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Abstract: Reasonable welding path has a significant impact on welding efficiency, and a 
collision-free path should be considered first in the process of welding robot path planning. The 
shortest path length is considered as an optimization objective, and obstacle avoidance is 
considered as the constraint condition in this paper. First, a grid method is used as a modeling 
method after the optimization objective is analyzed. For local collision-free path planning, an ant 
colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant 
colony algorithm, a secondary optimization is presented to improve the optimization performance. 
Finally, the particle swarm optimization algorithm is used to realize global path planning. 
Simulation results show that the desired welding path can be obtained based on the optimization 
strategy. 

Keywords: welding robot; path planning; collision-free; ant colony algorithm; particle swarm 
optimization algorithm 

 

1. Introduction 

With developments in welding technology, computer technology and robot technology, welding 
robots have been widely used in industrial production, especially in the automotive sector. To 
improve welding productivity when there are many weld joints, robot path planning needs to be 
studied. For welding robot path planning, some factors should be considered. Optimization 
objectives include a minimum path length [1], collision-free paths [2], and welding deformation [3]. 

Obstacle avoidance is a fundamental problem in welding robot path planning. However, most 
path planning with obstacle avoidance is obtained based on teaching mode programming. In this 
way, the planning process is time-consuming, and the optimum path is hard to achieve. Hence, 
robot collision-free path planning based on optimization algorithms needs to be studied to improve 
welding efficiency. Collision-free path planning includes two stages: environment modeling and 
path searching, which are explained in the following paragraphs. 

Environment modeling refers to the mathematical description of the environment around the 
welding robot, which is essential for collision-free path planning. Allan [4] applied a grid method to 
solve path planning for real-time robots in dynamic environments. For the grid method, grids are 
applied to describe the free space and obstacle space in the robot’s work space. A good path can be 
achieved if the precision is high, but the algorithm would be time-consuming at the same time. The 
environment would not be described clearly if the precision were otherwise low. Yu [5] presented a 
C-space layered search arithmetic for manipulators. Although the method could achieve obstacle 
avoidance for robot arms, the obstacle modeling was complex and inefficient. With increases in 
robot freedom, the computation becomes very complicated. In addition, there are other 



Appl. Sci. 2017, 7, 89  2 of 11 

environmental modeling methods, such as the visibility graph method [6], the bounding box method 
[7], artificial neural networks [8], and approximate voronoi boundary networks [9]. 

After environment modeling, some path searching methods are essential to find an appropriate 
path. Li [10] presented an improved APF-based SIFORS method for autonomous mobile robot path 
planning in complex environments. The artificial potential field method is straightforward, but some 
problems may exist, such as the local optimum problem, falling into a deadlock, and moving 
unsteadily near the obstacle. Cao [11] proposed an improved ant colony algorithm for robot global 
path planning; the pheromone evaporation rate was adjusted dynamically to enhance the global 
search ability and convergence speed. In addition, the artificial bee colony algorithm [12] and the 
genetic algorithm [13] are also used to search the optimum path. 

In this paper, obstacle avoidance and path length are considered to optimize path. Based on the 
above analysis, the model description is first described in Section 2. Then, in Section 3, the grid 
method is selected to realize environment modeling. Moreover, the ant colony algorithm (ACO) is 
applied for path searching in Section 4. In addition to this, a particle warm optimization (PSO) 
algorithm is used to realize global optimization in Section 5. Finally, conclusions are given in Section 6. 

2. Model Description of Welding Robot Path Planning with Obstacle Avoidance 

Because spot welding robots are widely used for car body in white, it was selected as the 
welding object in this paper. All weld joints are given as spots, which are shown in Figure 1. To 
illustrate the problem more clearly, parts of the weld joints are chosen to conduct path planning, which 
are shown in Figure 2. The coordinates of 15 weld joints were obtained in “RobotStudio” software and 
are shown in Table 1. 

 
Figure 1. Body in white weld piece. 

Table 1. Weld joints coordinates. 

NO. X (mm) Y (mm) Z (mm) NO. X (mm) Y (mm) Z (mm)
1 1443.60 −53.20 686.00 9 1474.16 −111.25 791.00 
2 1399.56 −60.05 688.49 10 1442.88 −117.47 779.19 
3 1356.00 −66.67 689.57 11 1414.82 −122.26 771.35 
4 1456.36 −48.49 669.34 12 1356.71 −132.48 759.65 
5 1417.70 −54.51 671.94 13 1554.17 −94.37 909.95 
6 1379.31 −60.57 674.61 14 1539.25 −99.03 879.83 
7 1504.91 −126.99 813.51 15 1549.76 −8.79 903.34 
8 1493.74 −109.17 801.14 - - - - 

In order to achieve welding robot path planning with a collision-free path, a welding torch 
should move through all the weld joints first. At the same time, the shortest path length possible and 
the avoidance of all obstacles in the environment are desired. Suppose the number of the weld joints 
is , the welding sequence is [ (1), (2), … , ( )]. Then, the problem can be treated as a TSP 
(Traveling Salesman Problem) with constraint conditions. TSP is described as follows. Suppose a 
salesman has to visit  cities with the conditions that he must visit each city only once and finally 
return to the original departure city. The path planning problem can be described as 
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min = ∑ ( ), ( )s. t. path	 ( ) ( + 1) is a safe path ( = 1,2, … , − 1)   (1) 

where path	 ( ) ( + 1) is the path between Weld Joints ( )	and	 ( + 1), which represents the 
local path. The welding sequence [ (1), (2), … , ( )] represents the global path. 

 
Figure 2. Part of the body in white weld piece. 

For the path between two weld joints, the welding torch moves through intermediate points to 
avoid the obstacle and suppose that the path between weld joints and the intermediate points are 
straight lines. If the starting point is ( ), the terminal point is ( + 1), and the intermediate points 
are [ , , … , ] . Path ( ) ( + 1)  is made up of path	 ( ) , path	 ( = 1,2, … , −1), path	 ( + 1), and the planning of path	 ( ) ( + 1) can be described as follows: min ( ) ( ) = dist( ( ), ) + ∑ dist( , ) + dist( , ( + 1))s. t. path ( ) is a safe path	path	 a safe path( = 1,2, … , − 1)path ( + 1) is a safe path   (2) 

where dist( , ) indicates the Euclidean distance between point  and . XY is a safe path, which 
represents that the robot’s moves from point X to point  without collision. 

3. 3D Environment Modeling 

For collision-free path planning, the environment model of robot should be established. The 
grid method is relatively simple and intuitive when used for map creation and is beneficial for 
detecting the environment in the path searching process. Hence, the grid method is selected as the 
modeling method in this paper. Because the traditional grid method is used in 2D space, while the 
working environment for the welding robot is in 3D space, the improvement of the grid method is 
necessary. The procedure of the 3D environment modeling with the grid method is presented as 
follows. 

(1) simplify the weld piece into some triangles, as shown in Figure 3. The red spots in Figure 3 denote 
weld joints. 

(2) Set up grid matrix. The whole space is divided into small cubes, and the centers of the cubes are 
set as the welding torch’s footholds (Figure 4). Because the diameter of the welding electrode is 
4.48 mm, each side length of the cubes is set to 5 mm. Then, all centers of the cubes are mapped 
on the triangles. If the projected point is located in the triangle and the vertical length is less 
than 5 mm, the triangle is the obstacle for the center; otherwise, the triangle is not the obstacle 
for the center. 

(3) If there are no obstacle triangles for a center, the center is a free point. Otherwise, the center is 
an obstacle point, which means that the welding torch cannot be located in the point. 

(4) Because the actual weld joints are located on the surface of the weldment, the weld joints cannot 
be located in the free points. However, in the process of path planning, the welding torch can 
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only move among the free points. To solve this problem, a nearest free point is defined as a 
virtual weld joint for the weld joint. Because the distance between actual weld joints and virtual 
weld joints is invariable and is small in terms of the whole path length, the distance is ignored 
in the optimization process. The path planning mentioned below only considers the path 
between the virtual weld joints. 

 

Figure 3. Simplified triangles for white body weld piece, red spots: weld joints.  

 
Figure 4. The environment model using the grid method, red spots: weld joints, blue area: grid 
matrix. 

4. Collision Free Path Optimization 

4.1. Ant Colony Optimization Algorithm (ACO) 

ACO is a swarm intelligence optimization algorithm that stems from real ants. In 1991, Dorigo [14] 
firstly proposed the ACO and successfully applied it for solving different combination optimization 
problems. The foraging behavior of the ant colony can be regarded as a distributed collaborative 
optimization mechanism. It is difficult to find the shortest path from the nest to the food source for 
a single ant, while the ant colony can find the shortest path because the ants can communicate with 
each other by releasing pheromones on the route passed. The basic ACO mode is presented as follows 
[14]: = /∑ ∈   (3) ( + 1) = ( ) + ∑ (4) 

= ，if ant k goes through the path ( , )0 otherwise  (5) 
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where  is the transition probability of ant  from  to ,  is the location of the ant, and  is 
the location that the ant can arrive at.  is the pheromone intensity from	  to , and  is heuristic 
information, where	 = 1/ .  is the weight of the pheromone,  is the weight of heuristic 
information, Λ  is the collection of the nodes that ants can reach, and  is the evaporation 
coefficient of pheromone on the route. Δ  is the pheromone intensity ant  leaves on the route 
from  to , and  is the amounts of ants.  is the number of iterations,  is the objective 
function, which is the Euclidean distance between two points,  is the quality coefficient of the 
pheromone, and  is path length of ant  goes from nest to food source. 

4.2. Collision Free Path Optimization Based on ACO 

When the ACO is applied for the welding robot path planning, the starting point of the 
welding torch is the nest of the ant colony and the destination is the food resource. Hence, the path 
planning based on the ACO is the food searching process for the ant colony. The communication 
between the ants is realized based on pheromones. The shortest path can be found through the 
mutual cooperation among the individuals. The chart of the welding robot local path planning is 
shown in Figure 5. 

 
Figure 5. Chart of welding robot collision free path optimization.  

Steps of the local welding path planning with collision-free based on ACO are given as follows: 
Step 1. Realize the environment modeling based on the grid method. 
Step 2. Initialize the parameters of the ACO. Based on the empirical value, the weight of the 

pheromone  is set as 1, the weight of heuristic pheromone  is set as 11, the evaporation 
coefficient of pheromone  is set as 0.9, and the pheromone quality coefficient Q is set as 5. The 
iteration number N is set as 50, and the population quantity M is set as 50. Initialize the coordinates 
of the starting point and the terminal point. Initialize the pheromone matrix, and the pheromones 
for all points are set as 0.5. The above parameter settings are shown in Table 2. 

Step 3. Set iterator  as 1. 
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Step 4. Set the number of ant  as 1. 
Step 5. Clear tabu list  for the ant , add the starting point to , and clear foraging 

path  for ant . 
Step 6. Calculate the probability of each node according to Equation (3). In this paper, the ants’ 

step length is set as 5 mm and the number of nodes that can be chosen as the next node is no larger 
than 6. The positive and negative directions of the 3D coordinate system are set as the directions of 
the ants’ movement in this paper. Hence, the number of directions of the ants’ movement is 6. 
When there are neighboring nodes that are obstacle points, the number of next nodes that the ant 
can choose is lower than 6. Select the next node according to the roulette wheel and add the node to 
the  list  and foraging path . 

Step 7. If the ant reaches the destination or reaches a dead end, jump to Step 8. Otherwise, 
return to Step 6. A dead end means that, for the current node, there are not any nodes that can be 
found as the next node. 

Step 8. If the ant reaches the destination, calculate the path length  according to Equation (2). 
If the ant reaches a dead end, the path length  is set to infinity. Calculate the left pheromone 
according to Equations (4) and (5). 

Step 9. If  is less than , = + 1, and return to Step 5. Otherwise, jump to Step 10. 
Step 10. Update the pheromone matrix according to Equations (4) and (5). 
Step 11. If , = + 1, and return to Step 4. Otherwise, jump to Step 12. 
Step 12. Select the shortest foraging path ( ), which is the result of collision-free welding 

path planning.  
Set Weld Joint 3 and Weld Joint 7 as the starting point and terminal point, respectively. The 

result of the path planning is shown in Figure 6, and the path length is 330 mm. The iterative 
process of the ant colony algorithm is shown in Figure 7. 

 
Figure 6. Welding robot path planning between two weld joints. (a) View A; (b) View B. 
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Figure 7. The iterative process of the ant colony algorithm . 

Table 2. Ant colony algorithm (ACO) Parameters. 

   Q N M Initial Pheromone 
1 11 0.9 5 50 50 0.5 

4.3. The Secondary Optimization of ACO (SO-ACO) 

The path solved based on the ACO is not the shortest path because of its discontinuous step 
length and direction. Hence, a secondary optimization (SO) is proposed to obtain better 
optimization results. Here,  represents the optimized path based on ACO, and  
represents improved path based on SO-ACO. The optimization process is presented as follows: 

Step 1. Initialize  as void. 
Step 2. Add the first point of  to . 
Step 3. Suppose the last point of  is , and the last point in  is . 
Step 4. If  is the next point to , the location of  in  and  in  are shown in 

Figure 8, jump to Step 6. Otherwise, jump to Step 5. 
Step 5. Connect  and  to form a line. If the line encounters the obstacles, set the point in 

front of  in  as , and return to Step 4. Otherwise, jump to Step 6. 
Step 6. Add  to . 
Step 7. If  is the last point in , jump to Step 8; otherwise, return to Step 3. 
Step 8. Compare the length of  and . If the length is the same, jump to Step 10. 

Otherwise, replace the sequence in rout with that in routi and jump to Step 9. 
Step 9. If the length of each segment in rout is greater than 5 mm, the segment is split into 

points, and the new points are added to rout. Then, reverse the order of the rout and return to Step 1. 
Step 10. Set  as the optimized result. 

 
Figure 8. The location of  and . 

According to the above steps, when the Weld Joints 3 and 7 are selected as the starting joint 
and the terminal joint, respectively, the parameters of the ACO are the same as Section 4.2. The path 
planning result based on the SO-ACO is shown in Figure 9 (a and b are a different view of the same 
result). The path length optimized based on ACO is 330 mm, while the path length optimized based 
on the SO-ACO is 203.290 mm.  
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(a) (b)

Figure 9. Welding robot path planning based on the Secondary Optimization of ACO (SO-ACO). (a) 
View A; (b) View B. 

Different iterations  and population sizes  are selected to prove the effectiveness of the 
SO-ACO, which are shown in Table 3. Other parameters refer to Section 4.2. The algorithm is 
conducted 20 times for every condition, and the minimum, maximum, average, variance of path 
length, and time for every conditions are shown in Table 3. 

Table 3. Comparison of the results optimized based on two algorithms. 

N M Method 
Path Length L (mm) Time t (s) 

Mean SD Min Max Mean SD Min Max

5 5 
ACO 681.000 97.002 560.000 910.000 1.094 0.105 0.909 1.294 

SO-ACO 206.326 8.760 202.507 242.524 1.242 0.102 1.066 1.403 

10 10 
ACO 579.500 55.864 490.000 670.000 4.234 0.286 3.739 4.950 

SO-ACO 203.085 0.617 202.390 204.582 4.369 0.303 3.844 5.098 

20 20 
ACO 460.500 33.162 400.000 530.000 13.391 0.440 12.672 14.584 

SO-ACO 203.219 0.931 202.390 206.187 13.511 0.436 12.783 14.676 

30 30 
ACO 361.000 12.937 340.000 390.000 25.038 0.901 23.776 28.028 
SO 203.039 0.770 202.507 205.451 25.152 0.893 23.901 28.122 

40 40 
ACO 330.500 2.236 330.000 340.000 43.199 2.118 38.954 47.122 

SO-ACO 202.930 0.357 202.370 203.426 43.332 2.125 39.063 47.263 

50 50 
ACO 330.000 0.000 330.000 330.000 56.213 3.892 50.827 68.322 

SO-ACO 203.120 1.069 202.390 206.187 56.340 3.901 50.930 68.468 

60 60 
ACO 330.000 0.000 330.000 330.000 76.361 6.807 65.979 89.289 

SO-ACO 202.800 0.477 202.390 204.443 76.492 6.814 66.093 89.455 

From Table 3, it can be seen that the SO-ACO is obviously superior to the basic ACO; 
satisfactory results were obtained when the iterations  and population sizes  were 10. For 
ACO, with the increase in the iteration , population size , and searching time, the path length 
of the ACO decreases, but it is still larger than the optimization results based on SO-ACO. Hence, it 
can be concluded that the SO-ACO can improve the optimization effect of the algorithm, and it can 
be applied for actual optimization processes to achieve a satisfactory result with a small iteration  
and population size . 

5. Global Welding Robot Path Planning 

Based on the collision free path optimization, the global welding path planning can be treated 
as a TSP. Due to the effective application of the PSO, this algorithm will be used to realize global 
optimization for welding robot path. 

5.1. Particle Swarm Optimization Algorithm 

In 1995, Kennedy and Eberhart [15] presented the particle swarm optimization (PSO) 
algorithm based on the regularity of hunting birds. In the PSO algorithm, every bird is named as a 
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particle with no quality and volume. Multiple particles coexist and search for the best position with 
cooperation. Every particle moves to a better position with its experience and others’ in the swarm. 
The best position of a particle is called , and the best position of the whole swarm is called 

. The state of the particle is described by the D-dimensional velocity = ( , , … , ) and 
the position = ( , , , … , ). Thus, every particle updates its state according to Equations (6) 
and (7), and the next generation is generated. = + − + −  (6) = +  (7) 

where  represents the current iterations. ,	 , which are the learning factor, are usually positive 
and adjust the traction force of the personal optimal position and the global optimal position. ,  
are random numbers between 0 and 1. 

The PSO algorithm has shown its superior performance in optimization of continuous 
problems. However, the original PSO is not appropriate for solving discrete problems such as TSP. 
Clerc [16] proposed a TSP-PSO algorithm based on the operation of particle positions and velocity 
vector to solve TSP. This algorithm is used to realize global path planning in Section 5.2. 

5.2. Global Path Planning Based on PSO 

Because of the advantages of PSO, it is chosen as the optimization algorithm for global path 
planning. The steps of the globe welding path planning based on PSO are presented as follows [16]: 

Step 1. Initialization: the iterations N of the PSO is set as 100, the population size is set as 50, 
and the learning rates ,  are set as 1.0. The weight is set as 0.4. The positions and velocities of 
the particles are initialized randomly. The local route can be obtained according to the local path 
planning algorithm. Each particle’s fitness is evaluated in the light of Equations (6) and (7). Then, 
the personal best positions and the global best position of the particles are updated. The above 
parameter settings are shown in Table 4. 

Step 2. Update the positions and velocities of the particles according to the equation of the PSO. 
Update the fitness, personal best positions, and the global best position. 

Step 3. If the number of iterations is not larger than 100, then return to Step 2; otherwise, jump 
to Step 4. 

Step 4. The global best position is the result of the global welding path planning. 
Based on the above steps, the shortest collision-free welding path can be achieved as follows: 

15→13→14→7→8→9→10→11→12→3→6→2→5→1→4. The global path length is 599.720 mm, the 
final global welding collision-free robot path planning is shown in Figure 10, and the iterative 
process of PSO is shown in Figure 11. 

(a) (b)

Figure 10. Global path planning with obstacle avoidance. (a)View A; (b) View B. 
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Figure 11. Iterative process of particle swarm optimization. 

Table 4. Particle swarm optimization parameters. 

Iterations Population Size  Weight Initial Positions Initial Velocities 
100 50 1.0 1.0 0.4 random random 

6. Conclusions 

Welding robot collision-free path optimization was studied in this paper. The optimization 
objective is the shortest path length and the constraint is obstacle avoidance. Environment modeling 
was realized using the grid method. The ACO was used for path searching. In order to improve the 
performance of the ACO, a secondary optimization algorithm was presented, which markedly 
improves the result of the algorithm. Finally, particle swarm optimization was applied to optimize 
the global welding collision-free path planning. The shortest collision-free path was obtained based 
on the proposed strategies in this paper, which shows the effectiveness of the algorithm. 

The welding path optimization studied in this article is similar to practical welding situations. 
Hence, manual teaching and offline programming (OLP) is beneficial. Based on the optimization 
strategy, the obtained welding path can help welding engineering by shortening the teaching time. 
At the same time, the path can make the OLP software intelligent and more effective after the 
optimization strategy is integrated with OLP software. 
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