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Abstract: Studying critical currents, critical temperatures, and critical fields carries substantial
importance in the field of superconductivity. In this work, we study critical currents in the
current–voltage characteristics of a diluted-square lattice on an Nb film. Our measurements are
based on a commercially available Physical Properties Measurement System, which may prove time
consuming and costly for repeated measurements for a wide range of parameters. We therefore
propose a technique based on artificial neural networks to facilitate extrapolation of these curves for
unforeseen values of temperature and magnetic fields. We demonstrate that our proposed algorithm
predicts the curves with an immaculate precision and minimal overhead, which may as well be
adopted for prediction in other types of regular and diluted lattices. In addition, we present a detailed
comparison between three artificial neural networks architectures with respect to their prediction
efficiency, computation time, and number of iterations to converge to an optimal solution.

Keywords: superconducting film; diluted square lattice; Shapiro steps; prediction; artificial
neural networks

1. Introduction

Mixed state in superconductors is the sign of existence of vortices, which is the most interesting
research area in low temperature physics. The vortices can be in the form of liquid, glassy, or
crystalline phases. These vortex phases can be studied in high temperature superconductor systems
and type II superconducting thin films with an array of dots/antidots. Over the last few decades,
various properties of superconducting thin films with an array of artificial pinning centers have been
explored [1–5]. Different geometrical structures [2,3,5–10] have been used in the composition of the
array of dots or antidots. Previous works [10] showed that using a diluted array of antidots increases
pinning effect along with energy conservation. In this work, an experimental setup based on a diluted
square array of antidots is used to measure its current–voltage (IV) behavior.

It has been noted in previous works [11] that repeated transport measurements may become
costly and cumbersome to obtain. As a result, there is a dire need to come up with a theoretical or
a formal model that could approximate the IV curves of superconducting films, and thereby relieve the
researchers from repeatedly measuring these physical properties. Artificial neural networks (ANNs)
are among the most widely adopted techniques for modeling complex systems. The concept of ANN
is derived from the actual working of a human neuron system [12], in which different neurons connect
with each other through some network’s coefficients (called weights). The working of ANNs is well
addressed in literature [13]. ANNs learn and identify relationships between systems’ parameters: this
gives them an astonishing approximation or prediction capability. Other advantages associated with
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the use of ANNs include modeling non-linearity [14–17], fault tolerance, parallelism, robustness of the
learning process, and ability to handle fuzzy information [18,19]. The advantage of using ANNs over
other statistical methods—such as linear and nonlinear regression techniques—has been advocated on
multiple occasions for various applications. For example, [20] made a comparison between the two
techniques for the prediction of yarn tensile properties, [21] carried out the same comparison for Iran’s
annual electricity load, and [22] compared ANN with linear regression models for predicting hourly
and daily diffuse fraction. All of them concluded that ANN was the better prediction approach.

Despite their tremendous features, ANNs have had a very limited application in the field of
materials science [11,23,24]—let alone the prediction of IV curves. In [11], ANNs were used for the
prediction of the current–voltage curves for a square array of nano-engineered periodic antidots.
Diluted square arrays—which are formed by removing a quarter of the sites from the original square
lattice—offer a larger interstitial area in comparison to the original square lattice. This means that
a large number of interstitial vortices may easily be accommodated, leading to increased energy
conservation; this is commonly referred to as caging effect [3]. In this work, we predict the IV curves
for a diluted square array of antidots, and propose a framework based on ANN for extrapolating
the IV behavior for a wide range of temperature and magnetic field values. In addition to this,
we present a thorough comparison of three different ANN architectures trained with six different
training algorithms for the framework. The comparison of training algorithms is based on prediction
accuracy in terms of mean squared error (MSE), number of iterations needed to converge (epochs),
and training time.

Our findings may be used as a benchmark in any followup work concerning the study of
IV characteristics of any regular or diluted lattice, since we pinpoint the pros and cons of several
architectures and training algorithms, and conclude on the most suitable options for our specific
application. The rest of the paper is organized as follows. Section 2 summarizes the experimental
details for acquiring the datasets. The choice of the architectures and training algorithms is given in
Section 3. Simulation results and a comparison are given in Section 4, followed by the concluding
remarks in Section 5.

2. Experimental Setup and Transport Measurements

2.1. Experimental Setup

For this work, we deposited a high-quality 60-nm-thick superconducting Nb film on a
SiO2 substrate. Ultraviolet photolithography and reactive ion etching techniques were used to
fabricate the microbridges for transport measurements, followed by standard lithography on a
polymethyl-metacrylate (PMMA) resist layer to obtain the desired arrays. Magnetically enhanced
reactive ion etching was used to transfer the patterns to the film. Our measurements were carried
out using a commercially available Physical Properties Measurement System (PPMS) from Quantum
Design. A scanning electron micrograph (SEM) (HITACHI, Tokyo, Japan) of the diluted square array is
shown in Figure 1.

2.2. Measurements Using PPMS

The patterned superconducting film with a diluted square lattice had Tc of 8.646 K, which is
smaller than Tc of the unpatterned film. For transport measurements, we placed the sample in liquid
helium to help reduce the heating contact. Figure 2 shows the voltage measurements at different
temperatures below Tc and zero applied fields. Change in the slope in these IV curves suggest the
existence of three regions: one where the voltage is almost zero, which gradually increases in the
second region, followed by the region in which the current increases linearly with voltage. While
the Shapiro steps may be clearly observed in the second region within this temperature range, they
continue to weaken until completely vanishing at higher temperatures; this happens mainly due to
thermal fluctuations. Our observations are in agreement with those existing in literature [25].
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For seven constant values of temperature (8.0, 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6 K) and four constant
values of magnetic fields (0, 100, 200 and 300 Oe), the measuring unit generated a dataset of 7 × 4 × 642
IV values. The next section describes the ANN methodology to be used for prediction.

Figure 1. Scanning electron micrograph (SEM) of a superconducting Nb film with a diluted square
array of holes.

Figure 2. The current–voltage (IV) characteristic of a diluted square array of holes at different temperatures.

3. ANN Architectures and Training Algorithms

The topology of the ANN can be described in terms of a directed graph of nodes with a transfer
function δ(∑ wjixi + bi), where xi is called a state variable for each node i, wji is called a weight
carrying some real value between two nodes i and j, bi is a real-valued bias term, and δ is typically
chosen to be a step or a linear function, and is called an activation function. This transfer function
also represents the expected output of a system comprising just the input and output layers. It is well
known that such a system is not capable of implementing many functions; it is usually necessary to
incorporate a few hidden layers. Setti and Rao [26] showed that two hidden layers are usually an
optimum choice capable of representing most of the desired functions. In this work, we also fix the
number of hidden layers to two; however, we will vary the number of neurons in the hidden layers to
have comparable prediction efficiencies.

The lth output, yl , of a network having two hidden layers is given as in Equation (1):
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where:

• wy
lk represents the weights from neuron k in the second hidden layer to the lth output neurons.

• wy
kj represents the weights from neuron j in the first hidden layer to neuron k in the second layer.

• wH
ji represents the weights from neuron i in the input layer to the neuron j in the first hidden layer.

• xi represents the ith element in the input layer.
• bi, bj, and bk represent the bias values for the hidden and output layers.
• δH1, δH2 and δo are the activation functions: H1, H2, and o stand for the first and second hidden

and the output layers, respectively.

The primary objective of this analysis is to minimize a cost function given by Equation (2):
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The layers in the directed graphs are usually arranged in one of the three possible options,
giving rise to three different ANN architectures. More specifically, the manner in which the layers
are interconnected describes a particular architecture. In what follows, we briefly describe each
architecture; comparing them in terms of prediction accuracy, epochs, and training time is the
contribution of this work—this is covered in Section 4.

3.1. Feedforward Networks

Figure 3a shows an example of a feedforward network; for simplicity, the system is shown for
one hidden layer. In such networks, each layer is only connected to its immediate neighbors: it takes
input from the preceding layer, and generates output to the subsequent. In this way, mapping between
input and output is achieved.
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Figure 3. Various artificial neural network (ANN) architectures: (a) Feedforward; (b) Cascaded;
(c) Layer-Recurrent.
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3.2. Cascade-Forward Networks

Cascade-forward networks are a variant of feedforward networks. In this case, each layer is not
just connected to the preceding node, but has a connection with the input as well; this is shown in
Figure 3b. This will slightly modify Equation (1) to have wH2

kj xi and wy
lkxi in the second hidden and

output layers.

3.3. Layer-Recurrent Networks

In layer-recurrent networks, each hidden layer has a recurrent connection with additional tap
delays. The circles in the hidden layer of Figure 3c depict these delays. This feature allows such
networks to have a dynamic response to time series data. In our work, we have used a tap delay of
two in each hidden layer.

In all of our simulations, we have made use of tan-sigmoid (a hyperbolic tangent sigmoid
function in the hidden layers) and purelin (a linear function in the output layer) as the activation
functions. As far as training the network is concerned, several algorithms have been proposed in
literature. The most widely adopted among those—which we also consider in this work—include
Levenberg–Marquardt (LM) [27], Bayesian Regularization (BR) [28], Resilient Backpropogation (NR),
Conjugate Gradient (CGF) [29–33], Quasi-Newton Backpropagation (BFGS) [34], and Variable Learning
Rate Back Propagation with Momentum (GDX) [35].

4. Simulation Results

Our experimental setup generated a data set comprising several values of current and voltage
for a wide range of magnetic field and temperature readings, a few entries of which are given
in Table 1. Our methodology used 70 percent of these values as training data, while the rest
was used to serve the validation and prediction purposes. We made use of MATLAB’s toolbox
called Neural Network to perform these simulations. As mentioned already, we implemented three
architectures; each was trained using six algorithms, where each algorithm was run ten times with
a different number of neurons in the hidden layers. This generated a total of 180 different models
(6 algorithms × 10 configurations × 3 architectures). Table 2 summarizes the six algorithms and ten
sets of number of neurons for each iteration of the algorithms, leading to sixty entries in total. Note
that the entry No. of neurons [x y] indicates x neurons in the first hidden layer, and y in the second.

Each one of the 180 models was trained five times, and the best results in terms of minimum MSE,
epochs, and training time were saved. The obtained results showed MSE in the range of 6.5 × 10−6 to
2.7 × 10−8. For the purpose of cross-validation, results from all of the models were compared with the
actual data generated by the PPMS. Figures 4 and 5 show the actual and ANN-predicted IV curves for
the diluted square array of antidots. The measurements—specifically for testing—were taken with the
following parameters: temperature = 8.5 K, magnetic field = 300 Oe, and temperature = 8.4 K, magnetic
field = 100 Oe, respectively, for the two figures, while current was varied from 0 to 8 mA in each case.
Note that these values were deliberately not included in the training process of the ANN—they have
been explicitly used for validation.

Figure 6 shows MSE in IV curves predicted by 180 models. Note that the horizontal axis
corresponds to the sixty entries of Table 2. It may be observed in the figure that the feedforward
network with [12 10] neurons in the hidden layers for BR as the training algorithm achieves the lowest
MSE (i.e., 4.55 × 10−8). However there are other results that have MSE in the same range, mostly
trained with BR.
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Table 1. Data set used for ANN training: (a) T = 8.0 K; (b) T = 8.1 K.

I V I V I V I V

2.0 × 10−5 5.0 × 10−7 2.0 × 10−5 1.5 × 10−6 2.0 × 10−5 −6.7 × 10−7 2.0 × 10−5 −6.3 × 10−7

5.0 × 10−5 5.1 × 10−7 5.0 × 10−5 4.0 × 10−7 5.0 × 10−5 3.5 × 10−7 5.0 × 10−5 3.8 × 10−7

1.0 × 10−4 5.2 × 10−7 1.0 × 10−4 4.0 × 10−7 1.0 × 10−4 3.5 × 10−7 1.0 × 10−4 3.7 × 10−7

1.5 × 10−4 5.1 × 10−7 1.5 × 10−4 4.1 × 10−7 1.5 × 10−4 3.4 × 10−7 1.5 × 10−4 3.4 × 10−7

2.0 × 10−4 5.1 × 10−7 2.0 × 10−7 3.9 × 10−7 2.0 × 10−4 3.6 × 10−7 2.0 × 10−4 3.5 × 10−7

2.5 × 10−4 5.1 × 10−7 2.5 × 10−4 4.1 × 10−7 2.5 × 10−4 3.5 × 10−7 2.5 × 10−4 3.8 × 10−7

0H (Oe) 100H (Oe) 200H (Oe) 300H (Oe)

(a)

5.0 × 10−5 5.1 × 10−7 5.0 × 10−5 4.0 × 10−7 5.0 × 10−5 3.8 × 10−7 5.0 × 10−5 4.4 × 10−7

1.0 × 10−4 5.0 × 10−7 1.0 × 10−4 3.9 × 10−7 1.0 × 10−4 3.6 × 10−7 1.0 × 10−4 4.4 × 10−7

1.5 × 10−4 5.0 × 10−7 1.5 × 10−4 3.9 × 10−7 1.5 × 10−4 3.7 × 10−7 1.5 × 10−4 4.3 × 10−7

2.0 × 10−4 5.0 × 10−7 2.0 × 10−4 3.9 × 10−7 2.0 × 10−4 3.7 × 10−7 2.0 × 10−4 4.2 × 10−7

2.5 × 10−4 5.1 × 10−7 2.5 × 10−4 4.1 × 10−7 2.5 × 10−4 3.6 × 10−7 2.5 × 10−4 4.1 × 10−7

0H (Oe) 100H (Oe) 200H (Oe) 300H (Oe)

(b)

Table 2. Sixty different ANN configurations for each architecture. BFGS: Quasi-Newton
Backpropagation; BR: Bayesian Regularization; CGF: Conjugate Gradient; GDX: Variable Learning
Rate Back Propagation with Momentum; LM: Levenberg–Marquardt; NR: Resilient Backpropogation.

Model No. of Train. Model No. of Train. Model No. of Train.
No. Neurons Algo. No. Neurons Algo. No. Neurons Algo.

1. [5 2] LM 21. [5 2] CGF 41. [5 2] NR
2. [10 8] LM 22. [10 8] CGF 42. [10 8] NR
3. [12 6] LM 23. [12 6] CGF 43. [12 6] NR
4. [15 6] LM 24. [15 6] CGF 44. [15 6] NR
5. [18 10] LM 25. [18 10] CGF 45. [18 10] NR
6. [11 5] LM 26. [11 5] CGF 46. [11 5] NR
7. [12 10] LM 27. [12 10] CGF 47. [12 10] NR
8. [14 7] LM 28. [14 7] CGF 48. [14 7] NR
9. [10 5] LM 29. [10 5] CGF 49. [10 5] NR
10. [8 4] LM 30. [8 4] CGF 50. [8 4] NR
11. [5 2] BR 31. [5 2] BFGS 51. [5 2] GDX
12. [10 8] BR 32. [10 8] BFGS 52. [10 8] GDX
13. [12 6] BR 33. [12 6] BFGS 53. [12 6] GDX
14. [15 6] BR 34. [15 6] BFGS 54. [15 6] GDX
15. [18 10] BR 35. [18 10] BFGS 55. [18 10] GDX
16. [11 5] BR 36. [11 5] BFGS 57. [12 10] GDX
18. [14 7] BR 38. [14 7] BFGS 58. [14 7] GDX
19. [10 5] BR 39. [10 5] BFGS 59. [10 5] GDX
20. [8 4] BR 40. [8 4] BFGS 60. [8 4] GDX

Figure 4. Actual vs. predicted IV curves for temperature = 8.5 K, magnetic field = 300 Oe.
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Figure 5. Actual vs. predicted IV curves for temperature = 8.4 K, magnetic field = 100 Oe.

Figure 6. Mean squared error (MSE) in 60 selected models for each architecture.

Figures 7 and 8 show the results with respect to number of iterations (epochs) and training
time, respectively. It may be observed that while the cascaded network with [5 2] neurons and
CGF as the training algorithm gives best results with respect to smallest number of epochs (i.e., 9),
the feedforward network with [8 4] neurons and NR as the training algorithm gives the best results
with respect to minimum training time (i.e., 0.109 s). These two parameters—epochs and training
time—are specifically more useful in studies requiring real-time training and prediction than MSE,
since smaller delays would yield faster systems. Note that each of the Figures 6–8 corresponds to
a temperature of 8.5 K and a magnetic field of 300 Oe.

We have summarized the best results for each measured parameter in Table 3. It can be noted that
although the feedforward network with BR gives minimum MSE, it takes a large number of iterations
and training time to converge. Naturally, it will not be the optimum choice in real-time systems.
Similarly, the other results show that the systems that converge faster yield large MSE—making them
unsuitable in systems requiring high precision.
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Figure 7. Number of iterations (epochs) taken by each model to converge.

Figure 8. Training time taken by each model to converge.

Table 3. Summary of the best results.

Parameter Network No. of Neurons Algo. MSE Epochs Training Time (s)

Minimum MSE Feedforward [12 10] BR 4.55 × 10−8 126 26.037
Minimum Epochs Cascaded [5 2] CGF 2.80 × 10−7 9 0.297
Minimum Time Feedforward [8 4] NR 2.27 × 10−6 17 0.109

5. Conclusions

We have proposed a method based on ANN for measuring the IV curves in a diluted square array
of antidots on an Nb film at different applied fields and temperatures. Because of their exceptional
approximation capability, ANNs have recently been recommended for the prediction of IV curves in
superconducting films. Their increasing role in this field motivated us to present a thorough analysis
of three different architectures—namely, feedforward, cascaded, and layer-recurrent networks—which
were trained using six different learning algorithms. Each algorithm was executed for ten different
configurations of number of neurons in the hidden layers, resulting in a total of sixty ANN models for
each architecture. Our results, based on MATLAB simulations, suggested that feedforward networks
trained with BR manage to achieve the lowest MSE, but take a lot of time to converge, while those
converging faster (in terms of number of iterations and training time) yield larger MSEs.

Since we pinpoint the pros and cons of various architectures with various possible configurations,
our proposed framework may be used as a benchmark in all relevant works utilizing ANN in
the prediction of IV curves. It is widely known that each geometry of arrays of antidots exhibits
different current–voltage curves, leading to vastly varying critical currents and critical temperatures.
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We sincerely believe it is prudent to study the effectiveness of our approach for each of those geometries,
and this we have left as our prospective followup work.
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