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Abstract: This paper describes a three-screen television system using a block recovery rate
(BRR)-based unequal error protection (UEP). The proposed in-home wireless network uses scalable
video coding (SVC) and UEP with forward error correction (FEC) for maximizing the quality of service
(QoS) over error-prone wireless networks. For efficient FEC packet assignment, this paper proposes a
simple and efficient performance metric, a BRR which is defined as a recovery rate of temporal and
quality layer from FEC assignment by analyzing the hierarchical prediction structure including the
current packet loss. It also explains the SVC layer switching scheme according to network conditions
such as packet loss rate (PLR) and available bandwidth (ABW). In the experiments conducted, gains
in video quality with the proposed UEP scheme vary from 1 to 3 dB in Y-peak signal-to-noise ratio
(PSNR) with corresponding subjective video quality improvements.

Keywords: scalable video; forward error correction; block recovery rate; unequal error protection;
layer switching

1. Introduction

Recently, various multimedia services over wireless and wired networks using video streaming
technologies have been emerging [1]. In particular, both continuous packet losses and rapid bandwidth
changes in a time-varying wireless environment lead to serious video quality degradation. This paper
proposes an unequal error protection (UEP) algorithm of scalable video to minimize video quality
degradation caused by the packet losses over time-varying wireless channels.

Scalable video is an efficient encoder which can provide spatial, temporal, and quality scalabilities
without any additional computations [2,3]. The characteristic of scalable video allows one single
scalable bitstream to provide different video quality and resolution to different video receivers.
Depending on channel characteristics or decoding capability of the receiver, it is possible to transmit,
as well as decode, the partial or whole bitstreams of scalable video from the server, the intermediate
node between the server and the receiver. Although the scalable embedded bitstream can easily adapt
to various network environments, the packet losses in unstable channel conditions can cause serious
video quality degradation in the compressed bitstream due to the strong spatio-temporal dependencies
between scalable video layers. Since the structure of scalable video compression has strong spatial
and temporal dependencies, the packet losses in hierarchical coding structures with scalability can
substantially deteriorate the received video quality. Thus, considering both the hierarchical coding
structure and the dependencies between quality layers, the effect on overall video quality degradation
from packet losses in each layer is utilized as weighting in various UEP algorithms.
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Figure 1 depicts the conceptual diagram of a three-screen TV using scalable video coding (SVC)
with high-definition TV (HDTV), standard-definition TV (SDTV), and low-definition TV (LDTV) (such
as mobile device). A traditional solution for source coding is to prepare multiple pre-encoded video
files (chunks) according to the performance capability of each targeted device: such as screen resolution,
computational power, and available network bandwidth. Due to the multiple redundancies, the video
streaming server requires relatively large storage as well as a significant bandwidth adaptation problem
in wireless error-prone networks.
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There is another solution using transcoding with down sampling. By transcoding one high 
resolution and high bit rate video sequence for targeted screen resolution and bandwidth of TV 
clients, a video service provider (VSP) can reduce storage redundancies as well as adapt to bandwidth 
fluctuations. However, this solution requires too much computing power to support multiple TVs 
that have variable screen resolutions at the same time. Thus, it is very hard to apply in a real-time 
video streaming system. 

This paper proposes a new video streaming solution for a three-screen TV that has low 
computational complexity and error robustness. First, it proposes the combined source and channel 
coding technologies: (1) application-level unequal error protection (UEP) technology for recovering 
packet losses over error-prone networks; (2) SVC-based adaptive layer-switching method that 
enables the server to select best scalable layers of SVC network abstraction layer (NAL) bitstreams 
according to the available bandwidth. 

This paper is organized as follows: Section 2 gives an overview of the H.264 SVC, H.265 SHVC, 
and channel coding with Raptor forward error correction (FEC) codes. Section 3 proposes a new UEP 
algorithm to minimize the video quality degradation from packet losses, and an adaptive SVC layer 
switching method with Raptor FEC overhead adaptation. Section 4 presents the system design and 
implementation while also verifying the performance of proposed system. Finally, Section 5 provides 
conclusions. 

2. Background 

Before explaining the proposed UEP algorithm and layer-switching method, this paper 
describes in detail the source coding technology with SVC and channel coding technologies including 
FEC. 
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Figure 1. Conceptual diagram of three-screen TV using scalable video. VSP, video service provider;
FEC, forward error correction; SVC, scalable video coding.

There is another solution using transcoding with down sampling. By transcoding one high
resolution and high bit rate video sequence for targeted screen resolution and bandwidth of TV
clients, a video service provider (VSP) can reduce storage redundancies as well as adapt to bandwidth
fluctuations. However, this solution requires too much computing power to support multiple TVs that
have variable screen resolutions at the same time. Thus, it is very hard to apply in a real-time video
streaming system.

This paper proposes a new video streaming solution for a three-screen TV that has low
computational complexity and error robustness. First, it proposes the combined source and channel
coding technologies: (1) application-level unequal error protection (UEP) technology for recovering
packet losses over error-prone networks; (2) SVC-based adaptive layer-switching method that enables
the server to select best scalable layers of SVC network abstraction layer (NAL) bitstreams according
to the available bandwidth.

This paper is organized as follows: Section 2 gives an overview of the H.264 SVC, H.265 SHVC,
and channel coding with Raptor forward error correction (FEC) codes. Section 3 proposes a new
UEP algorithm to minimize the video quality degradation from packet losses, and an adaptive SVC
layer switching method with Raptor FEC overhead adaptation. Section 4 presents the system design
and implementation while also verifying the performance of proposed system. Finally, Section 5
provides conclusions.

2. Background

Before explaining the proposed UEP algorithm and layer-switching method, this paper describes
in detail the source coding technology with SVC and channel coding technologies including FEC.
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2.1. Scalable Video Coding: H.264 SVC and H.265 Scalable HEVC (SHVC)

The H.264 SVC is an H.264 advanced video coding (AVC) scalable extension that combines spatial,
temporal, and quality scalabilities simultaneously [4]. Because of the scalable feature, SVC supports
multiple screen resolutions, frame rates, and video qualities within a single bitstream file that consists
of multiple layers, as shown in Figure 2.
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Figure 3. Conceptual diagram of H.265 scalable high efficiency video coding (SHVC). EL, enhancement 
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In the layered structure of the SVC encoder, the original high quality video input is spatially
down-sampled for lower layers, and each layer encodes the input video using an inter-layer prediction.
Due to the layering architecture, SVC has the following advantages: (i) it can reduce server-side disk
storage and overall network bandwidth without the use of the kind of transcoding that has high
computational complexity; (ii) because the layers of SVC have priorities (the lower layer is more
important than the higher layer), the UEP method can be applied to each layer packet; (iii) SVC can
support the diverse screen resolutions of user devices as well as network bandwidth (BWs.)

The scalable high efficiency video coding (SHVC) standard of joint collaborative team on video
coding (JCT-VC) is as shown in Figure 3. It has a low computational complexity for enhancement
layers (ELs) by adding the reconstructed and up-sampled base layer (BL) picture to the reference
picture lists (RPLs) in EL. Additionally, the SHVC uses multiple-loop decoding to make a decoder
chipset simple while the SVC uses single-loop decoding. SHVC also has a standard scalability with
supporting AVC standard with BL and high efficiency video coding (HEVC) standard with EL.
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2.2. Reed-Solomon (RS) and Raptor FEC Codes

Reed-Solomon (RS) based unequal loss protection algorithm is performed [5–9] in the FEC assigner.
Here, we denote the layered unit data (block) in a temporal layer t of a quality layer q as B(t, q). When
the number of FEC packets and video data are represented by F(t, q), the reconstruction mechanism of
the RS code is composed of continuous B(t, q) video packets and F(t, q) parity packets. If the minimum
number of successfully received packets is more than B(t, q), then the original source packets can be
reconstructed. The FEC assignment scheme is proposed to maximize the block recovery rate (BRR).
A similar local hill-climbing search method is utilized for assignment of FEC packets for each block
with low complexity.

The Raptor FEC, developed by Amin Shokrollahi in 2001, is also called a rateless code because
the amount of encoded data is not fixed in advance [10]. It is used in the multimedia broadcast
and multicast services (MBMS), digital video broadcasting-handheld (DVB-H), and reliable multicast
transport (RMT) working group [11]. The encoding processes of the Raptor codes are as shown in
Figure 4. The processes consist of two steps: (i) pre-coding, which encodes the input symbols using a
traditional erasure correcting code; and (ii) Luby transform (LT) coding [12], which creates the needed
number of encoding symbols. The LT code makes the Raptor codes have low computational complexity.
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In the (n, k) systematic Raptor codes, k source symbols are pre-coded to k intermediate symbols,
and then pre-coded to k + s pre-coding symbols, where s is the number of redundant symbols of
pre-code. Finally, pre-coding symbols are encoded into n encoding symbols using LT-code.

2.3. UEP Research

In Figure 5, once the encoder has decided the priority of a picture, the UEP and/or transmission
scheduler can use the priority in both robust streaming and quality of service (QoS) handling. It applies
different FEC overheads to pictures according to picture priority (PPn).
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There have been several research studies on FEC algorithms regarding the error propagation effect
on video quality degradation in both base layer and enhancement layers [5–9,13,14]. In a study by
Nafaa et al. [5], a FEC assignment algorithm using the property of continuous packet losses is presented.
Various UEP algorithms based on rate-distortion model have been presented for reducing video quality
degradation from packet losses [9,13]. Adaptive FEC assignment algorithms have been developed for
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video streaming over best-effort networks [13–15]. To adapt time-varying channel environments, an
optimal packet scheduling for rate-distortion was proposed [14–17]. Also, a rate-distortion optimized
scheduling algorithm was presented to adapt the streaming video over time-varying channels for
minimizing the total distortion under the transmission rate constraint [18,19]. There have been research
studies on transmitting SVC video sequence safely over multicast channel or MIMO wireless systems
using Raptor codes [20–22], research studies on the priority-based SVC or SHVC video streaming over
multi-channel were introduced in [23,24], and research studies on the UEP method with Raptor codes
with SVC or HEVC temporal layer priorities have been presented in [25–29].

3. BRR-Based UEP Algorithm and Scalable Video Layer-Switching

3.1. Performance Metric

This section introduces a new performance metric to predict the video quality from packet losses.
In general, the packet loss recovery procedure is as follows. Assuming that video packets of B(t, q) are
encoded as N(t, q) packets on the server side where N(t, q) = B(t, q) + F(t, q), where F(t, q) represents
FEC packets assigned in B(t, q). If the minimum number of successfully received packets is more than
B(t, q), the original source packets can be reconstructed. The block recovery rate (BRR) of B(t, q) is
calculated as

Rb(t, q) =
N(t,q)

∑
i=B(t,q)

CN(t,q)
i ·(1− p)i·pN(t,q)−i (1)

where p is the packet loss rate and CN(t,q)
i represents the combinations of the number of packets i

received successfully within N(t, q). To reflect error propagation effects of scalable video in (1), the
prediction directions for each block are considered. Figure 6 shows the hierarchical prediction structure
of scalable video.
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The block information of temporal layer t is referenced by that of the lower temporal layer (t − 1).
Also, the block information of quality layer q in temporal layer t is affected by the information from
the lower quality block (q − 1) in the same temporal layer (t). For example, Rb(1, 1) is affected by both
Rb(0, 1) in the same quality layer of the lower temporal layer and Rb(1, 0) in the lower quality layer of
the current temporal layer. Based on the hierarchical prediction structure between the temporal and
quality layer, (1) can be updated as

R̂b(t, q) =


Rb(t, q), i f t = 0, q = 0
Rb(t, q− 1) · Rb(t, q), i f t = 0, q 6= 0
Rb(t− 1, q) · Rb(t, q), i f t 6= 0, q = 0
Rb(t− 1, q) · Rb(t, q− 1) · Rb(t, q), otherwise

(2)

In (2), R̂b(t, q) is computed by the temporal and quality layer index in scalable prediction structure.
If t = 0 and q = 0, since there are no reference blocks, R̂b(t, q) is the same as Rb(t, q). If t or q is not 0, it
is influenced by the lower scalable block with non-zero temporal or quality layer index. Finally, when
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both t and q are not zero, R̂b(t, q) is affected by the lower temporal and quality blocks. Based on (2),
the average block recovery rate (Ravg) in a group of pictures (GOP) is calculated as

Ravg =
∑T−1

t=0 ∑Q−1
q=0 R̂b(t, q)

T ·Q (3)

where T and Q represent the maximum number of temporal and quality layers, respectively.

3.2. Proposed FEC Assignment Algorithm

Based on the performance metric model (Ravg) in (3), we propose a FEC assignment algorithm
which allocates the amount of FEC packets to each block in order to maximize the average block
recovery rate (Ravg). Similar to the simple local hill climbing method, we find the B(t, q) that can
achieve the largest value of Ravg for a given FEC assignment.

Based on (3), we define Ravg(F(t, q)) as the average block recovery rate when FEC packets are
assigned into B(t, q). If the amount of the increased average block recovery rate by the allocated
number of FEC packet in B(t, q) is defined as δ(t, q), it is calculated as

δ(t, q) = Ravg(F(t, q) + 1)− Ravg(F(t, q)) (4)

Using (4), the B(t, q) which can achieve the largest increased value of average block recovery rate
is selected as

B(t̂, q̂) = arg max
t,q

δ(t, q) (5)

The number of FEC packets of the selected B(t̂, q̂) is updated by 1. The accumulated value of
F(t, q) is represented as Fsum(t, q) and is updated by 1. If the overall number of assigned FEC packets
(Fsum(t, q)) exceeds the limited channel resource (Tpkt), the proposed algorithm is terminated.

3.3. Proposed Adaptive Scalable Video Layer-Switching

The proposed SVC layer-switching method selects the best layer(s) for streaming automatically.
The switching is the easiest natural bandwidth adaptation method in the middle of streaming and
has very low computational complexity without any transcoding that requires very high computing
power. Thus, these SVC features enable the following working scenarios; a VSP server sends whole
SVC layers to an individual home gateway, and the switching is performed in the gateway according
to the link-quality feedback from the client. For example, if a user stays in an area that has a good
channel quality, the gateway switches its service to a higher level with multiple ELs. In this system,
the channel condition is measured using signal strength indicator (RSSI)-based feedback, packet loss
ratio (PLR), and available bandwidth.

In the implemented system, network abstraction layer (NAL) packets are analyzed and extracted
the real-time layer-switching, as shown in Figure 7. In addition, the instant decoder refresh (IDR)
information of SVC is the starting point of the proposed layer-switching method.
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4. Experimental Results and Discussion

4.1. H.264 SVC Unequal Error Protection Using Reed-Solomon(RS) Codes without Layer Switching

This section reveals simulation results of the proposed FEC algorithm for the performance analysis
by using version 9 of the Joint Scalable Video Model [30]. We used common intermediate format (CIF)
video sequences ‘Foreman’ and ‘Mobile’ sequences with a frame rate of 30 fps. The number of frames
was 81 and the size of the group of pictures (GOP) was 16 frames.

There were five temporal layers with one quality base layer and two quality enhancement layers.
Quantization parameters (QPs) were set to be 40, 30, and 25. A two-state Markov channel model
described in [31] was used for modeling the packet losses with the average burst length of Lb and the
average packet loss rate of Pb. The value of Lb is set as 2. Using different packet loss rates (5%~15%) the
proposed unequal error protection method using block recovery rate in (3) (BRR-UEP) was compared
with other unequal error protection schemes.

• BRR-UEP: The proposed block recovery rate-based UEP (BRR-UEP) performs the unequal FEC
assignment by calculating the block recovery rate for each layer through the hierarchical prediction
structure analysis in quality and temporal layers including the packet loss rate.

• RD-UEP: For allocating unequal amount of FEC protection to different video packets, the
rate-distortion based UEP (RD-UEP) method utilizes the simple rate-distortion model without
considering the recovery rate for each block according to the current packet loss rate [15,17].

• Equal EP: The equal error protection (EP) allocates an equal amount of FEC packets for all packets
in different layers without considering the performance metric.

Figure 8 shows the variations of Ravg in (3) according to the total number of FEC packets (Tpkt)
in variable channel environments. As the packet loss rates are increased, the block recovery rate is
gradually decreased. Furthermore, it is observed that as the number of FEC packets is increased, the
value of Ravg is increased.
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Figure 8. Variations of Ravg according to the total number of FEC packets (Tpkt) in different packet
loss rates.

Figure 9 shows the distribution of F(t, q) for each temporal (t) and quality (q) layer at different
packet loss rates Pb = 5% and Pb = 15%, respectively. Redundant FEC packets are intensively assigned to
the lower block index. This is because based on a hierarchical prediction structure in the scalable video,
packet losses in lower blocks have stronger error propagation effects than those in the higher blocks.

Figure 10 shows the peak signal-to-noise ratio (PSNR) comparisons of BRR-UEP, RD-UEP, and
Equal EP. It is observed that Equal EP shows the lowest PSNR values. The proposed BRR-UEP scheme
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results in higher PSNR values compared to the RD-UEP schemes by 2 dB for the ‘Foreman’ case and
1 dB for the ‘Mobile’ case, respectively. Those average PSNR gains are from overall frames. Compared
to the RD-UEP method, it is observed that the BRR-UEP scheme could provide better video quality by
efficiently limiting the error propagation through the BRR-based FEC assignment. In future research,
the proposed method will be compared to other latest research studies, including the work by Song
and Chen [22].
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loss rates and test sequences. (a) BRR-UEP (34.61dB), RD-UEP (32.55 dB), and Equal EP (28.50 dB)
for packet loss rate of 10% in ‘Foreman’; (b) BRR-UEP (30.31 dB), RD-UEP (29.01 dB), and Equal EP
(27.06 dB) for packet loss rate of 15% in ‘Mobile’.
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The proposed UEP method was validated using NS-3 network simulator [32]. The network
topology was implemented as shown in Figure 11. The video server produces layer based scalable
video packets with temporal and quality scalabilities and transmits real-time transport protocol/user
datagram protocol/internet protocol (RTP/UDP/IP) packets to the corresponding receivers with
various decoding capabilities through a wireless access point (AP). Exponential traffic using UDP
packets is additionally added to simulate a congested environment.
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4.2. H.265 SHVC Unequal Error Protection Using Raptor Codes without Layer Switching

This subsection explains the experimental results of H.265 SHVC-based UEP without layer
switching. For verifying the proposed methods, ultra-high definition (UHD) test sequence
‘PeopleOnStreet’ which is defined in the common test condition (CTC) of JCT-VC standard work
was used. The resolution of base layer and enhancement layer were 1920 by 1080 and 3840 by 2160,
respectively. QP values were also applied for those base layer and enhancement layers as 34 and
36, and three picture coding structures (random access (RA), all intra (AI), and low-delay B (LDB))
were tested. For the SHVC, SHM version 4.1 encoder was used, and the ratio of spatial scalability
was 2:1 (2160 p for the enhancement layer and 1080 p for the base layer) [33–35]. The experiment was
conducted without the simulation codes but the fully implemented UEP system. The experimental
setup and results are as shown in Tables 1 and 2. In the result, the base layer was protected more and
the enhancement layer was sacrificed for the base layer in given Raptor overheads (e.g., 5% and 10%)
with base PLRs (e.g., 12% and 17%). The Table 2 shows the proposed UEP method provided better
objective video qualities with Y-PSNR values.

Table 1. Experimental environments. QPs, quantization parameters; RA, random access; AI, all intra;
LDB, low-delay B.

Encoder and Decoder
SHM 4.1. (JCT-VC SHVC Reference SW),

OpenHEVCDecoder (Opensource SW), and
Implemented Raptor En/Decoder

Test sequence name PeopleOnStreet
Resolutions for base layer and enhancement layer 1920 by 1080, 3840 by 2160

QPs for base layer and enhancement layer 34, 36 (base layer QP + 2)
Picture coding structures RA, AI, LDB
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Table 2. Y-PSNR results with Raptor overhead 5% and 10%.

Coding Structure Methods Overhead 5% with Base
PLR 12%

Overhead 10% with
Base PLR 17%

RA
Uniform 17.80 15.16
Proposed 18.28 23.72

AI
Uniform 20.03 17.44
Proposed 21.28 29.48

LDB
Uniform 15.44 14.64
Proposed 16.20 22.60

4.3. H.264 SVC Unequal Error Protection Using Raptor Codes with Layer Switching

This subsection explains the experimental results of H.264 SVC-based UEP with layer switching.
The implemented codes were based on ‘OpenSVCDecoder’, and the Raptor FEC codes with UEP
method were added on the decoder. The implementation included RSSI measurement module and
layer switching module with the IDR picture in it. First, for verifying the benefit of the scalable video
layer-switching method, Figure 12 shows the reactions of the proposed method according to the
measured link quality (RSSI) in real moving experimentation.
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Figure 12. Reactions and adaptations of the proposed system according to the measured link quality
in real moving experimentation. (a) RSSI changes; (b) ABW changes; (c) PLR changes; (d) SVC layer
switching; (e) Raptor overhead adaptation; (f) Packet loss recovery.

Figure 12a–c shows the measured network conditions such as RSSI, ABW, and PLR during user
movements. As the mobile TV client was getting farther from the wireless AP, the value of RSSI
was decreasing and it increased again when the mobile TV was coming towards the AP. From 50 to
90 s, the ABW was decreased and PLR was increased. Thus, the implemented server decreased SVC
layers that have to be transmitted from three layers (BL + two ELs) to BL only by the 110 s point and
increased the layers again based on the network quality feedback from the mobile TV client. The
Raptor overhead adaptation was applied from 20% to 52% during the period. With these adaptive
features of the proposed system, most of the packet losses were recovered, as shown in Figure 12f. The
layer switching occurred on IDR pictures only when there were severe network condition changes,
and all decoded pictures were upscaled for full resolution. Thus, the switching did not make a
noticeable inconvenience.
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5. Conclusions

This paper proposed an unequal error protection (UEP) algorithm based on the FEC mechanism
in order to improve scalable video streaming quality. It first proposed a low complexity performance
metric, block recovery rate (BRR) using a hierarchical coding structure of scalable video and packet loss
rate. Then, it developed the FEC assignment algorithm to maximize the value of BRR. The simulation
results showed that the proposed algorithm outperforms previous UEP algorithms by 1 to 2 dB for
variable channel condition. In addition, in the implemented three-screen TV system, the proposed
scalable video layer-switching method selects appropriate layers to be sent according to ABW by
RSSI-based feedback.
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