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Abstract: This paper presents a robust backstepping design for motion control in the presence of
model uncertainties and exogenous disturbances. The main difficulty in dealing with motion control
is to reduce the effect of friction, which exists in the moving mechanism and induces nonlinear
behavior. In this study, the friction dynamic is considered as the external disturbance, and the
proposed backstepping control algorithm is integrated with the sliding mode control, so that the
effect of matching disturbances can be eliminated. The proposed approach guarantees the system
asymptotic stability, globally, without significant chatter. Therefore, the developed algorithm can be
realized for practical manufacturing motion control stages. Experiments including positioning and
tracking controls are conducted to demonstrate the feasibility of the proposed method.
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1. Introduction

Backstepping design is a systematic recursive design procedure based on the choice of a Lyapunov
function. This approach is suitable for the design of a class of nonlinear systems in the strict feedback
form. In the design procedure, the system variable is treated as an independent (or a fictitious) input
for subsystems, and consequently, each step results in an updated control design for the next step.
The control law for each step is refined with the satisfaction of the Lyapunov function, such that the
stability for each subsystem can be guaranteed as outlined in [1]. In the traditional backstepping
design, system robustness can be maintained by using high gain control (under the condition that the
system uncertainties are state dependent). However, in the case of a motion system, the system may
be subject not only to uncertain parameters, but also to un-modeled system dynamics; which is state
independent, such that the high gain backstepping design may not result in the asymptotic stability of
such a system.

In recent years, several control strategies, such as adaptive control [2–4], sliding mode control [5,6]
and neural networks [7,8], have been integrated into the logical backstepping design procedure in
order to enhance system robustness. An integral action has been widely used in adaptive backstepping
control for eliminating steady state error, while a smooth sign function was adopted for avoiding chatter
in sliding mode control. Some nonlinear functions can be estimated using neural networks with a
backstepping design scheme. Other robust backstepping control approaches for specific nonlinearities,
such as system time delays [9], mismatched uncertainties [10], backlash-like hysteresis [11] and input
uncertainties [12], were also developed to make the resulting system insensitive to model uncertainties
and external disturbances. Moreover, in recent studies [13–16], it has been demonstrated that the
backstepping controller design concept can be applied for different nonlinear systems. However, only
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numerical simulations were provided. In this paper, this design concept is applied for the control of a
servo mechanical system. Not only the theoretical derivation is given, both the numerical simulations
and experimental verifications are addressed, as well, to verify the feasibility of the proposed method.
In regard to [15], the authors proposed an integral type robust controller based on the sliding control
design concept. However, the controllers cannot attain the so-called approaching/sliding conditions,
so the stability proof will be relatively complicated.

One of the main difficulties in dealing with motion control is to suppress the effect of friction,
which exists in the moving mechanism. Two main kinds of friction behavior have been observed
experimentally in the literature, namely the Stribeck effect and hysteresis [17], occurring in sliding and
pre-sliding regions, respectively. These nonlinear properties of friction induce undesirable behavior
that includes steady state positioning errors, tracking lags, limit cycles and stick-slip motion. In the
recent decade, friction model-based compensation approaches and the disturbance observer have been
widely adopted for motion control problems [18–22]. Due to the complexity of friction, recently, a
nonlinear damping-based backstepping design was proposed, where the friction effect is taken as a
nonlinear function and is going to be measured by a time delay estimate (TDE) [23]. Then, the control
performance is further enhanced by considering the TDE together with an internal model control [24].

However, the friction behavior is a highly nonlinear phenomenon, which is difficult to be well
described, especially for the inter-medium region between static friction [25] and dynamic friction.
Even though there were several friction models in the literature, they can only be applied for specific
friction regions. It is difficult to obtain quantitative analysis of friction due to its time and position
varying nature. In some cases, an inaccurate friction model would likely induce an additional control
payload. Therefore, in this work, the LuGre model [26] is considered, but no extra estimator [23,24],
friction observer [27] or adaption law [28] is applied. Designers only have to deal with a pair liner
gain and a robust gain. To relax the implementation effort, only the upper bound of the variation
on the lumped perturbation is needed to adjust the control gain w. Therefore, based on the robust
stability property, one can gradually increase the value of the robust gain to achieve a satisfactory
result. From the end-user point of view, less control parameters are able to achieve a more user-friendly
environment for control tuning.

To preserve the approaching/sliding conditions in the traditional sliding mode control (SMC),
as well as ease the control discontinuity, this paper develops an extended backstepping sliding mode
control (EBSMC) algorithm, which provides global stability of the system without including an
additional compensator or observer. Moreover, it will be shown that the proposed controller turns
into a robust PD controller once a robust gain is set to be zero. Under this circumstance, the robust
stability issue is going to be addressed by using some linear matrix inequalities (LMIs). Finally, the
effectiveness of the developed control strategy is verified through numerical and experimental studies.

2. Proposition of EBSMC

The LuGre model, which is capable of describing most friction phenomena, was proposed by
Canudas et al. [26]. This model states that once relative motion occurs between two surfaces, friction
force is caused by the deflection of bristles on those surfaces.

Consider the following motion system with friction:

M
..
xp = u− F− d (1)

where M is the system mass, xp is the system position and u is the applied force. Moreover, F and
d are the friction force and an external load, respectively. The friction force described by the LuGre
model is comprised of two components. One originates from the bristle behavior defined as FB

(
κ,

.
κ
)
,

and the other is due to the viscous effect FV , that is:

F = FB
(
κ,

.
κ
)
+ FV (2)
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where FB
(
κ,

.
κ
)
= σ0κ + σ1

.
κ and FV = σ2

.
xp. σ0 is the stiffness coefficient; σ1 is the damping coefficient;

and σ2 is the viscous coefficient. κ is the deflection of the bristle, and its variation is defined as follows:

.
κ =

.
xp −

∣∣ .
xp
∣∣

G(
.
xp)

κ (3)

where σ0G(
.
xp) = fC + ( fS − fC) exp[−( .

xp/vS)
N
]. fC is the Coulomb friction, and fS is the maximum

static friction; vS is the Stribeck velocity; and the positive factor N is employed in modifying the
transition curve of friction at low velocity.

Define tracking error as e1 = xd − xp and e2 =
.
e1 =

.
xd −

.
xp, where xd is the desired position.

Then, the system in the form of error dynamics becomes:

.
e1 = e2
.
e2 = − σ2

M e2 − 1
M u + σ2

M
.
xd +

..
xd +

1
M FB

(
κ,

.
κ
)
+ d

(4)

Define a virtual state e3 =
.
e2; the system (4) can then be represented as the following extended

third order extended dynamic system [29]:

.
e1 = e2
.
e2 = e3
.
e3 = − σ2

M e3 − 1
M

.
u + σ2

M
..
xd +

...
x d +

1
M

.
FB
(
κ,

.
κ
)
+

.
d

(5)

The proposed EBSMC design procedure for System (5) is described as follows.

Step 1:

By choosing the nominal control effort
.
u of the extended system as:

.
u = −σ̂2e3 + σ̂2

..
xd + M̂

...
x d − M̂

.
uC (6)

where M̂ and σ̂2 are the nominal values of system mass and viscous coefficient, respectively. Then, the
extended system in (5) can be formulated as:

.
e1 = e2
.
e2 = e3
.
e3 =

.
uC +

.
D̃
(

e3,
..
xd,

...
x d,

.
uC,

.
FB
(
κ,

.
κ
)
,

.
d
) (7)

where
.

D̃(e3,
..
xd,

...
x d,

.
uC,

.
FB(κ,

.
κ)) = 1

M

[
−σ̃2e3 + σ̃2

..
xd + M̃

...
x d − M̃

.
uC +

.
FB
(
κ,

.
κ
)
+

.
d
]

denotes the

lumped system perturbations. Note that M = M̂ + M̃ and σ2 = σ̂2 + σ̃2.
For the servo motor, since the maximum applied force is limited, the resulting speed, acceleration

and jerk are also limited. Therefore, it is reasonable to assume that there exists a positive constant

η that satisfies η = sup
∣∣∣∣ .
D̃(e3,

..
xd,

...
x d,

.
uC,

.
FB
(
κ,

.
κ
)
,

.
d)
∣∣∣∣ > 0. The detailed proof can be found in the

Appendix A.
Consider the system state e2 as an independent input, and let:

e2 = φ1(e1) = −k1e1, k1 > 0. (8)

Select a Lyapunov function VB1 = 1
2 e2

1. It can then be obtained that:

.
VB1 = e1

.
e1 = −k1e2

1 ≤ 0 (9)

Therefore, state e1 is asymptotically stable.
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Step 2:

Actually, there may be differences between e2 and φ1(e1). Therefore, a new error variable
z1 = e2 − φ1(e1) is defined, which presents the difference between the stabilizing control law φ1(e1)

and the error state e2. By adding and subtracting the virtual control law φ1(e1) to the first equation of
(7), we can get the dynamic of the subsystem (e1) as follows:

.
e1 = φ1(e1) + [e2 − φ1(e1)] = φ1(e1) + z1 (10)

Equations (8) and (9) can be satisfied if z1 in (10) equals zero. Further, consider the dynamic of z1:

.
z1 =

.
e2 −

.
φ1(e1) = e3 −

.
φ1(e1) (11)

In a similar manner, treat the state e3 as an independent input of the form φ2(e1, z1) as
the following:

e3 = φ2(e1, z1) = −e1 − k2z1 +
.
φ1(e1), k2 > 0. (12)

Select a Lyapunov function of the subsystem (e1, z1) in the form of:

VB2 = VB1 +
1
2

z2
1 =

1
2

e2
1 +

1
2

z2
1 (13)

From (10)–(12), the derivative of (13) is obtained as:

.
VB2 = e1

.
e1 + z1

.
z1 = −k1e2

1 − k2z2
1 ≤ 0 (14)

Thus, the subsystem (e1, z1) is asymptotically stable.

Step 3:

By adding and subtracting the virtual control law φ2(e1, z1) to (11) and defining an error variable
as z2 = e3 − φ2(e1, z1), (11) can then be represented as:

.
z1 = [e3 − φ2(e1, z1)] + φ2(e1, z1)−

.
φ1(e1)

= z2 + φ2(e1, z1)−
.
φ1(e1)

(15)

and: .
z2 =

.
e3 −

.
φ2(e1, z1)

=
.
uC −

.
φ2(e1, z1) +

.
D̃
(

e3,
..
xd,

...
x d,

.
uC,

.
FB
(
κ,

.
κ
)
,

.
d
) (16)

From Step 1 and Step 2, it is found that the desired behavior of the subsystem (e1, z1) can be
achieved if the condition z2 = 0 is satisfied. Therefore, the control purpose can be simplified to the
regulation of the virtual state z2 in the presence of external disturbances. The sliding mode control can
be introduced to the backstepping design as follows.

Select a sliding surface of:
S = z2 (17)

In the absence of
.

D̃ in (16), the corresponding equivalent control force can be obtained by
.
S = 0,

that is:
.
uCeq =

.
φ2(e1, z1) (18)

A switching control action is applied to enhance the system robustness, such that system states
stay on the sliding surface even in the presence of disturbances:

.
uC =

.
uCeq − wsgn(S) (19)
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where the robust gain w satisfies the condition w > η.
Choose a Lyapunov function as VS = S2/2, and it can be obtained that:

.
VS = S[

.
uC −

.
φ2(e1, z1) +

.
D̃
(

e3,
..
xd,

...
x d,

.
uC,

.
FB
(
κ,

.
κ
)
,

.
d
)
]

= S[−wsgn(S) +
.

D̃
(

e3,
..
xd,

...
x d,

.
uC,

.
FB
(
κ,

.
κ
)
,

.
d
)
]

≤ −|S|[w− η] ≤ 0

(20)

It shows that the approaching condition can be reached, and thus, the system is
asymptotically stable.

For the final implementation, substituting (19) into (6), the integral type control effort for the
original second order system can be represented as:

u = −σ̂2e2 + σ̂2
.
xd + M̂

..
xd − M̂

∫ t

0

( .
uCeq − wsgn(S)

)
dτ (21)

Represent (21) in the form of error states:

u = M̂(1 + k1k2)e1 + M̂(k1 + k2)e2 − σ̂2e2 + σ̂2
.
xd + M̂

..
xd + M̂w

∫ t

0
sgn(S)dτ (22)

Further, substitute (22) into (4); it results:

.
e2 = − σ2

M e2 − 1
M u + σ2

M
.
xd +

..
xd +

1
M FB

(
κ,

.
κ
)

= − σ2
M e2 − 1

M

[
M̂(1 + k1k2)e1 + M̂(k1 + k2)e2 − σ̂2e2 + σ̂2

.
xd + M̂

..
xd + M̂w

∫ t
0 sgn(S)dτ

]
+ σ2

M
.
xd +

..
xd +

1
M FB

(
κ,

.
κ
)
+ 1

M d
= −(1 + k1k2)e1 − (k1 + k2)e2 + D̃(e2,

.
xd,

..
xd, uC, FB

(
κ,

.
κ
)
, d)− w

∫ t
0 sgn(S)dτ

(23)

From (17), the sliding mode dynamics can be represented as:

S =
.
e2 + (k1 + k2)e2 + (1 + k1k2)e1 = D̃(e2,

.
xd,

..
xd, uC, FB

(
κ,

.
κ
)
, d)− w

∫ t

0
sgn(S)dτ (24)

Remark 1. According to (20), the robust gain w can be applied to maintain the sliding motion even when the
system is subject to disturbances. This reveals that the lumped perturbation D̃ in (24) can be compensated by the
nonlinear integral action, and thereby, the exponential stability of the system can be achieved by a proper choice
of gain k2 and k1 used in (22).

Remark 2. The closed-loop system robustness against system uncertainties, as well as unknown exogenous
disturbances is achieved by a suitable adjustment of a single robust gain w. When an insufficient large value is
applied, the condition (20) may not be attained. Under this circumstance, for example, a critical case that w = 0,
one has

.
e2 + (k1 + k2)e2 + (1 + k1k2)e1 = D̃. Roughly speaking, the closed-loop system is stable by means

of bounded-input bounded-output stability (BIBO). In the Appendix A, robust gain estimation and the robust
stability issue are going to be addressed further. Based on the achievement of robust stability, one can increase
the value of w gradually to achieve desired control performance without inducing unstable behavior.

3. Simulation Results

For general controller design and system physical behavior validation purposes, system
parameters need to be identified in advance [30]. In Section 2, the proposed control law (22) involves
part of the system nominal parameters, including system mass and viscous coefficient. A systematic
estimation method is going to present in the following.
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For the servo system with apparent velocity, the main contribution of the friction effect comes
from Coulomb friction and the viscous coefficient; that is, F ≈ σ2v + fCsign(v), where v =

.
xp.

Reconsider (1) in the absence of external disturbance; one has:

M
dv
dt

= u− (σ2v + fCsign(v)) (25)

From the practical realization point of view, the corresponding discrete model can be directly
derived by taking the backward difference:

dv
dt
≈ v(k)− v(k− 1)

Ts
(26)

where Ts denotes as the sampling period.
Hence, the dynamic Equation (25) can be approximated by:

v(k) =
M

M + σ2Ts
v(k− 1) +

Ts

M + σ2Ts
u(k) +

− fC · Ts

M + σ2Ts
sign(v(k)) (27)

Based on several measurements, (27) can be represented by:

v(k)
v(k + 1)

...

...
v(k + m)


=



v(k− 1) F(k) sign(v(k))
v(k) F(k + 1) sign(v(k + 1))

...
...

...
...

...
...

v(k + m− 1) F(k + m) sign(v(k + m))


 X1

X2

X3

 (28)

where:
X1 =

M
M + σ2Ts

, X2 =
Ts

M + σ2Ts
, X3 =

− fC · Ts

M + σ2Ts
(29)

Define:

Y =



v(k)
v(k + 1)

...

...
v(k + m)


, A =



v(k− 1) F(k) sign(v(k))
v(k) F(k + 1) sign(v(k + 1))

...
...

...
...

...
...

v(k + m− 1) F(k + m) sign(v(k + m))


, X =

 X1

X2

X3

 (30)

The optimal solution is:

Xopt ≡ X = (ATA)
−1

ATY (31)

Therefore, the servo motor parameters can be calculated by:

M =
X1

X2
Ts, σ2 =

1− X1

X2
, fC = −X3

X2
(32)

In the following simulation study, periodical reference commands of the form xd = xd1 =

R sin(2π f t) shown in Figure 1 and xd = xd2 = R[1 + sin(2π f t + 1.5π)] shown in Figure 2 were
adopted. The simulation results were performed by MATLAB code ode45 (Runge–Kutta method) with
maximum step size 0.000025 (s). The same control gains were used for both cases and are listed in
Table 1. Figure 3 is the comparison of tracking performance. It can be found that the tracking error with
xd1 is comparatively large at the beginning of control process, which is caused by initial velocity error,
but this phenomenon can be avoided with xd2. The tracking error is of the order 10−7 in the simulation,
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which is caused by the finite time switching numerical simulation and can be totally eliminated from
the continuous case. Figure 4 is the corresponding control force for both cases. A larger control force
was caused by the reference xd1 from non-zero desired initial velocity. According to (27), the gain
w required to force the state on the sliding surface is 395,640 and 603 for xd1 and xd2, respectively.
For illustrative purposes, w = 603 is applied for both cases. Figure 5 shows that the state stays on
the sliding surface for xd = xd2, but not for xd = xd1, even though the steady state tracking error
was eliminated for both cases. To bound the system state on S = 0 for non-zero initial velocity, the
approaching condition can only be achieved using a sufficiently large gain w, which may cause the
controller saturation. The initial reference commands play an important role in tracking control, which
is true when applying other control strategies.

Appl. Sci. 2017, 7, 220  7 of 19 
















=























++−+

++
−

=























+

+
=

3

2

1

   ,

))(()()1(

))1(()1()(
))(()()1(

   ,

)(

)1(
)(

X
X
X

mkvsignmkFmkv

kvsignkFkv
kvsignkFkv

mkv

kv
kv

XAY








 

(30) 

The optimal solution is: 

YAAAXX TT
opt

1)( −=≡
 (31) 

Therefore, the servo motor parameters can be calculated by: 

sT
X
XM

2

1= , 
2

1
2

1
X

X−
=σ , 

2

3

X
XfC −=  (32) 

In the following simulation study, periodical reference commands of the form 
)2sin(1 ftRxx dd π==  shown in Figure 1 and [ ])5.12sin(12 ππ ++== ftRxx dd  shown in 

Figure 2 were adopted. The simulation results were performed by MATLAB code ode45 
(Runge–Kutta method) with maximum step size 0.000025 (s). The same control gains were used for 
both cases and are listed in Table 1. Figure 3 is the comparison of tracking performance. It can be 
found that the tracking error with 1dx  is comparatively large at the beginning of control process, 

which is caused by initial velocity error, but this phenomenon can be avoided with 2dx .  
The tracking error is of the order 10−7 in the simulation, which is caused by the finite time switching 
numerical simulation and can be totally eliminated from the continuous case. Figure 4 is the 
corresponding control force for both cases. A larger control force was caused by the reference 1dx  
from non-zero desired initial velocity. According to (27), the gain w required to force the state on the 
sliding surface is 395,640 and 603 for 1dx  and 2dx , respectively. For illustrative purposes, w = 603 

is applied for both cases. Figure 5 shows that the state stays on the sliding surface for 2dd xx = ,  

but not for 1dd xx = , even though the steady state tracking error was eliminated for both cases.  
To bound the system state on S = 0 for non-zero initial velocity, the approaching condition can only 
be achieved using a sufficiently large gain w, which may cause the controller saturation. The initial 
reference commands play an important role in tracking control, which is true when applying other 
control strategies. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.01

0

0.01

P
os

it
io

n(
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

0

0.1

V
el

oc
it

y(
m

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

Time(s)

A
cc

el
er

at
io

n(
m

/s2
)

 
Figure 1. Reference command 1dx . 

Figure 1. Reference command xd1.
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Figure 2. Reference command xd2.

Table 1. Parameter values used for numerical study.

Parameter Value Unit

M (M̂) 1.5 (1.2) (kg)
σ0 105 (N/m)
σ1 105/2 (Ns/m)

σ2 (σ̂2) 2.5 (2.0) (Ns/m)
fC 1.3 (N)
fS 1.5 (N)
vS 0.001 (m/s)
R 0.01 (m)
f 1 (Hz)
N 2 —
k1 30 —
k2 50 —
w 603 —
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Next, a comparison study on the PID controller and the proposed EBSMC is presented. It is well
known that for tracking applications, larger tracking errors are usually induced when motions change
direction. During the velocity reversal, the variation of the nonlinear friction forces is apparently
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fast such that the linear controller (PID) is not able to overcome the perturbations properly for this
critical situation.

For the motion control system, the error dynamics can be represented by:

.
e1 = e2
.
e2 = − σ2

M e2 − 1
M u + σ2

M
.
xd +

..
xd +

1
M FB

(
κ,

.
κ
)
+ 1

M d
(33)

Consider (22), but now, the control algorithm is modified in the form of a PID controller:

u = M̂KPe1 + M̂KDe2 − σ̂2e2 + σ̂2
.
xd + M̂

..
xd + M̂KI

∫ t

0
e1dτ (34)

Substituting (34) into (33) yields:

.
e1 = e2
.
e2 = −KPe1 − KDe2 − KI

∫ t
0 e1dτ + Γ

(35)

where:
Γ = M̃

M KPe1 +
M̃
M KDe2 +

M̃
M KI

∫ t
0 e1dτ

− σ̃2
M e2 +

σ̃2
M

.
xd +

(
1− M̃

M

) ..
xd +

1
M FB

(
κ,

.
κ
)
+ 1

M d
(36)

To address the closed-loop stability and control performance of (35), let
.
e1 = e2 and

.
e2 = e3; one

can derive the following augmented system:

.
ea = (Aa + ∆Aa)ea + Γa (37)

where ea =
[

e1 e2 e3

]T
and:

Aa =

 0 1 0
0 0 1
−KI −KP −KD

, ∆Aa =

 0 1 0
0 0 1

M̃
M KI

M̃
M KP

1
M

(
M̃KD − σ̃2

)


Γa =

 0
0

σ̃2
M

..
xd +

(
1− M̃

M

)...
x d +

1
M

.
FB
(
κ,

.
κ
)
+ 1

M

.
d


(38)

It is clear that the control issue turns into a robust stabilization problem, and the stability issue
can also be solved by ways of LMIs. Similar to the steps from (47) to (56), it is easy to show that by the
properly selected triple (KP, KI , KD), there must exist a region Φ, such that:

‖ea‖ → Φ := 2
λmax(P)
λmin(Q)

‖Γa‖ (39)

Equation (39) implies that the control performance is relevant to the size of Γa. Even though the
variation of the lumped perturbation is finite, the PID control precision is going to be limited by the
magnitude of the variation. In other words, better tracking performance needs to be achieved by
means of high gain control.

However, different from the PID control, asymptotic tracking performance remains available by
the proposed EBSMC even without the use of high gain manner, as long as the upper bound of the
uncertainty variation is known. Simulations are going to demonstrate this feature.

Comparing with the PID controller, to fairly address the main advantage of the proposed
EBSMC, an equivalent control gain setting (that is KP = 1 + k1k2, KD = k1 + k2 and KI = w) is
applied. Moreover, in the following simulations, two cases are applied. Cases I and II are with the
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consideration of time varying external disturbance and nonlinear friction, respectively. The disturbance
d = α sin(2π f t) is applied, where α = 2 and f = 10 Hz.

Figure 6a,b are the simulation results of Cases I and II, respectively. It is clear that the tracking
performances of the proposed EBSMC for both cases is better than that by the PID controller. Detailed
control performance comparisons are summarized in Table 2. Apparently, once the variation of the
lumped perturbations is fast, the PID control performance will be degraded obviously. On the contrary,
the EBSMC is able to achieve much better control precision even without the use of high gain control.Appl. Sci. 2017, 7, 220  11 of 19 
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Table 2. Numerical control performance comparison.

Controller emax erms ‖e‖

Case I.
External
Disturbance

PID
4.7691 × 10−4 2.1244 × 10−4 0.0601KP = 1501, KD = 80, KI = 603

EBSMC
2.0468 × 10−7 1.1448 × 10−7 3.2380 × 10−5

k1 = 30, k2 = 50, w = 603

Case II.
Nonlinear Friction

PID
7.6552 × 10−4 6.7840 × 10−4 0.1919KP = 1501, KD = 80, KI = 603

EBSMC
1.3089 × 10−6 1.1904 × 10−6 3.3669 × 10−4

k1 = 30, k2 = 50, w = 603
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4. Experimental Study

In order to verify the feasibility of the proposed control scheme in practice, the
following experimental study was conducted by an AC servomotor equipped with an encoder
(10,000 counts/rev). The dynamics of the motor (i.e., J

..
θp = u− F) is similar to the system analyzed in

Section 2, where the mass M̂ in (22) is replaced by the moment of inertia Ĵ, and the tracking error is
defined as e = θd − θp. Apply the method presented in Section 4; the estimation nominal values of Ĵ
and σ̂2 in (22) are 6.0608× 10−4 (kg ·m ·A/N) and 0.0018 (kg ·m ·A/N/s), respectively. An industrial
computer equipped with a motion control card is used to implement the control algorithm, where the
sampling rate is 500 Hz.

According to the analysis in Section 3, a precise estimation of the disturbance variation rate
will be appreciated. However, due to the restriction of sensor resolution, it is hard to identify the
parameters in the pre-sliding region (i.e., σ0, σ1). Nevertheless, a suitable switching gain can reasonably
be applied, such that the approaching condition is satisfied. In the experiments, both positioning
control (i.e., xd is constant) and tracking control were performed to demonstrate the effectiveness of the
proposed method. For positioning control, the reference position is 2π rad (10,000 counts). The periodic
reference command for tracking control is R[1 + sin(2π f t + 1.5π)], where R = 2π rad (10,000 counts)
and f = 1 Hz. The control algorithm (22) was adopted for both positioning and tracking control. The
value of w was altered to illustrate the resulting robustness. The values of control gains k1, k2 and
resulting performance indexes are listed in Table 3. Moreover, with the consideration of about 10%
modeling errors and the selected gains, the robust stability (54) is feasible for w = 0, where:

P =

[
116.7322 0.0308

0.0308 0.2588

]
, Q =

[
8.0203 −0.0078
−0.0078 0.0028

]
, ε = 11.6058 (40)

As a result, one can gradually increase the value of the robust gain step-by-step to achieve a
satisfactory result without inducing system instability.

Table 3. Control gains setting in experiments.

Control Task Control Gains |ess| (Counts) Overshoot (Counts) tss (s)

Positioning Control

k1 = 15, k2 = 30, w = 0 295 - 0.75
k1 = 15, k2 = 30, w = 2500 0 6 1.45
k1 = 15, k2 = 30, w = 5000 0 4 0.905
k1 = 15, k2 = 30, w = 7000 0 2 0.765

Control Task Control Gains Maximum Tracking Error |e|max(counts)

Tracking Control

k1 = 15, k2 = 30, w = 0 1584
k1 = 15, k2 = 30, w = 5000 544

k1 = 15, k2 = 30, w = 10,000 280
k1 = 15, k2 = 30, w = 15,000 173

Figure 7 shows the positioning response, where the steady state error (ess) caused by friction was
eliminated via using gain w. In addition, a larger w also reduces overshoots and settling time tss. Unlike
the general PID controller, experiments showed that zero positioning error can be achieved without
obvious overshoot. The control effort is shown in Figure 8, where the chattering phenomenon induced
by the conventional sliding mode control was improved. System output responses, error response
and control effort of tracking control with respect to w are shown in Figures 9–11. The experimental
results are consistent with (20) in that the larger the w, the larger the uncertain variation rates can
be suppressed and, thereby, a better tracking performance can be obtained in the pre-sliding region
(i.e.,

.
xp ≈ 0). All of the experiments show that the proposed method is capable of achieving good

positioning/tracking performance, as well as avoiding significant control chattering.
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In this study, we focus on motion control systems subject to nonlinear friction effects. To achieve
good tracking precision, an EBSMC is proposed. However, the nonlinear friction effects must be
continuous; that is, the upper bound of the time derivative of the friction should be finite. To satisfy
this requirement, the LuGre friction model is considered. The LuGre model provides simple and
continuous features for the friction forces, even when the velocity changes direction. As a result,
the variation of the friction will be bounded. Otherwise, for discontinuous disturbances, both the
conventional PID and the proposed EBSMC or other continuous control algorithms are not able to
eliminate such fast switching perturbations.
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Finally, for practical realization, the upper bound may not always be easy to identify. However,
the robust gain w can be determined by increasing the value gradually. This feature has been verified
through experiments.

5. Conclusions

To inherit the outstanding features, simple and straight forward stability proof, as well as
attenuate the control discontinuity in the traditional SMC, an EBSMC design scheme is presented.
For the developed control algorithm, the boundedness of the variation on the lumped perturbation
is required. In the practical case, estimating the boundedness of the perturbation variation may
not be an easy task. Therefore, based on the achievement of robust stability proven by LMIs, the
proposed method allows the designer to apply it in a step by step tuning manner to pursue desired
control performance without inducing unstable behavior. Based on the proposed method, the system
stability is achieved via the backstepping design while the robustness against unknown perturbations is
enhanced by a single robust gain. The proposed method did not use the additional friction model-based
compensator or other disturbance observers, and therefore, the implementation effort is relatively
low. Finally, simulations and experimental studies are addressed to verify the feasibility of the
proposed method.
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Appendix A

In this Appendix A, a robust gain estimation is firstly introduced, and then, the robustness stability
analysis for w = 0 is further addressed. The parameters of the motion tracking control system subjected
to friction were listed in Table 1. According to the analysis in Section 2, the desired error dynamics
can be guaranteed if the reaching condition (20) is satisfied. Therefore, it is important to estimate a
suitable w for suppressing the disturbance effect on the control process. In the tracking task, most of the
tracking errors are induced in the pre-sliding region, and it is reasonable to conclude that the variation
rate of the disturbance in the pre-sliding region is larger than that in the sliding region. In other words,
the reaching condition in the motion process is guaranteed if it can be satisfied in the pre-sliding region.
For this reason, the variation rate of FB in the pre-sliding region should be estimated for determining a
suitable w.

To fulfill the so-called approaching condition and attain the sliding condition, it has been shown
in (20) that w > η should be satisfied. In other words, the derivation of the lumped perturbation needs
to be bounded. In the following, the variation of the lumped perturbation is going to be addressed.

From (3), the deflection of the bristles is bounded, and its maximum value is κss = G(
.
xp)sgn(

.
xp).

Moreover, G(
.
xp) is positive and bounded by fC/σ0 ≤ G(

.
xp) ≤ fS/σ0.

For
.
xp ≥ 0, the dynamic equation of the bristle can be represented as

.
κ =

.
xp −

.
xp

G(
.
xp)

κ, and the

following inequality can be obtained.

.
κ =

.
xp −

.
xp

G(
.
xp)

κ ≤ .
xp +

.
xp

G(
.
xp)

κ ≤ .
xp +

.
xp
fC

σ0κ ≤ .
xp +

.
xp
fC

σ0κss

≤ .
xp +

.
xp
fC

σ0G(
.
xp) ≤

.
xp +

.
xp
fC

fS ≤
.
xp

(
1 + fS

fC

) (A1)

For
.
xp ≥ 0,

..
xp ≥ 0:

..
κ =

..
xp −

..
xpG(

.
xp)−

.
xp

.
G(

.
xp)

G(
.
xp)

2 κ −
.
xp

G(
.
xp)

.
κ ≤ ..

xp +
..
xpG(

.
xp)−

.
xp

.
G(

.
xp)

G(
.
xp)

2 κ +
.
xp

G(
.
xp)

.
κ

≤ ..
xp +

..
xp

fS
σ0
− .

xp

{
1

σ0
( fS− fC) exp[−(

.
xp
vS

)
N
]·
[
−N

( .
xp
vS

)N−1
·

..
xp
vS

]}
( fC/σ0)

2 κss +
.
xp

( fC/σ0)

.
κ

≤ ..
xp +

..
xp

fS
σ0
+

.
xp ·

fS− fC
σ0
·N
( .

xp
vS

)N−1
·

..
xp
vS

( fC/σ0)
2 κss +

.
xp

( fC/σ0)
· .

xp

(
1 + fS

fC

)
≤ ..

xp +

..
xp

fS
σ0
+

.
xp ·

fS− fC
σ0
·N
( .

xp
vS

)N−1
·

..
xp
vS

( fC/σ0)
2 · fS

σ0
+

.
x2

p
( fC/σ0)

·
(

1 + fS
fC

)
≤ ..

xp +

[
..
xp +

.
xp ·

(
1− fC

fS

)
· N
( .

xp
vS

)N−1
·

..
xp
vS

]
·
(

fS
fC

)2
+

.
x2

p
( fC/σ0)

·
(

1 + fS
fC

)

(A2)

where
.

G(
.
xp) = −N( fS − fC) exp[−

( .
xp/vS

)N
] ·
[ .

xN−1
p · ..

xp/vN
S

]
/σ0.

From (25) and (26), the maximum variation rate of the friction is:

.
FB = σ0

.
κ + σ1

..
κ

≤ σ0

[ .
xp

(
1 + fS

fC

)]
+ σ1


..
xp +

[
..
xp +

.
xp ·

(
1− fC

fS

)
· N
( .

xp
vS

)N−1
·

..
xp
vS

]
·
(

fS
fC

)2

+
.
x2

p
( fC/σ0)

·
(

1 + fS
fC

)


(A3)

Based on the limitation of the possible maximum velocity and acceleration of the servo mechanism,
(A3) is bounded, and therefore, exists. According to the desired motion trajectory, we can substitute its
maximum velocity and maximum acceleration into (A3) to estimate the required gain w. However,
for practical implementation, if the reference command is a sine wave as shown in Figure 1,
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the corresponding desired velocity in the pre-sliding region is not zero at the initial instant, such
that if we adopt its value in (A3), it requires an extremely large gain w for achieving the approaching
condition, but it may not be realizable in practice. Alternatively, a reference signal with zero velocity
is preferred. Moreover, according to the friction model, Stribeck velocity determines which friction
region occurs, so that vS and

∣∣ ..xd
∣∣
max are used for

.
xp and

..
xp, respectively, to obtain the maximum

required w.
In Remark 2, the system stability is briefly addressed by means of BIBO for the critical condition

w = 0. In the following, the closed-loop robust stability issue is going to be interpreted as a feasibility
problem of a linear matrix inequality (LMI). According to (24), when applying zero robust gain, the
sliding controller (22) turns into a PD control plus a feed-forward compensation, which leads to the
following error dynamics:

.
e2 = −(1 + k1k2)e1 − (k1 + k2)e2 +

M̃
M (1 + k1k2)e1 +

M̃
M (k1 + k2)e2 − σ̃2

M e2

+ σ̃2
M

.
xd +

(
1− M̃

M

) ..
xd +

1
M FB

(
κ,

.
κ
)
+ 1

M d
(A4)

where M̃ = M− M̂ and σ̃2 = σ2 − σ̂2.
System (A4) can then be further represented by the following state space form:

.
e = (A + ∆A)e + D (A5)

where:

A =

[
0 1

−(1 + k1k2) −(k1 + k2)

]
, ∆A =

[
0 0

M̃
M (1 + k1k2)

M̃
M (k1 + k2)− σ̃2

M

]

D =

[
0

σ̃2
M

.
xd +

(
1− M̃

M

) ..
xd +

1
M FB

(
κ,

.
κ
)
+ 1

M d

] (A6)

For (A5), consider a Lyapunov candidate as:

Ve = eTPe (A7)

where PT = P > 0. Taking the time derivative of (A7) yields:

.
Ve = eT

(
ATP + PA + ∆ATP + P∆A

)
e + 2eTPD (A8)

Since the last term in (A8) is bounded, the closed-loop system is said to be robust stable if the
following inequality exists:

ATP + PA + ∆ATP + P∆A + Q < 0 (A9)

where QT = Q > 0.
According to the structure of ∆A, it can be factorized by:

∆A =

[
0 0

(1 + k1k2) (k1 + k2)

][
M̃
M 0
0 M̃

M −
σ̃2

M(k1+k2)

][
1 0
0 1

]
= E∇F (A10)

and:
∇T∇ < µI (A11)

where µ is a known positive constant.
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Furthermore, considering the following inequality:

∆ATP + P∆A = FT∇TETP + PE∇F
≤ εFTF + 1

ε µPEETP
(A12)

where ε > 0.
Based on (A12), (A9) is guaranteed as long as:

ATP + PA + εFTF +
1
ε

µPEETP + Q < 0 (A13)

is attained.
As a result, it can be concluded that the robust stability can be guaranteed provided the

following inequalities [
ATP + PA + εFTF + Q

√
µPE

√
µETP −ε

]
< 0

PT = P > 0, QT = Q > 0, ε > 0
(A14)

are feasible.
Based on (A14), the Lyapunov function is re-written by:

.
Ve ≤ −eTQe + 2eTPD ≤ −λmin(Q)‖e‖2 + 2λmax(P)‖e‖‖D‖

≤ −λmin(Q)‖e‖
(
‖e‖ − 2 λmax(P)

λmin(Q)
‖D‖

) (A15)

which indicates that:

‖e‖ → Ω := 2
λmax(P)
λmin(Q)

‖D‖ (A16)

eventually. As a result, a robust stability can be guaranteed, even when w = 0.
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