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Abstract: This paper presents a piezoelectric energy harvester using an eccentric cylinder undergoing
bending–torsion vibration in low-speed water. It can harvest energy from water using vortex-induced
vibration (VIV). A distributed parameter beam model with respect to the motion of the piezoelectric
beam was established based on Euler–Bernoulli beam theory. The governing coupled equations of
the harvester system were derived by Lagrange’s equations. The optimal configurations and work
conditions of harvesters were numerically analyzed according to the above mathematical models.
Experiments were designed and performed to verify the numerical results. The numerical results
were in good agreement with the experiment results, which verifies the validity of the mathematical
models. The harvester with bending–torsion vibration generated an output power of 0.3978 mW,
which is 1.99 times of that of the harvester with a solid-cylinder tip undergoing bending only.

Keywords: vortex-induced vibration; piezoelectric energy harvester; bending–torsion vibration;
eccentric cylinder; low-velocity water

1. Introduction

The demand for intermittent low-power, wireless, and small electronic devices is growing. More
and more scholars have focused on energy harvesting from vibration since the electric energy can
be converted from vibration using piezoelectric materials [1]. Mitcheson et al. [2] suggested that a
piezoelectric harvester with a non-resonant structure was the best choice for harvesting energy from
low frequency ambient vibration. There are many investigations of piezoelectric harvester with respect
to the modeling [3,4], structures [5,6] and piezoelectric materials [7,8]. However, studies are mainly
focused on the numerical analysis and experiments using harmonic base excitation.

Some scholars began to study a piezoelectric harvester by utilizing ambient vibrations. For
example, Robbins et al. [9] studied a piezoelectric energy harvester which could harvest energy via
the wind. Akaydin et al. [10] investigated a self-excited fluidic energy harvester, which was tested
in a wind tunnel and 0.1 mW of electrical power was produced. Abdelkefi et al. [11] researched
the phenomena of piezoelectric energy harvesting from freely oscillating cylinders undergoing
vortex-induced vibration (VIV). Linear and nonlinear models were analyzed and it was found that the
load resistance influences the onset of the synchronization region and the harvesters’ characteristics.
Energy harvesting by VIV has attracted considerable interest from researchers. The main research
aspects are prototype design and fabrication [12,13], modeling, numerical and experimental analysis of
the harvesters [14–17]. As for the modeling of VIV-based energy harvesters, research on lift fluctuation
and vortex interactions is necessary. Dai et al. [18–20] modeled the lift fluctuation with the existing
mathematical representations [21–23]. The model was applied to analyze the VIV of a cylinder linearly
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and nonlinearly. This was proven to be consistent with the practical situation by results of simulation
and experiment. Goushcha et al. [24] investigated the fundamental mechanisms of vortex interactions
with flexible structures, which were critical to fluidic electrical energy harvesting. A review of recent
studies in the field of energy harvesting from aeroelastic vibrations was reported by Abdelkefi [25].
Future recommendations in the field were discussed, including mathematical modeling, realistic
loadings and small-sized power conditioning circuit optimization, and prototype fabrication of energy
harvesters. Hence, scholars are going to continue to work on the above aspects.

The low-velocity water flow that can provide a low frequency vibration has been widely reported
on. Taylor et al. and Allen et al. [26,27] researched an energy harvesting eel that utilized piezoelectric
polymers to convert the flow energy in the oceans and rivers into electrical energy. Song et al. [28,29]
studied an upright cylinder and a bicylinder vortex-induced piezoelectric energy harvester which
harvest energy from water; the maximum output power of these was 84.49 µW and 21.86 µW,
respectively. Shan et al. [30] researched the phenomena of piezoelectric energy harvesting using
experiments with two tandem cylinders undergoing VIV in water, and the output power of 533 µW
was obtained by the downstream harvester in specific conditions. However, the energy-harvesting
ability of their single harvester was slightly weak. Hence, harvesters with high-efficiency in water
have become an area of increasing research.

Therefore, this paper presents several piezoelectric energy harvesters with vortex-induced
bending–torsion vibration. The piezoelectric beam undergoes bending–torsion with a tip eccentric
cylinder, which creates a mass eccentric distance between its center of mass and the force target, and
results in a coupling between the bending and torsion vibrations. Hence, there is a big effect on the
harvesters’ natural frequencies and mode shapes due to the bending–torsion coupling. In Section 2,
governing coupled equations of the motion of the harvesting system are established. In Section 3,
experiments are designed and performed. The work conditions and cylinder configurations of
the harvester are numerically analyzed and experimentally investigated. Results discussions and
conclusions are given in Section 4.

2. Modeling of the Harvester System

Figure 1a shows the energy harvester using piezoelectric cantilever beam (PZT) and its working
environment. The energy harvester is composed of a piezoelectric cantilever beam and an eccentric
cylinder tip. Figure 1b shows the schematic of energy harvester. Table 1 lists the geometric and physical
properties of the energy harvesting system. The symbolic variables e and d are the eccentricity distance
and diameter of cylinder eccentric hole, respectively, which determine the value of the eccentric
distance of mass ld.
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Table 1. The geometric and physical properties of energy harvesting systems.

ρp Density of the piezoelectric layer (kg/m3) 7800
ρs Density of the substrate layer (aluminum; kg/m3) 2700
ρf Fluid density (kg/m3) 1000
ρc Density of the cylinder (acrylic; kg/m3) 1200
Ep Young modulus of the piezoelectric layer (Gpa) 59.77
Es Young modulus of the substrate layer (Gpa) 70
L Length of the beam (mm) 85
b Width of the beam (mm) 25
hp Thickness of the piezoelectric layer (mm) 0.2
hs Thickness of the substrate layer (mm) 0.2
e31 Piezoelectric constant (C/m2) −16.6
ε11 Piezoelectric permittivity (nF/m) 41.78
Lc Diameter of the cylinder (mm) 75
Lf Length of the cylinder submerged in fluid (mm) 60

To model the harvester, the following assumptions are adopted:

(1) The piezoelectric beam is assumed to be inextensible.
(2) The attachments of the tip cylinder, beam and fixed end are assumed to be rigid.
(3) The beam is an Euler–Bernoulli beam.

Figure 2 shows a schematic diagram of the cantilever beam. L and b are the length and width of
the beam (Baoding Hengsheng Acoustics Electron Apparatus Co., Ltd®, Baoding, China), respectively.
The thickness of the PZT layer made of PZT 5H defined in Table 1 is hp, and that of the substrate
layer is hs. Two coordinate systems are used to describe the coupled bending–torsion motions of the
beam. The reference coordinate system (O-XYZ) is fixed to the clamped side of the beam, which is
adopted to describe the bending motion. s is used as the arc-coordinate in the length direction of the
beam. In the fixed end, s = 0, and s = L in the tip. s + u(s, t), v(s, t) and w(s, t) are the displacements
of the infinitesimal element at three directions in the coordinate system O-XYZ. Meanwhile, a local
coordinate system (I-ξηζ) is adopted to describe the torsion motion. The axis I-ξ, I-η and I-ζ are the
central principal axes of the cross section in three directions.
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The local coordinate system I-ξηζ can be obtained by coordinating the rotation of the reference
coordinate system, as shown in Figure 3. Firstly, O-X1, O-Y1 are obtained by a counter-clockwise
rotation of O-X, O-Y with respect to the axis O-Z by the angle ψ. Secondly, I-ξ, O-Z1 are obtained by a
rotation of O-X1, O-Z with respect to the axis O-Y1 by the angle θ. Finally, I-η, I-ζ are obtained by a
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rotation of O-Y1, O-Z1 with respect to the axis O-ξ by the angle φ. As a result, the angular velocity of
the three rotation processes can be derived by the coordinate transformation, as shown in Equation (1).

ω(s, t) =
.
ψ
⇀
Z +

.
θ
→
Y1 +

.
φ
→
ξ

= (
.
φ−

.
ψ sin θ)

→
ξ + (

.
ψ cos θ sin φ +

.
θ cos φ)

→
η + (

.
ψ cos θ cos φ−

.
θ sin φ)

→
ζ

= ωξ

→
ξ + ωη

→
η + ωζ

→
ζ

(1)

where the over dot denotes the derivative with respect to time t, and the vector arrow denotes the
vector along the axes. ωξ , ωη , ωζ are the angular velocity of the rotating beam with respect to the axes
I-ξ, I-η and I-ζ.
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According to the practical work environment of the coupled bending–torsion motions of the
beam, it is necessary to keep the mathematical model as simple as possible. Compared with other
displacements, the longitudinal vibration displacement u(s, t), and rotation angular displacements
ψ(s, t) and θ(s, t) are so small that they can be neglected. As a result, u(s, t) = 0, ψ(s, t) = θ(s, t) = 0, and
from Equation (1), ωξ =

.
φ, ωη = ωζ = 0.

Next, the Lagrange’s equations are used to derive the governing equations of the motion of the
harvesting system.

∂

∂t

(
∂L
∂

.
µ

)
−
(

∂L
∂µ

)
= δW

/
δµ (2)

The kinetic energy of the system is the sum of the kinetic energies of the beam (Tb), the eccentric
cylinder (Tc) and the additional kinetic energy of fluid (Tf).

Tb =
1
2

ρb

[∫
Vb

( .
v2

+
.

w2
)

dVb +
∫ L

0
(Iξ ωξ

2)ds
]

(3)

where ρb and Vb are the density and volume of the beam, which concludes two parts: the PZT and
substrate layer. Iξ is the rotary inertia per unit length with respect to the axis I-ξ, given by:

Iξ =
(

b2 + h2
)/

12

where h is the thickness of the beam.

Tc =
1
2

Mc

[(
.
v +

.
v′

Lc

2

)2
+

(
.

w +
.

w′
Lc

2

)2
]∣∣∣∣∣

s=L

+
1
2

Jcξ ωξ
2
∣∣∣
s=L

(4)
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where D and d are the diameter of the cylinder and the eccentric hole, respectively. Mc and Jcξ are the
mass and the rotary inertia with respect to the axis I-ξ of the eccentric cylinder, as follows:

Jcξ = 1
2 Mc

(
D2

4 + d2

4

)
− 1

2 πρc
d2

4 Lce2

Tf =
1
2 M f

[( .
v +

.
v′

2Lc−L f
2

∣∣∣
s=L

)2
+
( .

w +
.

w′
2Lc−L f

2

∣∣∣
s=L

)2
]
+ 1

2 J f ξ ωξ
2|s=L

(5)

where Mf and Jfξ are the fluid-added mass and rotary inertia with respect to the axis I-ξ of the fluid
due to the vibration of the eccentric cylinder, given by:

M f = CMρ f πD2L f

/
4

where CM = 1 is the fluid-added mass coefficient.

J f ξ = M f D2
/

8

The potential energies of the whole system include the potential energy (Ui), the electric potential
energy (UV) of the beam and the gravitational potential energy (Ug) of the system.

Ui =
1
2

∫
Vs
(σsεs + τsγs)dVs +

1
2

∫
Vp
[σpεp + τpγp]dVp (6)

where the strains and stresses in the substrate and PZT layers are:

ε11 = zφη′′ − yη′′ γ12 = 2ε12 = −zφ′ γ13 = 2ε13 = yφ′

σ11
s = Esε11 σ12

s = 2Gsε12 σ13
s = 2Gsε13

σ12
p = 2Gpε12 σ13

p = 2Gpε13

(7)

Due to the poling of the PZT layer, the strain and electric displacement vector are governed by
the constitutive equations, given by:

σ11
p = Epε11 − e31E2

D2 = e31εη+ ∈11 E2
(8)

where Es and Ep are the Young’s modulus at constant electric field, Gs and Gp are the shear modulus,
E2 is the electric field intensity in the poling direction, and V(t) is the voltage between the two
piezoelectric electrodes.

E2(t) = V(t)/hp

UV = − 1
2

∫
Vp

E2D2dVp
(9)

where Vp is the volume of the PZT layer.

Ug = Mcg
∂x(s, t)

∂s

∣∣∣∣
s=L

[
x(s, t) +

Lc

2
∂x(s, t)

∂s

∣∣∣∣
s=L

]
+
∫

Vb

ρbgx(s, t)
∂x(s, t)

∂s
dVb (10)

where x(s, t) is the displacement of the beam in three axes direction of the reference coordinate system.
The virtual work includes the virtual work of the external resistance δWR, lift force δWF, buoyancy

of fluid δWb, mechanical damping δWc and fluid-added damping δWcf.

δWR = −V(t)δQ(t) (11)
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where Q(t) is the charge between the piezoelectric electrodes.

δWF = F(t)δ
[

v(s, t)|s=Ls
+ v(s, t)′

∣∣∣
s=Ls

(Lc −
Lf
2
)

]
+ F(t)ldδφ (12)

where ld is the eccentric distance of mass and given by:

ld =
d2

D2 − d2 e

and F(t) is the lift force. It is generated when the eccentric cylinder is subjected to the incoming
fluid [22], as:

F(t) =
CL(t)ρ f DU0

2L f

2
(13)

where U0 is the speed of the incoming fluid. CL is the vortex lift coefficient. The fluid variable q is
interpreted as a reduced vortex lift coefficient, which is governed by Van der Pol equation [31], and ωf
is the vortex shedding frequency.

..
q + εω f

(
q2 − 1

) .
q + ω f

2q = f (14)

where
q(t) = 2CL(t)/CL0

ω f = 2πStU0/D

where CL0 = 0.3 [32]. And f is the nondimensional force of vortex [22], given by:

f = (
A
D
)

d2x
dt2 = (

A
D
)

[
∂2x(s, t)

∂t2

∣∣∣∣
s=Ls

+

(
Lc −

L f

2

)
∂3x(s, t)

∂s∂t2

∣∣∣∣
s=Ls

+
∂2φ(s, t)

∂t2

∣∣∣∣
s=Ls

]
(15)

The virtual work of the buoyancy of fluid δWb is:

δWb =
∫

Vw

ρ f g
∂x(s, t)

∂s

∣∣∣∣
s=Ls

δ

[
x(s, t) +

(
Lc −

L f

2

)
∂x(s, t)

∂s

∣∣∣∣
s=Ls

]
dVf (16)

The virtual work of fluid-added damping δWcf is:

δWc f = c f
∂v(s,t)

∂t

∣∣∣
s=Ls

(
Lc −

L f
2

)
δ
[

v(s, t)|
s=Ls

]
+c f

∂w(s,t)
∂t

∣∣∣
s=Ls

(
Lc −

L f
2

)
δ
[

w(s, t)|
s=Ls

]
+ c f ωξ

D
2 δ φ(s, t)|s=LS

(17)

where
c f = γω f ρ f D2

where γ = 0.8 [22] is the fluid-added damping coefficient.

δWc = −
∫ L

0
cm
[ .
vδv(s, t) +

.
wδw(s, t)

]
ds (18)

where cm is the mechanical damping coefficient measured by experiment.
In order to solve the above equations, the bending vibration displacements v(s, t), w(s, t) and

torsion angular displacement φ(s, t) are expressed by using Galerkin procedure [4] in the form of

v(s, t) =
n

∑
i=1

ϕvi(s)ri(t) (19)
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w(s, t) =
n

∑
i=1

ϕwi(s)ri(t) (20)

φ(s, t) =
n

∑
i=1

ϕφi(s)ri(t) (21)

where φ(s) and r(t) are the mode shapes and the model coordinates, respectively. They can be
expressed as:

ϕvi(s) = A1 sin λ1is + B1 cos λ1is + C1sinhλ1is + D1 cosh λ1is
ϕwi(s) = A2 sin λ2is + B2 cos λ2is + C2sinhλ2is + D2 cosh λ2is
ϕφ i(s) = A3 sin λ3is + B3 cos λ3is

(22)

where the An, Bn, Cn and Dn are arbitrary constants and λni are determined by the natural frequency
of the piezoelectric beam system, given by:

λ1i =
4

√
ρEIηS
ρEIζ S λ2i

λ1i
4 EIζ

ρS = λ3i
2
√

GIp
Jcξ

(23)

where EIη and EIζ are the bending stiffness of the beam with respect to axes I-η, I-ζ. GIp is the torsion
stiffness of the beam with respect to axis I-ξ, as follows:

EIη =
b(Es(hb

3−ha
3)+Ep(hc

3−hb
3))

3

EIζ =
b3(Es(hb−ha)+Ep(hc−hb))

12

GIp = Gs

[
hsb3

12
+

b(hb
3 − ha

3)

3

]
+ Gp

[
hpb3

12
+

b(hc
3 − hb

3)

3

]
where ha, hb and hc are the positions of the layers given with respect to the neutral axis which are
defined in Figure 4.

h0 =

(
hs + hp

)
Ephp

2
(
Ephp + Eshs

) + hs
/

2

as follows:
ha = −h0 hb = hs − h0 hc =

(
hs + hp

)
− h0
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Figure 4. The neutral axis.

According to the work condition, their associated boundary conditions are used to solve the mode
shapes above.

v(0, t) = 0
∂v
∂s

∣∣∣∣
(0,t)

= 0 w(0, t) = 0
∂w
∂s

∣∣∣∣
(0,t)

= 0 φ(0, t) = 0 (24)
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EIη
∂2v
∂s2

∣∣∣
s=Ls

+ Lc
2 Mc

(
∂2v
∂t2 + ∂3v

∂s∂t2
Lc
2

)∣∣∣
s=Ls

+
(

Lc −
L f
2

)
M f

[
∂2v
∂t2 + ∂3v

∂s∂t2

(
Lc −

L f
2

)]∣∣∣
s=Ls

+ Mcld
Lc
2

∂2φ

∂t2

∣∣∣
s=Ls

= 0
(25)

EIη
∂3v
∂s3

∣∣∣
s=Ls
−Mc

(
∂2v
∂t2 + ∂3v

∂s∂t2
Lc
2

)∣∣∣
s=Ls

−M f

[
∂2v
∂t2 + ∂3v

∂s∂t2

(
Lc −

L f
2

)]∣∣∣
s=Ls
−Mcld

∂2φ

∂t2

∣∣∣
s=Ls

= 0
(26)

EIζ
∂2w
∂s2

∣∣∣
s=Ls

+ Lc
2 Mc

(
∂2w
∂t2 + ∂3w

∂s∂t2
Lc
2

)∣∣∣
s=Ls

+
(

Lc −
L f
2

)
M f

[
∂2w
∂t2 + ∂3w

∂s∂t2

(
Lc −

L f
2

)]∣∣∣
s=Ls

= 0
(27)

EIζ
∂3w
∂s3

∣∣∣
s=Ls
−Mc

(
∂2w
∂t2 + ∂3w

∂s∂t2
Lc
2

)∣∣∣
s=Ls

−M f

[
∂2w
∂t2 + ∂3w

∂s∂t2

(
Lc −

L f
2

)]∣∣∣
s=Ls

= 0
(28)

GIp
∂φ

∂s

∣∣∣∣
s=Ls

+ Jcξ
∂2φ

∂t2

∣∣∣∣
s=Ls

+ Mcld

(
∂2v
∂t2 +

∂3v
∂s∂t2

Lc

2

)∣∣∣∣
s=Ls

= 0 (29)

By substituting Equations (19)–(21) into Equations (24)–(29), the equations of boundary conditions
expressed by mode shapes can be written as:

ϕvi(0) = 0 ϕ′vi(0) = 0 ϕwi(0) = 0 ϕ′wi(0) = 0 ϕφi(0) = 0 (30)

EIη ϕ
′′
vi(Ls)− Lc

2 Mcωi
2
(

ϕvi(Ls) + ϕ′vi(Ls)
Lc
2

)
−
(

Lc −
L f
2

)
M f ωi

2
[

ϕvi(Ls) + ϕ′vi(Ls)
(

Lc −
L f
2

)]
−Mcωi

2ld
Lc
2 ϕφi(Ls) = 0

(31)

EIη ϕvi
′′′(Ls) + Mcωi

2
(

ϕvi(Ls) + ϕ′vi(Ls)
Lc
2

)
+M f ωi

2
[

ϕvi(Ls) + ϕ′vi(Ls)
(

Lc −
L f
2

)]
+ Mcωi

2ld ϕφi(Ls) = 0
(32)

EIζ ϕwi
′′ (Ls)− Lc

2 Mcωi
2
(

ϕwi(Ls) + ϕ′wi(Ls)
Lc
2

)
−
(

Lc −
L f
2

)
M f ωi

2
[

ϕwi(Ls) + ϕ′wi(Ls)
(

Lc −
L f
2

)]
= 0

(33)

EIζ ϕwi
′′′(Ls) + Mcωi

2
(

ϕwi(Ls) + ϕ′wi(Ls)
Lc
2

)
+M f ωi

2
[

ϕwi(Ls) + ϕ′wi(Ls)
(

Lc −
L f
2

)]
= 0

(34)

GIp ϕφi
′(Ls)− Jcξωi

2 ϕφi(Ls)−Mcldωi
2
(

ϕvi(Ls) + ϕ′vi(Ls)
Lc

2

)
= 0 (35)

Normalizing the eigenfunctions using the following orthogonality conditions of mass and stiffness,
the relations between different mode shapes are obtained.

ρb
∫

Vb
(ϕvi(s)ϕvj(s) + ϕwi(s)ϕwj(s))dVb

+Mc

(
ϕvi(Ls) +

Lc
2 ϕvi

′(Ls)
)(

ϕvj(Ls) +
Lc
2 ϕvj

′(Ls)
)

+Mc

(
ϕwi(Ls) +

Lc
2 ϕwi

′(Ls)
)(

ϕwj(Ls) +
Lc
2 ϕwj

′(Ls)
)

+M f

(
ϕvi(Ls) +

(2Lc−L f )
2 ϕvi

′(Ls)

)(
ϕvj(Ls) +

(2Lc−L f )
2 ϕvj

′(Ls)

)
+M f

(
ϕwi(Ls) +

(2Lc−L f )
2 ϕwi

′(Ls)

)(
ϕwj(Ls) +

(2Lc−L f )
2 ϕwj

′(Ls)

)
+
(

Jcξ + J f ξ

)[
ϕφi(Ls) + ϕwi

′(Ls)ϕvi
′(Ls)

][
ϕφj(Ls) + ϕwj

′(Ls)ϕvj
′(Ls)

]
= δij

(36)
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∫ L

0
ϕvi

′′ EIη ϕvj
′′ ds +

∫ L

0
ϕφi
′GIp ϕφj

′ds = δijωi
2 (37)

where δij is the Kronecker delta, defined as 1 when i is equal to j and 0 otherwise.
As a consequence, combining the boundary conditions (30)–(35) and orthogonality conditions (36)

and (37), as well as Equation (23), mode shapes and natural frequency of the beam can be obtained.
As the energy harvesting system is designed to work in the low frequency environment, the first mode
shape [33] is accurate enough to research the energy harvesting in this paper.

By substituting Equations (19)–(21) and the orthogonality conditions (36) and (37) into the
kinetic energy Equations (3)–(5), potential energy Equations (6), (9) and (10), and the virtual work
Equations (11), (12), (16)–(18), the energy equations and virtual work equations are rewritten as:

The kinetic energy equation T:
T =

.
r2
(t)
/

2 (38)

The potential energy equation U:

U = H1Vr(t) +
1
2

ωi
2r2(t)− 1

2
H1Vr(t) + H2V2 + H3r2(t) (39)

where Hn is the coefficient of the variables, given by:

H1 = −e31
b
(
hb

2 − ha
2)

2hp

∫ Lp

0
ϕv
′′ (s)ds

H2 = −
ε11bLp

2hp

H3 = Mcg
[

ϕv(Ls)ϕv
′(Ls) +

Lc
2 ϕv

′2(Ls) + ϕw(Ls)ϕw
′(Ls) +

Lc
2 ϕw

′2(Ls)
]

+ρbSbg
∫ Ls

0 (ϕv ϕv
′ + ϕw ϕw

′)ds

The virtual work equation:

δW
δr(t)

= H4F(t) + H5r(t) + H6
.
r(t) (40)

where the coefficient Hn are expressed as:

H4 =

[
ϕv(Ls) + ϕ′v(Ls)

(
Lc −

Lf
2

)]
+ ld ϕφ(Ls)

H5 = ρwg πD2

4

∫ Lf
0

[
ϕv(s)ϕv

′(Ls) +
(

Lc − Lf
2

)
ϕv
′2(s)

]
ds

+ρwg πD2

4

∫ Lf
0

[
ϕw(Ls)ϕw

′(s) +
(

Lc − Lf
2

)
ϕw
′2(s)

]
ds

H6 = −c f ϕv
2(Ls)− c f ϕw

2(Ls)− c f
D
2

ϕφ
2(Ls)−

∫ L

0
cm

[
ϕv

2(s) + ϕw
2(s)

]
ds

Now, the Lagrange function which is the subtraction of kinetic energy Equation (38) and potential
energy Equation (39) is established and expressed as:

L = T −U
= 1

2
.
r2
(t)−

(
1
2 ωi

2 + H3

)
r2(t)− 1

2 H1Vr(t)− H2V2 (41)

This occurs when substituting Equation (40) and Lagrange function (41) into Lagrange’s Equation
(2), and assigning variables r and V, respectively. Then, the following state equations are obtained:

..
r(t) + υ

.
r(t) + λr(t) + θV = κF(t) (42)
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V(t)
R

+ Cp
dV(t)

dt
− θ

.
r(t) = 0 (43)

where the coefficients of the state variables are expressed as:

υ = −H6, λ = ωi
2 + 2H3 − H5, κ = H4, Cp = −2H2, and θ = H1/2

Substituting the Equations (19)–(21) into Equation (15) the nondimensional force of vortex f is
rewritten as:

f = H7
..
r(t) (44)

where the coefficient H7 is given by:

H7 = (
A
D
)

[
ϕv(Ls) + (Lc −

Lf
2
)ϕ′v(Ls) + ϕw(Ls) + (Lc −

Lf
2
)ϕ′w(Ls) + ϕφ(Ls)

]
According to Equations (42)–(44), a space state equation of the energy harvesting system is

established, and expressed as:

.
X =


X2

κCL0ρwDU2Lc
4 X4 − υX2 − λX1 − θX3

θ
Cp

X2 − X3
CpR

X5
..
q

 (45)

where X is the space state variable, written as:

X =


X1

X2

X3

X4

X5

 =


r
.
r
V
q
.
q


Equation (45) can be numerically solved by using the solver of ode45 in MATLAB (MathWorks,

Inc®, Natick, MA, USA).

3. Numerical Analysis and Experimental Validation

3.1. Experimental Setup

Harvesters are fabricated with piezoelectric cantilever beams and tip eccentric cylinders. The
beam has an aluminum layer and a PZT layer, which are bonded together by epoxy. The tip cylinder is
made of acrylic with an eccentric hole. They are joined by a symmetry rectangular clamping fixture
made of polyamide.

The experiment was carried out in a test rig system, as shown in Figure 5. This test system is
composed of a water channel, pump (Shimge Co., Ltd®; Hangzhou, China), frequency converter
(Shenzhen Junhui Electronics Co., Ltd®, Shenzhen, China), data acquisition and processing system.
The water channel is mainly composed of three sections: the setting chamber, (equipped with) a
cellular device (Qingdao Tonglide plastic buzzer hives Co., Ltd®, Qingdao, China), and damping
meshes (Hangzhou Kuangshi Co., Ltd®, Hangzhou, China), aiming to steady the flow. The contraction
section returns the flow speed of water from the setting chamber. The experiments were performed
in the working section. The pump makes the water cycle in the channel. The frequency converter is
used to vary the work frequency of the pump, regulating the discharge of water, and then varying
the flow speed of water. The data acquisition and processing systems include a DAQ of NI (National
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Instruments, Austin, TX, USA), and a PC (Lenovo Group Ltd®, Beijing, China), which can measure
and process the output voltage across the external resistance R in real time.
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3.2. Numerical and Experimental Analysis

Figure 6 illustrates the numerical and experimental values of average power versus external load
resistance R. The configurations of the harvester are D = 20, d = 10 and e = 5 mm. The powers are
measured at flow velocities of 0.355 and 0.404 m/s, respectively. It is found that the power increases at
first then decreases with the increase of the resistance value. There is an optimal resistance around 170
and 140 kΩ for the output power when the widths of the beams are 20 and 25 mm, respectively. From
Figure 6, one can find that the optimal resistance is not related to the flow velocities, and the optimal
resistance of the numerical analysis is consistent with that of the experiment.
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m/s for the nine configurations. As the flow velocity U0 rises up, the vortex shedding frequency ωf 
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Table 2 shows the configurations of eccentric cylinder used in experiment. To document the
measured results, it is necessary to number the cylinders. The sequence numbers represent the
diameter of the cylinder (D) and the diameter of the eccentric hole (d). For example, the number Con
2006 represents a cylinder with D = 20 and d = 6 mm. In addition, the number Con 2000 represents a
solid cylinder with a diameter of 20 mm.
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Figure 7 illustrates the average power of harvesters with the configurations in Table 2, which
are numerically calculated and experimentally measured at various flow velocity U0 with the same
resistance of 80 kΩ. It can be found that the output power P first increases to Pmax (maximum
value of power) with U0, while U0 continues to increase, P decreases. The optimal velocity is about
0.339–0.366 m/s for the nine configurations. As the flow velocity U0 rises up, the vortex shedding
frequency ωf increases, which is gradually close to the natural frequency of the harvester. As a result,
the lift force from the vortex drives the eccentric cylinder to resonance, and leads to a significant
increase in amplitude of the cylinder rigidly connected with piezoelectric beam. At the same time, the
optimal velocity becomes greater with the increase of d, which causes a lighter mass of the cylinder.
As a consequence, the natural frequency of the harvester increases.

Table 2. Configurations of the eccentric cylinder.

Configurations 2006 2008 2010 2508 2510 2512 3010 3012 3014

D (mm) 20 20 20 25 25 25 30 30 30
d (mm) 6 8 10 8 10 12 10 12 14
e (mm) 5 4 3 6.25 5 4 7.5 6 5
ld (mm) 0.495 0.762 0.952 0.713 0.925 1.198 0.938 1.142 1.392

Meanwhile, there should be a positive correlation between Pmax and ld dominated by the
eccentricity distance e and the diameter of cylinder eccentric hole d. It can be concluded that Pmax

increases with the increase of eccentricity of mass ld, as shown in Figure 7a and Table 3. Pmax is
0.3978 mW with a maximum value of ld in configurations 2006, 2008, and 2010 in Figure 7a. Besides,
the Pmax of the solid cylinder is 0.1999 mW, and there is an improvement of 99%. The torque excited
by vortex becomes bigger when ld increases. It leads to a bigger twist angle. Further, more energy
is harvested.

In Figure 7, it also can be summarized that the cylinder diameter D has a negative influence on
Pmax. Pmax decreases from 0.3978 to 0.2482 mW, while D increases from 20 to 30 mm with a similar ld in
Con 2010, Con 2510, and Con 3010. In addition, the same conclusion can be obtained from Table 3.
The lift force reduces with the increase of diameter D, which weakens cylinder vibration response.

Table 3. Pmax of different configurations of the eccentric cylinder when b = 20 mm.

Configurations 2000 2006 2008 2010 2500 2508

Pmax (mW) 0.1831 0.2663 0.281 0.3267 0.2139 0.2763

Configurations 2510 2512 3000 3010 3012 3014

Pmax (mW) 0.3254 0.3273 0.1764 0.249 0.2624 0.2866

By comparing the results of different experiments, the best configuration and working
environment for the harvester is summarized. The optimal load resistance is 170 kΩ when b = 20 mm,
and 140 kΩ when b = 25 mm. The greater the ld is, the greater Pmax will be. Therefore, ld should be
designed as large as possible if the structure processing permits. Similarly, a harvester with a smaller
cylinder diameter D has a greater Pmax, and D is the minimum value of 20 mm in this paper.

The best configurations and working environments for the harvester are concluded by
experiments. The validity of the model derived is verified. As a result, the model can be used
to numerically analysis the harvesting characteristics of harvesters in varieties of situations and
configurations. Figure 8 shows the numerical analysis results of the harvester with D = 20 mm and
b = 20 mm at the optimal load resistance. Compared with the harvester undergoing bending only with
an output power of 0.2188 mW shown in the bottom of Figure 8, the output power of the harvester
with configurations d = 10 and e = 5 mm undergoing bending–torsion is 0.4854 mW. This result implies
that the present work is meaningful for the design of harvesters.
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The lift force reduces with the increase of diameter D, which weakens cylinder vibration response. 

Table 3. Pmax of different configurations of the eccentric cylinder when b = 20 mm. 

Configurations  2000 2006 2008 2010 2500 2508 
Pmax (mW) 0.1831 0.2663 0.281 0.3267 0.2139 0.2763 

Configurations 2510 2512 3000 3010 3012 3014 
Pmax (mW) 0.3254 0.3273 0.1764 0.249 0.2624 0.2866 

By comparing the results of different experiments, the best configuration and working 
environment for the harvester is summarized. The optimal load resistance is 170 kΩ when b = 20mm, 
and 140 kΩ when b = 25mm. The greater the ld is, the greater Pmax will be. Therefore, ld should be 
designed as large as possible if the structure processing permits. Similarly, a harvester with a smaller 
cylinder diameter D has a greater Pmax, and D is the minimum value of 20 mm in this paper. 

The best configurations and working environments for the harvester are concluded by 
experiments. The validity of the model derived is verified. As a result, the model can be used to 
numerically analysis the harvesting characteristics of harvesters in varieties of situations and 
configurations. Figure 8 shows the numerical analysis results of the harvester with D = 20 mm and b 
= 20mm at the optimal load resistance. Compared with the harvester undergoing bending only with 
an output power of 0.2188 mW shown in the bottom of Figure 8, the output power of the harvester 
with configurations d = 10 and e = 5 mm undergoing bending–torsion is 0.4854 mW. This result 
implies that the present work is meaningful for the design of harvesters. 
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4. Conclusions

In this paper, a vortex-induced vibration piezoelectric energy harvester undergoing
bending–torsion vibrations by the tip eccentric cylinder was designed and fabricated. The
water-to-electricity conversion characteristics in low-speed water flow was studied. A distributed
parameter beam model was established based on Euler–Bernoulli beam theory. The mode shapes and
model coordinates were used as basic functions to represent the displacements of harvester system in
a Galerkin procedure. Energy-governing coupled equations of the harvesting system were derived
by using the Lagrange’s equations. Numerical models were used to analyze and predict the best
configurations and optimal work environments for the harvesters by calculating the output voltage.
Experiments have been designed and conducted. The correctness of the numerical models was verified.
A harvester with D = 20 mm, d = 10 mm, e = 3 mm has a maximum power of 0.3978 mW. The eccentric
hole setting of the harvester increases its harvesting power as much as 99%. This paper provides a
practical significance in an efficient harvester’s design and manufacture.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/7/2/116/s1.
(1) Photos of experimental test platform; (2) Videos of experiments and tests.
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