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Abstract: The behaviour of an asphalt concrete structure subjected to severe loading, such as blast 
and impact loadings, is becoming critical for safety and anti-terrorist reasons. With the 
development of high-speed computational capabilities, it is possible to carry out the numerical 
simulation of an asphalt concrete structure subjected to blast or impact loading. In the simulation, 
the constitutive model plays a key role as the model defines the essential physical mechanisms of 
the material under different stress and loading conditions. In this paper, the key features of the 
Karagozian and Case concrete model (KCC) adopted in LSDYNA are evaluated and discussed. The 
formulations of the strength surfaces and the damage factor in the KCC model are verified. Both 
static and dynamic tests are used to determine the parameters of asphalt concrete in the KCC 
model. The modified damage factor is proposed to represent the higher failure strain that can 
improve the simulation of the behaviour of AC material. Furthermore, a series test of the asphalt 
concrete structure subjected to blast and impact loadings is conducted and simulated by using the 
KCC model. The simulation results are then compared with those from both field and laboratory 
tests. The results show that the use of the KCC model to simulate asphalt concrete structures can 
reproduce similar results as the field and laboratory test. 

Keywords: asphalt concrete; constitutive model; impact loading; blast loading; numerical simulation 
 

1. Introduction 

The behaviour of structures or infrastructures under extreme loadings has become a hot topic 
in the area of civil, mechanical and material engineering. Critical infrastructures, such as runway 
pavement designed for normal aircraft landing and taking off, are expected to have adequate 
resistance when subjected to extreme loadings, such as impact or blast loadings (e.g., heavy airplane 
landing or taking off, air plane crash or terrorist attack). Asphalt concrete (AC) is made of bitumen 
binder and coarse aggregate. It is usually used as the surface course for both highway and runway 
flexible pavement [1]. The dynamic load in the daily application for AC pavement normally 
corresponds to a strain rate less than 10−1 s−1. Tashman et al. [2] conducted experiments of AC under 
triaxial compressive loading at the strain rate from 10−6 s−1 to 10−3 s−1. The results showed that the 
failure stress increased with the increase of the applied strain rate. Seibi et al. [3] studied AC 
subjected to uniaxial compressive loading with strain rate from 0.064 s−1 to 0.28 s−1. It was found that 
the yield stress was significantly dependent on the strain rate. Park et al. [4] carried out tests on AC 
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under uniaxial and triaxial compression with the strain rate changing from 10−4 s−1 to 0.07 s−1.  
The results showed that with the increase of the applied strain rates, the yield stress and failure 
stress increased, and the strain rate dependency was clearly showing up at the higher strains. It was 
also found that the viscous behaviour of AC decreased with the increase of the strain rate. However, 
when the pavement structure is subjected to the impact loading from further heavy traffic loading or 
aircraft loading, the corresponding strain rate exceeds 10−1 s−1, especially for heavy aircraft loading, 
the related strain rate reaches around 100 s−1. Based on previous research [5,6], the compressive 
strength of AC material can be enhanced with the increase of strain rate, and AC material exhibits 
high plastic behaviour at the high strain rate. However, it is very expensive to conduct field test to 
investigate the actual behaviour of AC under severe dynamic loading, the numerical simulation is 
an effective alternative solution. 

There are many factors that influence the reliability of numerical simulation. Among these 
factors, the material model plays a key role because it should reproduce the essential physical 
mechanisms of the material under various loading conditions. Seibi et al. [3] and Park et al. [4] used 
the Drucker–Prager yield function to simulate the compressive behaviour of AC under dynamic 
strain loading (strain rate from 0.0001 s−1 to 0.0701 s−1). Tashman et al. [2] developed a 
microstructure-based viscoplastic continuum model to take into account the effect of temperature in 
AC material with the strain rate ranging from 10−6 s−1 to 10−3 s−1. Since the late 1990s, 
microstructural-based discrete element models (DEM) have been used for better understanding of 
asphalt pavement concrete (e.g., [7–10]). In DEM models, the assumption of elastic or viscoelastic 
behaviour was employed for the simulation of the static or creep behaviour of AC under normal 
traffic loading. However, it was found that when the pavement structure was under blast or high 
impact load, plastic deformation and severe damage would occur. Thus, a robust material model 
should be developed to consider the strain rate effect, strain hardening, strain softening and damage 
of the AC material under the severe dynamic loading. Recently, several concrete-like material 
models subjected to dynamic loadings have been developed, such as the Riedel-Hiermaier-Thoma 
(RHT) model [11], the Advanced Fundamental Concrete (AFC) model [12,13], the Karagozian and 
Case concrete model (KCC) [14] and the Holmquist-Johnson-Cook (HJC) concrete model [15,16]. 
These robust material models are capable of capturing varying concrete-like materials’ behaviour 
under different loading conditions. When subjected to dynamic loading, such as blast loading or 
high impact loading, concrete-like materials show a highly non-linear response. Besides, due to the 
general complexity of the constitutive models, the determination of the parameters (i.e., residual 
strength, failure strain and failure criteria in model) also plays an important role in achieving the 
actual performance of the concrete-like materials. This requires sufficient understanding of the 
modelling formulation and the associated considerations. In the current study, the KCC model [14] 
is used to simulate the AC material. This model is capable of capturing the varied concrete-like 
material behaviours under different loading conditions. However, it should be noticed that this 
model cannot consider the temperature effect. In this study, the dynamic behaviour of AC under a 
high strain rate is investigated, and the temperature effect is not considered. Hence, the KCC can be 
used; otherwise, the temperature issue should come up. 

In this paper, several key features of the KCC model are firstly discussed, and then, the 
determination of the parameters in the KCC model for AC is provided. An application example on 
the AC structure under blast and impact loading is also illustrated and validated based on a field 
blast test and a laboratory drop weight impact test. 

2. Review on KCC Model 

When subjected to blast loading or high impact loading, concrete or other concrete-like 
materials shows a highly non-linear response. They usually exhibit pressure hardening and strain 
hardening under static loading and strain rate hardening in tension and compression under 
dynamic loading. A number of material models has been developed to model concrete-like materials 
recently [11–16]. Among them, the KCC model is widely used to analyse concrete-like materials’ 
response to blast and impact loading due to its simple implementation. In addition, the KCC model 
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can capture the non-linear behaviour of the material under dynamic loading [14]. The key features of 
the model are discussed briefly in the following section. 

2.1. Strength Surface in KCC Model 

The KCC model decouples stress into the hydrostatic pressure and deviatoric stress as shown 
in Equation (1): 

1
3ij ij ii ijsσ σ δ= +  (1) 

where ijσ  is the stress tensor, ijs  is the deviatoric stress tensor and iiσ  is the hydrostatic pressure 
tensor. It should be noted that stress is positive in tension, and pressure is positive in compression. 
The hydrostatic pressure is related to the volumetric change of material, while the deviatoric stress 
is related to shear resistance of the material and is usually expressed by the second invariant of the 
deviatoric stress tensor, J2: 

2 2 2
1 2 3

2
1
2 2i j ji

s s s
J s s

+ +
= =  (2) 

The KCC model has three independent strength surfaces: maximum strength surface, yield 
surface and residual strength surface, which are shown in Figure 1. The general formation of 
strength surfaces can be written as: 

2 23 ( , )J f p JσΔ = =  (3) 

in which σΔ  is the principal stress difference and p is the hydrostatic pressure. Usually, the above 
Equation (3) refers to the compressive meridian. The whole failure curve can be obtained through 
rotation of the compressive meridian around the hydrostatic pressure axis by multiplying ( )

3 Lr θ , 
which has the formation: 
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where t
c

r
rψ =  and tr  and cr  are the radius of tensile and compressive meridian, respectively. 

According to Equation (5), it can be found that the 3( )Lr θ  depended on ψ  and 
Lθ . The parameter 

ψ  in turn relies on the hydrostatic pressure. For the concrete-like material, the value of ψ  varies 
from ½ at negative (tensile) pressures to unity at high compressive pressures [14]. The value of 
Lode angle Lθ  can be obtained from:  

1

2
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2L

s
J

θ =  or 3
3/2
2

3 3cos3
2L

J
J

θ =  (6) 

During the initial increase of hydrostatic pressure p, the deviatoric stresses ∆σ remains in the 
elastic region until the yield surface is reached. Deviatoric stress can be further developed until the 
maximum strength surface is reached, and the material will subsequently start to fail. After failure 
is initiated, the material will gradually lose its load-carrying capacity and reaches its residual 
strength surface. The formations of these three surfaces are also given in Equations (7)–(9). 

Yield surface 0
1 2

y y
y y

pa
a a p

σΔ = +
+

 (7) 

Maximum strength surface 0
1 2

m
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a a p
σΔ = +

+
 (8) 
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Residual strength surface 
1 2

r
f f

p
a a p

σΔ =
+

 (9) 

where the eight parameters, namely, 0 1 2 1 2 0 1, , , , , ,f f y ya a a a a a a  and 2 ya , for three surfaces can be 
obtained from the experimental data (e.g., triaxial compression test, biaxial compression test or 
uniaxial tension/compression test) [14]. 

 
Figure 1. Strength surfaces for the Karagozian and Case concrete model (KCC) material model [14]. 

2.2. Damage Factor in the KCC Model 

After reaching the initial yield surface, but before reaching the maximum strength surface,  
the current surface can be obtained as a linear interpolation between yield surface ∆σy and 
maximum strength surface ∆σm:  

( )m y yσ η σ σ σΔ = Δ −Δ +Δ  (10) 

After reaching the maximum strength surface, the current failure is interpolated between the 
maximum strength surface ∆σm and the residual strength surface ∆σr, which is similar to the  
above computation: 

( )m r rσ η σ σ σΔ = Δ − Δ + Δ  (11) 

where η varies from zero to one depending on the accumulated effective plastic strain parameter λ. 
The value of η normally starts at zero and increases to unity at λ = λm, then decreases back to zero at 
some larger value of λ. λm is the plastic strain at maximum strength surface. The accumulated 
effective plastic strain λ can be expressed as follows:  

10 [1 / ( )]

p p

b
f f t

d
r p r f

ε ελ =
+  for 0p ≥  (12) 

20 [1 / ( )]

p p

b
f f t

d
r p r f

ε ελ =
+  for 0p <  (13) 

where ft is the quasi-static tensile strength, pdε  is effective plastic strain increment and rf is the 
dynamic increase factor (DIF) of the material under dynamic loading. The damage factors b1 and b2 
define the softening behaviour due to compression ( 0P ≥ ) and tension ( 0P < ), respectively. 
Parameter b1 can be determined by considering compressive energy Gc (area under the compressive 
stress-strain curve) obtained from the uniaxial compression test in single element simulation. It is 
obtained iteratively until the area under the stress-stain curve from single element simulation 
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coincides with Gc/h, where h is the element size. The damage factor b2 in Equation (13) is related to 
tensile softening of the material and determined from experimental data. The fracture energy Gf can 
be obtained from the uniaxial tensile test or three-point notched beam test. Then, the single element 
simulation of uniaxial tensile test is employed to obtain the stress-strain curve from the numerical 
analysis. Hence, the value of b2 can be obtained until the area under the tensile stress-stain curve 
from a single element coincides with Gf/wc, where wc is the localization width, and typically, wc is 
normally taken as one- to six-times the maximum aggregate size [14]. 

Based on Equations (10) and (11), the stress softening factors η and λ are governed by the 
accumulation of effective plastic strain. However, when the stress path is very close to the negative 
hydrostatic pressure axis, i.e., isotropic tension, wherein the hydrostatic pressure would decrease 
from zero to −ft , where no deviatoric stress occurred, no damage accumulation would occur based 
on these equations. However, in such concrete-like materials, damage cannot be avoided even at 
this state. Therefore, the above condition has to be modified by including pressure-softening effects 
near or after tensile failures. In this case, a volumetric damage increment is calculated and added to 
the total damage factor λ whenever the stress path is close to the triaxial tensile path. 

2.3. Strain Rate Effect 

The material model KCC also includes a radial rate enhancement on the material failure 
surface. This is because experimental data for concrete-like materials are typically obtained along 
radial paths from the origin in deviatoric stresses versus hydrostatic pressure via unconfined 
compressive and tensile tests. It is well known that the strain rate effect is important for 
concrete-like materials under severe dynamic loading. A typical DIF-strain rate curve for 
concrete-like materials can be obtained from the servo hydraulic fast loading tests and the split 
Hopkinson pressure bar (SHPB) test. 

2.4. Equation of State  

In addition to the strength surface model, an equation of state (EOS) is needed to describe the 
relationship between hydrostatic pressure and volume change of the material subject to dynamic 
load. EOS is usually determined using a fly impact (i.e., for steel) test or triaxial compressive test 
(i.e., for concrete or geomaterials). The isotropic compression portion of the KCC material model 
consists of pairs of hydrostatic pressure P and corresponding volume strain μ. It is implemented as 
a piece-wise curve in this model. 

3. Determination of Parameters for Asphalt Concrete Material 

The KCC model is employed to simulate AC material to capture dynamic response under 
impact and blast loading. This section describes the determination of the model parameter for the 
asphalt concrete with the compressive strength of 4.6 MPa, which is used in the following 
application example. For the asphalt concrete with a different compressive strength, this method 
can be used as a reference. 

3.1. Strength Surface 

As mentioned in Section 2.1, the KCC material model has three strength surfaces: strength, 
residual strength and yield surfaces. These three surfaces can be obtained through curve fitting of 
suitable experimental data. In this study, due to the few data for triaxial compressive tests of 
asphalt concrete, available data are extracted from Park et al. [4] with the compressive strength  
fc = 0.311 MPa for AC. Figure 2 presents the determination of the three surfaces by curve fitting for 
AC with fc = 0.311 MPa. The intersection point of maximum strength surface and residual strength 
surface is the so-called brittle-to-ductile point. This point can be determined by experimental data 
under high confining pressure. However, it is difficult to determine this point in the strength 
surface as no experimental data are available for AC materials. Based on the experimental data for 
concrete [17], this point was usually taken as p/fc = 3.878. Considering that the size and strength of 
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aggregates used in AC and concrete material are almost the same, the brittle-to-ductile point for AC 
is taken to be the same as that for concrete. This value might be conservative for AC due to the higher 
content of coarse aggregate in AC. However, for simulation purpose, this value is acceptable. 

 

Figure 2. Determination of parameters in KCC from experimental data. 

If new asphalt concrete with known unconfined compression strength ,'c newf  is to be 
modelled, but its strength surfaces are otherwise unknown, then one way of scaling data from a 
known material is proposed as follows [14]: 

,

,

'
'
c new

c old

f
r

f
=  (14) 

where '
,c oldf  is the unconfined compressive strength for a previously modelled AC. Then, the new 

material strength surface can be taken as:  

0
1 2

n n
n n

pa
a a p

σΔ = +
+

 (15) 

in which 0 0 1 1 2 2, , /n n na a r a a a a r= = = . 
The new asphalt concrete with unconfined compressive strength fc = 0.8 MPa [2] is used to 

validate the parameters obtained from the scaling method. Figure 3 shows the maximum strength 
surface determined by the scaling method. It can be seen that the maximum strength surface fit 
very well with the experimental data, and thus, it can be concluded that the parameters for AC with 
different compressive strengths can be obtained by the scaling method. 

In this study, the unconfined compressive strength for AC material is 4.6 MPa, and the tensile 
strength is 0.7 MPa at 35 °C. By scaling the data from the established curves given in Figure 2 [11], 
the appropriate strength surface of the current materials can be determined; the strength 
parameters are given in Table 1. 
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Figure 3. Validation of the failure surface from the scaling law. 

Table 1. Parameters for asphalt concrete (AC) material with fc = 4.6 MPa. 

Parameter Value
a0 2.071 
a1 0.6 
a2 0.0135 
a0y 1.183 
a1y 2.00 
a2y 0.0473 
a1f 0.70 
a2f 0.0037 

3.2. Damage Factor 

The strain hardening and softening pairs (η, λ) in Equations (10) and (11) describe the material 
behaviour transmitted from the yield surface to the maximum strength surface and from the 
maximum strength surface to the residual strength surface, respectively. During the transmission, 
parameter η varies from zero to one, depending on the accumulated effective plastic strain 
parameter λ. However, it is found that the original damage factor pairs (η, λ) in the KCC model are 
only suitable for concrete and not for the AC material due to AC having higher plastic failure strain. 
Thus, the input for accumulated effective plastic strain λ should be modified. Based on the uniaxial 
compressive test for AC, it was found that at peak stress, the corresponding strain was 
approximately 0.018, and the final failure strain was about 0.1; while for normal concrete, the 
corresponding strain at peak stress was around 0.0022. Hence, the λ is modified to give the high 
failure strain for AC in the current study. Additionally, it is found that when λ is adjusted to 
10-times the original λ value, the numerical results seemed to show good agreement with the 
experimental results from the unconfined compressive test for AC. Figure 4 shows the modified 
and original series of (η, λ) pairs. It can be seen that the modified damage factor provided smoother 
descending than the original damage factor and had a higher failure strain that matched the 
behaviour of AC very well. 
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Figure 4. Damage factor used for AC material. 

3.3. Equation of State 

There are limited EOS data for AC material. The available EOS data are for AC with 
compressive strength of fc = 3.8 MPa [5]. In this study, the compressive strength for AC is fc = 4.6 MPa. 
Thus, the pressure-volume pairs can be calculated using the volumetric scaling method [18]. In this 
method, assuming that new data are obtained at the same volumetric strains, thus, the new 
corresponding pressure (pcnew) can be:  

new oldpc pc r=  (16) 

and the new corresponding unloading bulk modulus (kμnew) is:  

new oldku ku r=  (17) 

where r is the scaling factor, which is the ratio of compression strength for new material to the 
compression strength of the previous material modelled. Hence, the EOS data for fc = 4.6 MPa are 
calculated based on Equations (16) and (17), and the EOS inputted in the numerical model is shown  
in Figure 5. 

 
Figure 5. Equation of state (EOS) for AC with fc = 4.6 MPa. 
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3.4. Softening Parameters b1, b2 

The softening parameters (b1, b2) shown in Equations (12) and (13) control the material softening 
behaviour after peak stress. These parameters are obtained from experiments, as detailed below. 

• Value of b1 from the uniaxial compressive test: 
The uniaxial compressive test was conducted for AC according to ASTM 1074. The detailed 
test results and setup can be further referred to [11]. Based on the test results, it is found that 
the corresponding strain at peak stress (fc = 4.6 MPa) was about 0.018, and the final failure 
strain was about 0.1, which was higher than that of concrete. The Young’s modulus obtained 
from stain gauges attached at the middle height of the sample was 598 MPa. Based on 
experimental results, the compressive energy Gc was calculated at 15.1 MPa·mm. Hence,  
for example, the b1 value for a 10-mm mesh size was calculated as 3.45 using the method stated 
in Section 2.1. 

• Value of b2 from the fractural test: 
The value of b2 is determined by fracture energy Gf, which can be obtained from the uniaxial 
tensile test or the three-point single-edge notched beam test (SNB). In the current study,  
the SNB test was carried out to evaluate fracture energy Gf for the AC material. The detailed 
theory about the SNB test can be found in the established literature [19]. Therefore, only the 
test result is presented here. In the SNB test, the compacted AC beam was fabricated with a 
dimension of 400 × 100 × 100 mm3 depth. A mechanical notch was sawn with a depth of 20 mm, 
which gave a ratio of notch to beam depth of 0.2. The simply supported sample with a span 
length of 340 mm was tested under a 35 °C temperature. From the test, fracture toughness KIC 
can be obtained according to the formula suggested by Karihaloo and Nallathambi [19]. Then, 
the fracture energy Gf is calculated using:  

( )2 21 IC
f

v K
G

E
−

=  (18) 

in which E is the elastic modulus and ν is Poisson’s ratio. 

The parameter b2 is further determined by assigning fracture energy Gf in the use of single 
element simulation of the uniaxial tensile test. The b2 is then obtained via an iterative procedure 
until the area under the stress-stain curve from the single element simulation coincides with the 
value of Gf/wc. The parameters obtained from SNB and single element simulation for AC  
(fc = 4.6 MPa) are summarized in Table 2. 

Table 2. Parameters from the single-edge notched beam test (SNB) and single element simulation. 

Parameters Unit Value 
KIC MPa·mm ½ 12.2 
ν - 0.35 
E MPa 598 
Gf MPa·mm 0.221 
wc mm 40 

Gf/wc - 0.00554 
ft MPa 0.7 
b2 - 0.2 

3.5. Strain Rate Effect 

The DIF curve for AC under different strain rates was obtained using servo hydraulic fast 
loading tests and the split Hopkinson pressure bar (SHPB) test in the current study. The strain rate 
produced by the servo hydraulic machine was approximately 10−5 to 1 s−1, and the higher strain rate 
loading was obtained through SHPB testing. The detailed setup and procedure for SHPB and the 
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hydraulic test for AC can be referred to Wu [20]. The DIF value for compressive (DIFc) and tensile 
(DIFt) strength obtained from the test are given as: 

2
10 103.18 1.098log ( ) 0.1397log ( )dc

c
sc

fDIF
f

ε ε
• •

= = + +  for 1100sε
•

−≤   

1021.39log ( ) 36.76dc
c

sc

fDIF
f

ε
•

= = −  for 1 1100 200s sε
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− −< ≤  (19) 

101.86 0.1432log ( )dt
t

st

fDIF
f

ε
•

= = +  for 115sε
•

−≤   

106.06log ( ) 5.024dt
t

st

fDIF
f

ε
•

= = −  for 1 115 100s sε
•

− −≤ ≤  (10) 

However, for the compressive DIF curve, a numerical modelling of the SHPB test adopting this 
DIF curve found that the initial segment of this curve matched the experimental results very well, 
while the numerical model results for strain rate larger than 100 s−1 seemed to overestimate the 
stress. This can be due to the “double counting” of the inertia effect in the numerical modelling 
when the strain rate exceeded 100 s−1. Hence, in the current model, the second segment in 
compressive DIF (Equation (19)) is ignored when the strain rate exceeds 100 s−1. Beyond this,  
the DIF is assumed to remain a constant value. For the tensile DIF curves, in the macro-level 
numerical model, the KCC material model cannot capture the aggregate interlocking that 
propagates the micro-cracking and energy dissipation beyond the localization zone [20–22]. 
Therefore, the above tensile DIF curve (Equation (20)) with two branches is used in the numerical 
model. The tensile and compressive DIF curves of asphalt concrete used in numerical model are 
summarized in Figure 6. 

 
Figure 6. Tensile and compressive dynamic increase factor (DIF) curve used in the numerical model 
for asphalt concrete. 

4. Application Example 

4.1. Case for Blast Loading 

4.1.1. Field Blast Test 

In this section, the AC material is used in the multi-layer pavement. Figure 7 shows the 
cross-sectional view of the multi-layer pavement slab including 100 mm-thick engineering 
cementitious composite (ECC) at the bottom, 100 mm-thick high strength concrete (HSC) in the 
middle and 75 mm-thick AC at the top. The geogrid (GST) was placed at the middle of the AC layer 
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to reinforce the AC material. The numerical model for the multi-layer pavement system under blast 
load is developed based on the configuration of the full-scale field blast test [23]. Selected key 
features of the field blast test and numerical model are presented below. 

 

Figure 7. Cross-section of the multi-layer pavement slab. HSC, high strength concrete; ECC, 
engineering cementitious composite. 

In the field blast test, a bomb with the equivalent of a 7.3 kg Trinitrotoluene (TNT) charge 
weight was selected for testing and placed at about 170 mm above the surface of the pavement.  
The charge weight was evaluated based on the typical terrorist weapon attack. This multi-layer 
pavement slab was cast at site with a dimension of 2800 mm × 2800 mm × 275 mm (width × depth × 
thickness). The pavement slab was anchored to the ground to simulate the practical boundary 
condition, and a vertical anchor was installed at each corner. Figure 8 presents the multi-layer 
pavement slab before the blast load. 

Various instruments were installed onto the slab to measure its responses during blast loading. 
Figure 9 shows the instrumentation installed on the pavement slab. Four accelerometers were 
installed at the middle of the side of the slab to measure both vertical (V1 and V2 in Figure 9) and 
horizontal accelerations (H1 and H2 in Figure 9). The accelerometers were mounted onto steel 
frames that were cast together with the slab. Three total pressure cells (TPC) (TPC1, TPC 2 and TPC3 
in Figure 9) were buried in the soil just below the slab to measure the pressure transferred from the 
pavement slab. 

 
Figure 8. Plan view of the multi-layer pavement slab before the blast event. 

A numerical model is established using LSDYNA package [24]. In this model, the slab and 
foundation soil are discretised in space with one point Gauss integration eight-node hexahedron 
Lagrange element. Only a quarter of the slab is modelled with symmetric boundary conditions  
(as shown in Figure 10). The geogrid is spatially discretised with the shell element, and it is assumed 
that the geogrid is fully bonded within the AC layer. The anchors on the pavement slab are 
simulated as the fixed points (fixed in vertical direction) in the corresponding position in the 
numerical model. The non-reflection boundary is applied on the side and bottom of the foundation 
soil to model semi-infinite space. Based on the mesh study on the numerical model, the 10-mm 
element size is adopted for the pavement slab, geogrid and soil mass. The blast pressure is extracted 
from AUTODYN and used for numerical model analysis. The detailed process of applying pressure 
to the pavement surface can be referred to elsewhere [20,25]. 
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Figure 9. Layout of instrumentation for field blast test. TPC, total pressure cell. 

 

Figure 10. Finite element model of the multi-layer pavement slab. 

In the numerical model, AC, ECC and HSC are all grouped as concrete-like materials and 
modelled by the KCC model [20,23]. The basic parameters for these three materials are listed in 
Table 3. The parameters for AC material in the KCC model can be found in Section 3. While the 
process of the determination of HSC and ECC parameters for KCC model is the same as that 
mentioned in Section 3, the detailed parameters can be referred to Wu [20]. The Drucker–Prager 
model and plastic-kinematic model [17] are employed to model the foundation soil and geogrid, 
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respectively. The AUTOMATIC_SURFACE_TO_SURFACE contact algorithm is employed to model 
the interaction between pavement slab and soil. The TIEBREAK contact algorithm in LSDYNA is 
used to simulate the interface behaviour between HSC and AC layers. The parameters for the 
foundation soil, geogrid and interface property are in Tables 4–6, respectively. 

Table 3. Basic properties of materials in the multi-layer pavement for the blast load. 

Parameters AC HSC ECC 
Young’s modulus E (MPa) 598 33,000 18,000 

Compressive strength fc (MPa) 4.6 55 64 
Tensile strength ft (MPa) 0.7 4.35 5 

Poisson ratio ν 0.35 0.2 0.22 

Table 4. Parameters for Geogrid MG-100 using the plastic-kinematic model. 

Parameters Symbol Units Value 
Density ρ kg/m3 1030 

Young’s modulus E MPa 500 
Poisson’s ratio ν - 0.3 

Yield stress σy MPa 7.5 
Tangent modulus Et MPa 333 

Thickness t mm 2.4 
Erosion strain εs - 0.038 

Table 5. Material properties of the soil mass. 

Parameters Symbol Units Value 
Density ρ kg/m3 2100 

Shear modulus G MPa 13.8 
Poisson’s ratio ν - 0.3 

Cohesion c kPa 62 
Friction angle φ ° 26 

Table 6. Parameters for the interface simulation. 

Parameters Value
Contact type TIEBREAK 

Friction for static 0.71 
Friction for dynamic 0.56 

4.1.2. Numerical Result 

The results of the numerical modelling of the multi-layer pavement under blast loading, with 
the incorporation of the above-mentioned material models, are summarized and compared with the 
blast test results. In the numerical results, the fringe level in the damage contour is the value for the 
scaled damage indicator δ, which is defined to describe the damage level of the material [14,20,23]. 
A scaled damage indicator δ is related to the effective plastic strain λ in the material: (i) at the yield 
surface, λ = 0, leading to δ = 0; (ii) at the maximum strength surface, λ = λm, leading to δ = 1; and  
(iii) at the residual strength surface, λ = λr >> λm, leading to δ = 1.99 ≈ 2. Thus, the δ value moving 
from 0 to 1 to 2 indicates that the failure surface migrates from the yield surface to the maximum 
strength surface and to the residual strength surface, respectively, as the material being stressed. In 
this study, when the residual strength of material reduces to 20% of its peak strength, the material 
seems to suffer severe failure. The plastic strain corresponded to that residual strength used to 
calculate the delta value. Both the laboratory and field test for AC material indicated that when δ 
was greater than 1.8, the material would be severely damaged. 
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The damage situation for the multi-layer pavement slab in field blast test is shown in Figure 11. 
Figure 11a shows that the blast pressure destroyed the upper half of the AC layer above the GST 
reinforcement. It is also noted that only the centre of the GST piece was burned off during the blast 
event. Figure 11b shows the resulting damage on the HSC layer after removing the top layer of 
asphalt. From this figure, it could be seen that the crater was very shallow and did not punch 
through the whole layer, and a crater of around 700 mm in diameter and a depth of 10 mm was 
formed on the HSC layer. 

 
(a) (b)

Figure 11. Damage of the multi-layer pavement after blast loading: (a) damage pattern of the AC 
layer in field blast test; (b) damage pattern of the HSC layer in field blast test. 

The damage contour for the AC layer in numerical model is shown in Figure 12a. Comparing 
Figures 12a and Figure 11a, it is observed that the damage pattern in the numerical model is 
symmetrical, while that in the field measurement was skewed. This is because the bomb in the field 
was not placed at the centre of the slab, and one side of the AC layer was more severely damaged 
than the other. Shear cracking near the anchor point was observed in the numerical model, which 
was similar to the experimental observations in the field test. It could be concluded that the basic 
failure pattern given by the numerical model agrees well with the results obtained from the 
field-testing. Figure 12b shows the damage pattern for the HSC layer. Comparing Figure 12b with 
Figure 11b, the damage pattern for HSC is very consistent between field measurement and 
numerical results. The diameter of the crater was about 750 mm in the numerical model, which is 
very close to that of the blast test result. As shown in Figure 12b, shear cracks are also observed near 
the anchor points. Based on the damage pattern in the field blast test, the crater on the top face of the 
HSC is shown to be shallow and with a thickness of less than 10 mm. However, after cracking 
occurred at the bottom of the HSC layer, the numerical model shows that the bottom of the HSC 
layer has experienced severe cracking. This might be due to the combination of the bending of the 
HSC layer under the blast load and the reflection of the stress wave at the bottom interface. In the 
numerical model, the interface between HSC and ECC is assumed to be fully bonded. However, 
ECC is more flexible than HSC, and thus, it would cause tensile stress at the bottom of the HSC layer 
when deformed together. The compression stress wave from the top face would also travel within 
the HSC layer and reflect as a tension stress at the interface, which could cause spalling. Based on the 
damage pattern in the numerical model, the HSC layer might be considered having failed, while the 
field observation suggests that HSC may have partially failed. 

In the field blast test, the four accelerometers were installed at the mid-side of pavement slab  
(as shown in Figure 9). These accelerometers were used to measure the vertical and horizontal 
acceleration of the pavement slab subjected to blast loading. For the horizontal acceleration, due to the 
centre of the charge being closer to one side of the pavement slab; there were two different horizontal 
acceleration readings; while in the numerical model, it was assumed that the explosive occurred in 
the centre of the pavement slab. Thus, in this section, only the vertical acceleration from the field 
blast test was compared with that of the numerical model. In the numerical model, the raw nodal 
acceleration contained considerable numerical noise. The ELEMENT_SEATBELT_ACCELEROMETER 
could be used to eliminate numerical noise and obtain more accurate node acceleration. The vertical 
acceleration from the blast testing is compared with that of the numerical model as shown in Table 7. 
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The results from both the blast testing and the numerical simulation are comparable. The maximum 
difference of vertical acceleration between the blast testing and the numerical model is about 10%, 
and the numerical model predicted slightly higher in the vertical acceleration than that of the  
blast test. 

 
(a) (b)

Figure 12. Damage contour for the AC and HSC layer in the multi-layers pavement: (a) damage 
contour of the AC layer in the numerical simulation; (b) damage contour of the HSC layer in the 
numerical simulation.  

Table 7. Vertical acceleration of the multi-layer pavement slab. 

Item Field Trial Test Numerical Result Deviation from Field Trial Test
Max. vertical 

acceleration (m/s2) 
35,400 38,870 10% 

The pressure values in the corresponding points in the numerical model are compared with 
pressures obtained from the blast test, as summarized in Table 8. The layout of the total pressure cell 
in the blast could be referred to Figure 9. The pressure values from the numerical simulation are 
shown to be close to that from the blast test for TPC2; while for TPC3, it has a 20% discrepancy with 
the numerical simulation considering the inherent variation in the blast test. TPC1 was damaged 
during the blast test, and hence, no pressure reading was recorded from it. The numerical model 
predicts that the pressure might be as high as 13 MPa at that point, which is far beyond the 
maximum measurement capacity of the pressure cell installed. That can explain why TPC1 was 
destroyed due to the overwhelming blast loading. 

Table 8. Peak reading for the total pressure cell. 

Item Field Blast Test (kPa) Numerical Result (kPa) Deviation from Field 
Trial Test 

TPC1 Destroyed 13,393 
Sensor destroyed as 
pressure >> range 

TPC2 273 267 2% 
TPC3 200 241 20% 
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4.2. Case for Impact Loading 

4.2.1. Laboratory Drop Weight Impact 

The multi-layer pavement slab was subjected to an 1181-kg drop weight impact. The cross-section 
of the multi-layer pavement is the same as that given in Figure 7. The basic mechanical properties of 
the, HSC, ECC and AC are determined according to ASTM standards, and the results are 
summarized in Table 9. The drop weight was a cylindrical projectile with a hemispheric head  
(100 mm in diameter and made with high strength steel), and the pavement slab was subjected to 
two times of impact from the same drop height of 1.5 m. During the test, the multi-layer pavement 
slab was placed on the top of compacted soil/sand in a steel strong box. Directly below the slab was 
the geocell (MiraCell MC-100) which was filled with compacted soil/sand. This was to enhance the 
strength of the soil/sand layer and to provide a solid sub-base as to simulate the practical condition. 
The setup for the multi-layer pavement slab is given in Figure 13. Various instruments were also 
installed to monitor the response of the pavement during the drop weight test. Figure 14 shows the 
positioning of the potentiometers. A photodiode system was used to trigger the data acquisition 
system during the test. It consists of two photodiodes and two laser sources placed 100 mm 
vertically apart. The data acquisition system would be triggered when the falling projectile crosses 
the top laser emitter. Impact velocity could be determined using the time interval that the projectile 
took to cross the second laser emitter. 

Table 9. Basic properties of the materials in the multi-layer pavement in the drop weight test. 

Parameters AC HSC ECC 
Young’s modulus E (MPa) 598 40,000 18,000 

Compressive strength fc (MPa) 4.6 90 80 
Tensile strength ft (MPa) 0.7 4.35 5 

Poisson ratio ν 0.35 0.2 0.22 

 
Figure 13. Setup for the impact test. 

In the numerical model, the AUTOMATIC_SURFACE_TO_SURFACE contact algorithm is 
employed to model the interaction between pavement slab and soil. The contact algorithm 
TIEBREAK is also used to simulate the interface behaviour between the AC and HSC layer, which 
is the same as that in the numerical model for blast loading as mentioned in Section 4.1.2. As the 
impactor might penetrate the AC layer, the erosion method is employed in the simulation, in which 
the maximum plastic failure strain of 0.2 is used to delete the distorted element once the actual 
strain exceeds this predefined failure strain. The multi-layer pavement slab, the drop weight head 
and soil mass are discretised in space with one point Gauss integration eight-node hexahedron 
elements. The geogrid is simulated with the four-node Belytschko–Tsay shell element that allows 
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no bending resistance. In addition, the PLASTIC_KINEMATIC material model is employed to 
describe the bi-linear behaviour of the geogrid under tensile loading [23]. The parameters used for 
the geogrid are the same as given in Table 4. 

 
Figure 14. Positioning of the potentiometers. 

The Drucker–Prager model is used to simulate soil mass. In the laboratory drop weight test, 
the upper soil layers were compacted and reinforced with geocell material, which would enhance 
the strength of the soil, and the lower layer has no reinforcement. Hence, in the numerical model,  
it is necessary to consider the function of the geocell material. From the laboratory test on the 
geocell-encased sand [26], it is observed that the geocell confinement did not change the friction 
angle of soil while significant cohesion occurred in the granular soil, which indicated that for the 
geocell-reinforced sand layer, the strength and stiffness behaviour of the soil would be enhanced. 
However, in the numerical model, it is difficult to model and mesh the geocell material due to its 
complex geometry. Hence, it would be preferable to use the composite model to consider the 
enhancement of the shear strength and stiffness of the geocell-reinforced sand layer. Madhavi et al. [27] 
purposed an empirical equation to calculate Young’s modulus of the geocell-reinforced sand using 
the secant tensile modulus of the geocell material and Young’s modulus parameter of the unreinforced 
sand, which could be expressed as:  

( ) ( )0.7 0.16
34 200r uE K Mσ= +  (21) 

in which  is the Young’s modulus of the geocell-reinforced sand, M is the secant modulus of the 
geocell material at axial strain 2.5% in kN/m and 	 	 is the confining pressure from the geocell in 
kPa. 	 is the dimensionless modulus parameter of the unreinforced sand, which is a modulus 
number in the hyperbolic model developed by Duncan and Chang [28]. The confining pressure  
could be calculated as: 

3
0

1 12
1

a

a

M
D

ε
σ

ε
 − −

=   − 
 (22) 

where 	 is the initial diameter of the geocell and 	 is the axial strain of the geocell at failure; 
the induced cohesion in the geocell-reinforced sand is then related to the increase in the confining 
pressure : 

3

2r Pc K
σ

=  (23) 

in which 	 is the enhanced cohesion and 	 is the coefficient of passive earth pressure. 
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In the current study, the geocell MC-100 from Polyfelt is used. The geocell dimension is a 
rhombus with two diagonal lengths of 203 mm and 244 mm. Thus, the equivalent diameter is 
calculated as about 177.5 mm. The secant modulus M for the geocell is obtained as 278 kN/m from 
the tensile test [20]. Additionally, the value of  is taken as 4.8%. The modulus parameter  for 
unreinforced sand in the current study is taken as 727 MPa according to the curve fitting from the 
triaxial test, and hence, the confining pressure, enhanced cohesion and Young’s modulus for 
geocell-reinforced sand could be calculated based on Equations (21)–(23). The parameters for the 
unreinforced sand and geocell reinforced sand are summarized in Table 10. 

Table 10. Material properties of the foundation soil. 

Parameters Reinforced Sand Layer Unreinforced Sand Layer
Density, ρ (kg/m3) 1600 1600 

Young’s modulus E (MPa) 103.5 40 
Shear modulus, G (MPa) 39.8 15.4 

Poisson’s ratio, ν 0.3 0.3 
Cohesion, c (MPa) 0.089 0.001 

Friction angle, φ (°) 40 40 

During the impact test, the deformation of the drop weight head was negligible compared to 
the deformation of the pavement slab. Hence, the drop weight head is modelled with a rigid body 
in the current study. For the configuration of the drop weight head, the simple cylindrical shape is 
modelled instead of modelling the head with weight mass (as shown in Figure 15). The simple 
cylindrical head has a diameter of 100 mm with a length of 1292 mm. The total mass for the simple 
cylindrical head is about 1181 kg, from which the density of the drop head would be obtained.  
The properties for the drop head are listed in Table 11. The convergence study is conducted, and it 
was found that a 5-mm element size gave a stable response, which is therefore applied for the 
simulation. The numerical model of the multi-layer pavement slab under drop weight impact load 
is given in Figure 16. 

(a) (b)

Figure 15. Configuration of the drop weight head (quarter model): (a) standard configuration;  
(b) simple configuration. 

Table 11. Properties of the drop weight head. 

Parameters Drop-Weight Head 
Young’s modulus, E (GPa) 207 

Yield stress, fy (MPa) 500 
Poisson ratio, ν 0.3 

Density, ρ (kg/m3) 118,000 
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Figure 16. Numerical model for a multi-layer pavement slab under drop weight impact  
(quarter model). 

For the 1.5-m drop weight impact, the drop weight head is assigned with 5.02 m/s for the first 
impact. For the second impact, due to the penetration of the AC layer in the first impact, the 
distance between the laser diode system and the face of the pavement slab is increased, while in the 
numerical model, the impact head is just placed at the position right before reaching the surface. 
Hence, the initial velocity in numerical model for the second impact is determined as the sum of the 
experimental recorded velocity and velocity caused by gravity acceleration. Thus, the velocity is 
calculated as 5.06 m/s for the second impact with the gravity acceleration of 9.8 m/s2. 

After the first impact, the fully restarted method in LSDYNA is used to conduct the second 
impact simulation. At the beginning of the second impact, the stress and residual velocity within 
the pavement slab and the velocity from the first impact are set to be zero. The damage factor and 
plastic strain is retained in order to check the accumulated damaged behaviour after the second 
impact. The simulation of the second impact is carried out when the downward velocity of 
impactor reached zero, as it is very time consuming to continue to simulate the vibration of 
pavement slab after impact. It should be noticed that the pavement slab stopped rebounding, which 
might bring numerical errors (i.e., energy unbalance). 

4.2.2. Numerical Result 

The damaged situations for the multi-layer slab under the first drop weight impact for the 
experiment and numerical model are presented in Figure 17. It is found from the numerical 
simulation that the AC layer is penetrated through, and the drop weight head is impeded by the 
HSC layer due to the high compressive strength. Such findings from the numerical model are 
consistent with the observation in the physical test. It is observed that no severe and moderate 
damage happened in the ECC layer. Additionally, the integrity of both HSC and ECC layers is kept 
after the first impact. 
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(a) (b)

Figure 17. Damage of the multi-layer slab after the first impact: (a) damage pattern of slab in the 
laboratory test; (b) damage pattern of slab in the numerical simulation. 

The damage situations for the multi-layer pavement slab under the second drop weight impact 
and the numerical model are given in Figure 18. The simulation results indicate that the HSC layer 
stopped the impactor; however, severe damage happens at the top surface and in the middle at the 
side of the HSC layer. Severe damage occurs at the rear surface of the HSC layer, as well. For the 
ECC layer, it is shown that the cracking occurs and propagates from the centre at the top surface. 
However, the damage area is smaller than that of the HSC layer. The cracks are also found in the 
middle at the side of the ECC layer, and similar to the experiment, the crack does not propagate 
through the thickness of the layer. Figure 19 compares the numerical results with the experimental 
results about the rear surface of ECC layer after the second impact for the multi-layer slab. It is 
found that the damaged contour and cracking pattern were similar. Such results further indicate the 
reasonable close agreement between the numerical analysis and the experimental results using the 
KCC model for AC material. 

(a) (b)

Figure 18. Damage of multi-layer slab after the second impact: (a) damage pattern of slab in the 
laboratory test; (b) damage pattern of slab in the numerical simulation. 

Table 12 compares the numerical results with the experimental data for the multi-layer slab 
under two times of the drop weight impact. After the first impact, the settlement from the 
numerical results is close to that obtained from the experiment at P2. A big deviation is found in 
between the numerical results and experiment results on the settlement at P3. This might be 
attributed to the dislocation of the potentiometer at P3 upon impact, which could lead to a 
misreporting of the settlement at P3. In addition, the settlement at P1 is lower in the numerical 
results compared with the experimental results. This could be attributed to the erosion process in 
the numerical model or, more specifically, the energy released phenomena. At the second impact, 
since no erosion technology is employed for the HSC layer, the numerical results are more 
reasonable. In the impact simulation, the HSC layer suffered deformation instead of being 
penetrated, and hence, no erosion technique was adopted to trigger the energy released phenomena. 

 

Asphalt Layer 
Intact 

Small Crater 

Cracks radiating out from 
Crater 
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Thus, the settlement profile of the pavement slab decreased with the increase of the radial distance 
from the centre, which indicated that the whole pavement slab bent during the impact. In general, 
the numerical models provide reasonable estimations on the settlements of the multi-layer slab 
under impacts, in particular under the second impact load, though discrepancies exist at  
certain regions. 

 
(a) (b)

Figure 19. ECC bottom after the second impact: (a) damage pattern of the bottom of ECC layer in 
the laboratory test; (b) damage pattern of the bottom of ECC layer in the numerical simulation. 

Table 12. Summary of the settlements of the multi-layer slab from both numerical and  
experiment results. 

Potentiometer 
1st Impact 2nd Impact 

Test 
Result 

FE 
Results FE/Test 

Test 
Result 

FE 
Results FE/Test 

P1 (mm) --- −1.54 --- −3.62 −7.62 2.10 
P2 (mm) −1.81 −1.70 0.94 −7.60 −6.63 0.87 
P3 (mm) −5.27 −1.86 0.35 −5.58 −4.83 0.87 

−ve → downwards 

5. Conclusions 

In this paper, the formulations of strength surfaces and damage factor in the KCC model are 
discussed and evaluated. It is found that the KCC model would reproduce the real behaviour of 
concrete-like material under severe loadings, such as blast and impact loadings. Then, the key 
parameters controlling the behaviour of AC material under dynamic loadings are discussed, and the 
parameters of AC materials using the KCC model are determined by laboratory static and dynamic 
tests. The proposed damage factor in this paper results in smoother descending than the original 
damage factor and also a higher failure strain that could improve the simulation of the behaviour of 
AC material. Furthermore, the numerical modelling of multi-layer pavement, in which the AC 
material served as the surface layer, under blast and impact loading is conducted using the KCC 
model. These results are compared with that of the field blast test and the laboratory drop weight 
impact tests, and it is found that the KCC model for the AC material can reproduce the real material 
behaviour under blast and impact loading. 
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