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Abstract: This paper quantitatively evaluates the performance of an adaptive-gain parabolic
sliding mode filter (AG-PSMF), which is for removing noise in feedback control of mechatronic
systems under different parameter values and noise intensities. The evaluation results show that,
due to the nonlinearity of AG-PSMF, four performance measurements, i.e., transient time, overshoot
magnitude, tracking error and computational time, vary widely under different conditions. Based on
the evaluation results, the paper provides practical tuning guidelines for AG-PSMF to balance the
tradeoff among the four measurements. The effectiveness of the guidelines is validated through
numerical examples.
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1. Introduction

The sliding mode filter [1,2] employing a certain kind of parabolic-shaped sliding surface has
been studied for effectively removing noise in feedback control of mechatronic systems. One of major
advantages of the filter is that its output converges to the input when a constant input is provided.
In addition, the filter does not require a dynamic model. The sliding mode filter has been recognized
one of the most effective and robust filters, and its evaluation results [3–5] and applications [6–14]
have been reported in the literature. However, the filter is prone to overshooting.

In response to the drawbacks of the sliding mode filter [1,2], Jin et al. [15] presented a new
parabolic sliding mode filter, which is referred to as PSMF. It is reported [16,17] that PSMF is
advantageous over the filter referred to in [1,2] and linear filters because it is less prone to overshooting
and produces smaller phase lag. After that, Jin et al. [18] presented an adaptive-gain parabolic
sliding mode filter, referred to as AG-PSMF, by extending PMSF. In that work, Jin et al. stated that
AG-PSMF effectively removes noise by balancing the tradeoff between the filtering smoothness and
the suppression of delay [18]. However, due to the strong nonlinearity, theoretical evaluation and
corresponding result-based parameter tuning guidelines remained as open problems for future study.

To respond to these problems, in an alternative manner this paper provides insight into the issues
of quantitative performance evaluation and parameter tuning of AG-PSMF through numerical analysis.
Specifically, the contribution of the paper is two-fold. It (1) quantitatively evaluates the performance
of AG-PSMF under different parameter values and input signals; and (2) based on the results of the
quantitative evaluation, the paper presents practical tuning guidelines for AG-PSMF.

The rest of this paper is organized as follows: Section 2 provides an overview of parabolic sliding
mode filters; Section 3 quantitatively evaluates the performance of AG-PSMF; Section 4 presents tuning
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guidelines of AG-PSMF based on the evaluation results; Section 5 validates the effectiveness of the
presented guidelines through numerical examples; and Section 6 covers concluding remarks.

2. Parabolic Sliding Mode Filters

This section provides an overview of parabolic sliding mode filters for understanding of the
presented analysis in the following sections.

In Reference [15], Jin et al. presented a sliding mode filter that employs a parabolic-shaped sliding
surface (PSMF), of which continuous-time representation is given as follows:

ẋ1 = x2 (1a)

ẋ2 ∈ −
F(H + 1)

2
sgn(σ(F, u, x1, x2))−

F(H − 1)
2

sgn(x2), (1b)

where

σ(F, u, x1, x2) , 2F(x1 − u) + |x2|x2, (2)

u ∈ R is the input, x1 ∈ R is the output, x2 ∈ R is the derivative of x1, and F > 0 and H > 1 are
constants. In addition, sgn() is the following set-valued signum function:

sgn(z) ,


1 if z > 0

[−1, 1] if z = 0

−1 if z < 0,

(3)

where z ∈ R is a scalar. Figure 1 shows the sliding surface and state trajectories of PSMF in x1–x2

space. In PSMF, ẋ2 can be seen as the acceleration of the output x1, and F can be considered as the gain
of the acceleration.

x1{x2 state space

¾x2 >    0

¾x2 < 0

sliding surface

x1 

x2

¾     =    0

(u,    0)

input u outputs x1parabolic

sliding mode filter

x2 = F

x2 = HF

x2 = −HF

¾x2 >    0

x2 = −F
¾x2 <    0

Figure 1. The parabolic-shaped sliding surface (thick curve) and trajectories of the state of the parabolic
sliding mode filter (PMSF) (thin curve).

The paper [15] also presented the following discrete-time algorithm of PSMF, which is derived by
using the backward Euler discretization (i.e., by replacing x2 by (x1(k)− x1(k− 1))/T):
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Algorithm 1 PSMF

1: x∗2 :=FTΦ
(u(k)−x1(k−1)

FT2

)
2: x2(k):=clip(clip(x2(k−1)−HFT,x2(k−1)−FT,0),clip(x2(k−1)+FT,x2(k−1)+FTH,0),x∗2)

3: x1(k):=x1(k−1)+Tx2(k)

4: RETURN x1(k).

Here, T is the sampling interval, k is the discrete-time index, and Φ() and clip() are functions defined
as follows:

Φ(z) , sgn(z)
(√

1 + 2|z| − 1
)

, (4)

clip(a, b, z) ,


b if z > b

z if z ∈ [a, b]

a if z < a,

(5)

where a ∈ R and b ∈ R satisfy a ≤ b. In Algorithm 1, x∗2(k) is the value of x2(k) that satisfies σ(k) = 0,
and x2(k) is determined in order to follow x∗2(k) under the constraint of acceleration. It should be
mentioned that, owing to the use of backward Euler discretization, the discrete-time implementation
of PSMF does not produce chattering, which has been considered as a common problem of sliding
mode techniques.

It is reported [16,17] that the noise removing capability of PSMF is almost the same as that of
second-order Butterworth low-pass filter (2-LPF), but PSMF produces smaller phase lag than 2-LPF
does. In addition, compared with the filter in [1,2], PSMF produces smaller phase lag , and it is less
prone to overshooting. The effectiveness of PSMF has been experimentally validated [16,17]. However,
due to the fixed acceleration gain F, the output of PSMF cannot follow an input in which the acceleration
exceeds that of PSMF, whereas the output becomes sensitive to the noise contained in the input of
which acceleration is far below that of PSMF.

With respect to the above-mentioned limitation of PSMF, Jin et al. presented an adaptive-gain
parabolic sliding mode filter (AG-PSMF), which is an extension of PSMF. Specifically, the complete
algorithm of AG-PSMF is given as follows:

Algorithm 2 Adaptive gain parabolic sliding mode filter (AG-PMSF)

1: FOR n∈{1,···,min(k+1,Nmax)}
2: v:=(x1(k−1)−x1(k−n−1))/(nT)
3: FOR i∈{1,···,n}
4: e:=x1(k−i−1)−x1(k−1)+iTv
5: IF |e|>R; EXIT LOOP
6: END FOR
7: IF i<n; EXIT LOOP
8: END FOR

9: F∗=
Nmax

2n
F

10: x∗2 :=F∗TΦ
(u(k)−x1(k−1)

F∗T2

)
11: x2(k):=clip(clip(x2(k−1)−HF∗T,x2(k−1)−F∗T,0),clip(x2(k−1)+F∗T,x2(k−1)+F∗TH,0),x∗2)
12: x1(k):=x1(k−1)+Tx2(k)
13: RETURN x1(k).
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In AG-PSMF, i.e., Algorithm 2, steps 1–8 check whether all previous outputs are inside the area
determined by the two end-outputs x1(k − 1) and x1(k − n − 1) and the constant R, as shown in
Figure 2. If it is the case, the window size n is further increased. The increase of n is continued until at
least one previous output lies outside the area or n reaches its maximum value Nmax. Then, in step 9,
gain F∗(k) is obtained by applying the adaptively determined window size for balancing the tradeoff
the output smoothness and the suppression of delay.

time
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Figure 2. Windowing in adaptive-gain (AG)-PSMF.

3. Performance Evaluation of AG-PSMF

This section numerically evaluates the performance of AG-PSMF under different values of
parameters and noise intensities. It should mentioned here that, in the upcoming analysis, parameter
values are changed in ranges that capture the response tendencies of AG-PSMF, without loss of
generality. In addition, F = 1000 and T = 0.0001 s are used for the discrete-time implementation of
AG-PSMF.

3.1. Transient Time and Overshoot Magnitude for Different Values of H

This part investigates the transient time and the overshoot magnitude produced by AG-PSMF
with the following input:

u = 1 + αε(t), (6)

where ε ∼ N (0, 1) is the unit white Gaussian noise with zero mean, and α is a normalized noise-scaling
constant. Here, as shown in Figure 3, the transient time is defined as the time required for the output
to reach 90 % of the signal component of the input, i.e., the input amplitude with α = 0. In addition,
the overshoot magnitude is defined as the maximum amount of the output that measured upward
from the signal component of the input.
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Figure 3. Response of AG-PSMF with input u = 1 + 0.1ε(t) under H = 1.5, Nmax = 25 and R = 0.001.
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Figures 4 and 5 show the transient time and the overshoot magnitude , respectively, under different
values of H and α. In addition, Figure 6 provides cross-section view of Figures 4 and 5 under α = 0.1.
It is shown that the overshoot magnitude decreases as H increases, and it converges to a certain
value in the range of H ≥ 5. On the other hand, the increase of H results in longer transient time,
which dramatically increases within the range of H > 10. Such tendencies become stronger as the
value of α increases.
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Figure 4. Transient time with input u = 1 + αε(t) under different values of H and α.
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Figure 5. Overshoot magnitude with input u = 1 + αε(t) under different values of H and α.
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Figure 6. Cross-section view of overshoot magnitude and transient time with input u = 1 + 0.1ε(t)
under different values of H.
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3.2. Tracking Accuracy for Different Values of Nmax and R

This part evaluates the tracking performance of AG-PSMF under the following input:

u = sin(10t) + αε(t), 0 s ≤ t ≤ 4.2 s. (7)

The performance is analyzed through the average magnitude of |û− x1| (AME), which is defined
as follows:

AME ,
1

42000

42000

∑
k=0
|û− x1|, (8)

where û is the signal component of the input, i.e., û = sin(10t).
Figure 7 shows AME under different values of Nmax and α, and Figure 8 provides AME of Figure 7

under α = 0.1. One can observe that AME converges to its minimum value as Nmax reaches around
Nmax = 50 under a certain value of α.
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Figure 7. Average magnitude of |û− x1| (AME) with input u = sin(10t) + αε(t) under different values
of Nmax and α.
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Figure 8. Average magnitude of |û− x1| (AME) with input u = sin(10t) + 0.1ε(t) under different value
of Nmax.
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The influence of R is shown in Figure 9, which gives AME for different values of R and α.
In addition, Figure 10 provides AME of Figure 9 under α = 0.1. It is shown that, under a certain
value of α, AME dramatically increases and converges to a certain value as R increases in the range
R > 0.0001. On the other hand, in the case of R < 0.0001, AG-PSMF produces smaller AME than that
of the case R > 0.0001, but the value is slightly larger compared with the case of R = 0.0001.

The figures also show that stronger noise intensity results in larger AME for a certain value of
Nmax and R.
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Figure 9. Average magnitude of |û− x1| (AME) with input u = sin(10t) + αε(t) under different values
of R and α.
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Figure 10. Average magnitude of |û− x1| (AME) with input u = sin(10t) + 0.1ε(t) under different
values of R.

3.3. Computational Time for Different Values of Nmax and R

Figure 11 shows the computational time spent by AG-PSMF with the input (7) under different
values of Nmax and R. It is shown that the influence R on the computational time is insignificant in the
range R ≤ 0.0001. In this range, the computational time under 10 ≤ Nmax ≤ 40 is slightly less than
that under Nmax > 40, as shown in Figure 12. However, in the range R > 0.0001, the computational
time increases with either increase in Nmax or R.
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Figure 11. Computational time with input u = sin(10t) + 0.1ε(t) under different values of Nmax and R.
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Figure 12. Computational time with input u = sin(10t) + 0.1ε(t) under different values of Nmax and
R = 0.0001.

4. Tuning Guidelines of AG-PSMF

In practice, parameter values greatly influence system performances, and thus parameter tuning
guidelines are important for systems to perform properly. However, in the case of AG-PSMF, the tuning
of algorithm parameters remains empirical due to the difficulty of theoretical evaluation caused by
strong nonlinearity.

In response to this problem, as an alternative solution this section provides parameter tuning
guidelines for AG-PSMF based on the results of numerical evaluation given in Section 3. Specifically,
the guidelines focus on the influence of different values of AG-PSMF’s three parameters H, Nmax and
R on the four measurements transient time, overshoot magnitude, tracking error (i.e., AME) and
computational time. It should be said that, for a better filtering performance, the values of all
four measurements should be kept small. Given this requirement, tuning guidelines for AG-PSMF’s
parameters are derived as follows.
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4.1. Tuning Guideline for H

In Section 3.1, it has been discussed that the increase of H contributes to the suppression of
overshoot but results in longer transient time. By carefully observing the response of AG-PSMF under
different values of H, as shown in Figures 4–6, one can notice that the optimum range of H is around
5 ≤ H ≤ 10. Under such a value of H, AG-PSMF provides short transient time by producing a low
level of overshoot.

4.2. Tuning Guideline for Nmax

In Section 3.2, it has been shown that the minimum AME appears around Nmax = 50. Thus, it is
suggested that Nmax should be set as around Nmax = 50. However, in the applications where the
computational time is a major concern, it is advisable to set around 20 ≤ Nmax ≤ 30 by considering
the results of Section 3.3. This is because under such values of Nmax, AG-PSMF consumes slightly less
computational cost while maintaining relatively low level of AME.

4.3. Tuning Guideline for R

In Section 3.2, it has been observed that AME converges to the minimum value as R approaches
R = 0.0001. On the other hand, in Section 3.3, it has been illustrated the the computational time is
insignificant in the range of R ≤ 0.0001, while it increases with the increase of R in the range R > 0.0001.
Thus, it is clear that the value of R around R = 0.0001 should be appropriate by considering both AME
and computational time.

5. Numerical Examples

The effectiveness of the presented guidelines are now validated through numerical examples,
the following sinusoidal signal is provided as the input of AG-PSMF:

u =


sin(20) + 0.1ε(t) if t ≤ 1.5 s,

2sin(20t) + 0.1ε(t) if 1.5 s < t ≤ 3 s,

sin(40t) + 0.1ε(t) otherwise.

(9)

According to the guidelines, the values of parameters are set as H = 5, Nmax = 50, and R = 0.0001.
Besides that, F = 1000 and T = 0.0001 s are applied.

Figure 13 shows the output of AG-PSMF under the parameter values recommended by the
guidelines (hereafter denoted as the AG-PSMF Guideline). For comparison, the results of AG-PSMF
with four different sets of parameter values are also included. The initial states of all conditions are
set zeros at t = 0 s. The results clearly show the advantage of using H > 1. That is, the AG-PSMF
Guideline is less prone to overshooting than in the case of H = 1. In addition, compared with the cases
of Nmax = 25 and R = 0.001, the output amplitude of the AG-PSMF Guideline is closer to that of signal
component of the input. Furthermore, the phase lag of the AG-PSMF-Guideline is the smallest among
the four cases. As a whole, one can conclude that AG-PSMF performs the best under the recommended
parameter values.
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6. Conclusions

This paper has quantitatively evaluated the performance of an adaptive-gain parabolic sliding
mode filter (AG-PSMF) for removing noise in feedback control of mechatronic systems, under different
parameter values and noise intensities. The evaluation results show that, due to the nonlinearity,
the performance of AG-PSMF varies widely under different conditions. Based on the evaluation
results, the paper has provided practical tuning guidelines for AG-PSMF to optimize performance.
The effectiveness of the guidelines is validated through numerical examples.

One issue that remains for future study is theoretical validation of AG-PSMF.
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