) = —G - Z, the state-equation of
a control system is:

Z(t) = [A — ByG + DF(E; — ExG)|Z(t) + (A + DFE,) Z(t — d) (37)

The performance index of the system (37) can be defined as:

]:/(;OO(ZTQZ-l-UTRU)dt:/(JOO{ZT[Q+(_G)TR(_G)]Z}dt -
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Supposing A = A — B,G + DF(E; — E;G). If there exists symmetric positive-definite matrices
P,S € R"™" then:

(39)

ATP+PA+S+Q+(-G)"R(-G) P(A+ DFE,) 0
(A+DFE;)"P s

Based on the Lyapunov stability theory [34], it proves that the system (37) is asymptotically stable.

Defining:
. (A—ByG)'P+P(A—ByG)+S+Q+ (~G)"R(-G) PA )
a'p -5
Equation (39) can be written as:
PD PD !
Y+ FI(E: —B2G) Eal +[(B1—E2G) E'FT <0 (41)
where the matrix F satisfies the condition FTF < I.
If there exists a positive constant p, inequality (41) can be written as:
PD PD _
Y| S ]y | TR TIE - EG) Edl(Br—E2G) EgT <0 (42)

The proof can be found in Reference [35]. From Schur’s complement [36], inequality (42) can be
expressed as:

(A—ByG)"P+P(A —ByG) + uPDDTP + S+ Q+ (—G)'R(~G) PA (E; — E,G)"
a'p -s ET <0 (4
(E1 — E2G) Eq —pl

Inequality (43) is pre and post multiplying diag{P~!, I, I}, and defining X = P~

H A X(E;—EG)T
A’ -S ET <0 (44)
(E1 — EzG)X Ed —},LI

where H = X(A — B,G)" + (A — B,G)X + uDD" + X5X + X[Q+ (~G)"R(~G) | X.
From Schur’s complement, and defining W = —GX, inequality (44) can be described as:

H A (EEX+EW)T X wT X
ar -s ET 0 0 0
EiX+EW E4 —ul 0 0 0 <0 (45)
X 0 0 -0' o 0
w 0 0 0 —R71 0
I X 0 0 0 0 =51

where H = AX + ByW + (AX + BZW)T + uDDT. Inequality (45) is pre and post multiplying diag{I,
S 11,11}, and defining V = S—1, it can be expressed as:
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H AV (EEX+EW) X wl X
VAl —v VE! 0 0 0
E1X +E,W E;V —ul 0 0 0 | _y (46)
X 0 0 Q! 0 0
w 0 0 0 —R71 0
I X 0 0 0 0 -V |

The LMI toolbox of Matlab can be used to solve the optimal solutions of u/, X', W/, and V'.
The state feedback control law for a time-delay system with parametric uncertainty is:

U=-GzZ=wW'(x)"'z 47)

The GCC control gain shown in Equation (47) can be used to design a new compensation
controller for AMD control systems with parametric uncertainties or time-varying delays caused
by a higher-order CSI effect, which is different from those in the reference literature.

To validate the efficiency of the developed method, the compensation controller with a state
feedback GCC algorithm is applied to the experimental system. This paper focuses on the displacement
control effect of the 4th floor of the experimental system and the size of the AMD stroke. After adjusting,
Qu, Qs, and R are taken as 6 x 10°, 3 x 102, and 1 x 1073, respectively, and the weight coefficients
of the other layers are all defined as one. Three scenarios are analyzed in this part: (1) The variation
coefficients of the structure parameters are 0%, and the time-delay is zero; (2) The variation coefficients
of the structure parameters are 0%, and the introduced time-varying delays are stochastic numbers
(0 to 0.2 s); (3) The variation coefficients of stiffness and mass are —38.3% and 16.8%, and the introduced
time-varying delays are stochastic numbers (0 to 0.2 s). The loading frequency and the peak value
of the sinusoidal excitation force are 1 Hz and 45.89 N. Under the above excitation load, the control
effects and the AMD parameters of different control systems are listed in Table 3, and the structural
responses (includes displacement and acceleration) to the 4th floor of the different control systems are
shown in Figures 15-17.

Table 3. Control effectiveness of structural responses.

No Time-Delay GCC Compensation Uncertain System with

No GCC Compensation
Index
Control Responses Effect Responses Effect No Responses Effect
P (%) P (%) Control P (%)
Displacement 2nd floor 0.0298 0.0205 31.0591 0.0194 34.8642 0.0335 0.0219 34.7817
P (m) 3rd floor 0.0432 0.0295 31.7138 0.0277 35.8596 0.0491 0.0316 35.6275
4th floor 0.0497 0.0338 31.9498 0.0320 35.6917 0.0563 0.0358 36.4951
Acceleration 2nd floor 0.4028 0.1183 70.6267 0.1375 65.8645 0.4105 0.1332 67.5401
(m/s?) 3rd floor 0.3082 0.1001 67.5416 0.1172 61.9658 0.3501 0.1412 59.6573
4th floor 0.3097 0.0756 75.5864 0.0875 71.7627 0.3426 0.0970 71.7008
AMD control forces (N) - 27.8351 - 28.1549 - - 28.3361 -

AMD strokes (m) - 0.1635 - 0.1471 - - 0.1873 -
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Figure 15. Comparison of structural responses to the 4th floor of the experimental system under
scenario 1, (a) Displacement; (b) Acceleration.
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Figure 16. Comparison of structural responses to the 4th floor of the experimental system under
scenario 2, (a) Displacement; (b) Acceleration.
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Figure 17. Comparison of structural responses to the 4™ floor of the experimental system under
scenario 3, (a) Displacement; (b) Acceleration.

From Figures 15-17 and Table 3, when the time-delay and the structural parametric uncertainty
are not considered, the GCC controller can effectively suppress the structural response. Moreover,
when considering the time-delay, the controller can also be used to compensate for the time-varying
delay, and the maximum variations of the displacement and acceleration control effects between
the systems with and without delays are only 4.15% and —5.58%, respectively. Additionally,
as the structure parameters have a large uncertainty, the guaranteed cost controller is still valid.
Compared with a certain system, the control effects of the displacement and acceleration responses
of an uncertain system with GCC compensation only change by 0.80% and —2.31%, respectively.



Appl. Sci. 2017, 7,313 19 of 21

Therefore, the guaranteed cost control method can effectively deal with the adverse conditions, and can
be used to control the structural response in the ideal range.

5. Conclusions

The CSI effect has a negative influence in an AMD control system. To address this issue,
three mathematical models of a four-storey steel frame are established, to consider the CSI effect
in the paper. Several influence factors of a higher-order CSI effect are analyzed, including structural
parameters and control gains. Finally, based on a GCC algorithm, the time-delay compensation
controller is designed for the experimental system. Based on the results, the following conclusions can
be drawn.

(1)  As the CSl effect is discarded (Ideal situation), the magnitude of the transfer function is a constant,
and the phase of the transfer function is zero, meaning that the transformation process does not
contain a time-delay.

(2) When the CSI effect is considered, the above two parameters (magnitude and phase) are affected
by the frequency of the control voltage, and the optimal frequency needs to approach the peak
values of the magnitude and phase curves. As a result, a unit control voltage can be converted
into a relatively large control force, and the additional time-delay is relatively short.

(3) The chosen frequency of the control voltage should be greater than the fundamental frequency of
the controlled structure. At this time, the time-delay of control systems becomes longer, as the
structural damping increases.

(4) The time-delay is inversely proportional to the displacement gain, and is proportional to the
velocity gain. Therefore, it is necessary to guarantee that the weight coefficient according to
displacement in the Q matrix is large and that the weight coefficient according to velocity is small.

(5) The time-delay of the system has time-varying characteristics. The controller based on the GCC
algorithm in this paper can significantly improve the performance under the adverse influence of
the time-varying delay, and its performance is close to the system without time-delay. As a result,
it can effectively compensate for the time-delay and enhance the robustness of the control system
with parametric uncertainties.
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