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Abstract: Rendering spatial sound scenes via audio objects has become popular in recent years, 
since it can provide more flexibility for different auditory scenarios, such as 3D movies, spatial 
audio communication and virtual classrooms. To facilitate high-quality bitrate-efficient 
distribution for spatial audio objects, an encoding scheme based on intra-object sparsity 
(approximate k-sparsity of the audio object itself) is proposed in this paper. The statistical analysis 
is presented to validate the notion that the audio object has a stronger sparseness in the Modified 
Discrete Cosine Transform (MDCT) domain than in the Short Time Fourier Transform (STFT) 
domain. By exploiting intra-object sparsity in the MDCT domain, multiple simultaneously 
occurring audio objects are compressed into a mono downmix signal with side information. To 
ensure a balanced perception quality of audio objects, a Psychoacoustic-based time-frequency 
instants sorting algorithm and an energy equalized Number of Preserved Time-Frequency Bins 
(NPTF) allocation strategy are proposed, which are employed in the underlying compression 
framework. The downmix signal can be further encoded via Scalar Quantized Vector Huffman 
Coding (SQVH) technique at a desirable bitrate, and the side information is transmitted in a 
lossless manner. Both objective and subjective evaluations show that the proposed encoding 
scheme outperforms the Sparsity Analysis (SPA) approach and Spatial Audio Object Coding 
(SAOC) in cases where eight objects were jointly encoded. 
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1. Introduction 

With the development of multimedia video/audio signal processing, multi-channel 3D audio 
has been widely employed for applications, such as cinemas and home theatre systems, since it can 
provide excellent spatial realism of the original sound field, as compared to the traditional 
mono/stereo audio format. 

There are multiple formats for rendering 3D audio, which contain channel-based, object-based 
and HOA-based audio formats. In traditional spatial sound rendering approach, the channel-based 
format is adopted in the early stage. For example, the 5.1 surround audio format [1] provides a 
horizontal soundfield and it has been widely employed for applications, such as the cinema and 
home theater. Furthermore, typical ‘3D’ formats include a varying number of height channels, such 
as 7.1 audio format (with two height channels). As the channel number increases, the audio data will 
raise dramatically. Due to the bandwidth constrained usage scenarios, the spatial audio coding 
technique has become an ongoing research topic in recent decades. In 1997, ISO /MPEG (Moving 
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Picture Experts Group) designed the first commercially-used multi-channel audio coder MPEG-2 
Advanced Audio Coding (MPEG-2 AAC) [2]. It could compress multi-channel audio by adding a 
number of advanced coding tools to MPEG-1 audio codecs, delivering European Broadcasting 
Union (EBU) broadcast quality at a bitrate of 320 kbps for a 5.1 signal. In 2006, MPEG Surround 
(MPS) [3,4] was created for highly transmission of multi-channel sound by downmixing the 
multi-channel signals into mono/stereo signal and extracting Interaural Level Differences (ILD), ITD 
(Interaural Time Differences) and IC (Interaural Coherence) as side information. Spatially Squeezed 
Surround Audio Coding (S3AC) [5–7], as a new method instead of original “downmix plus spatial 
parameters” model, exploited spatial direction of virtual sound source and mapping the soundfield 
from 360° into 60°. At the receiver, the decoded signals can be achieved by inverse mapping the 60° 
stereo soundfield into 360°. 

However, such channel-based audio format has its limitation on flexibility, i.e., each channel is 
designated to feed a loudspeaker in a known prescribed position and cannot be adjusted for 
different reproduction needs by the users. Alternatively, a spatial sound scene can be described by a 
number of sound objects, each positioned at a certain target object position in space, which can be 
totally independent from the locations of available loudspeakers [8]. In order to fulfill the demand of 
interactive audio elements, object-based (a.k.a. object-oriented) audio format enables users to control 
audio content or sense of direction in application scenarios where the number of sound sources 
varies, sources move are commonly encountered. Hence, object signals generally need to be 
rendered to their target positions by appropriate rendering algorithms, e.g., Vector Base Amplitude 
Panning (VBAP) [9]. Therefore, object-based audio format can personalize customer’s listening 
experience and make surround sound more realistic. By now, object-based audio has been 
commercialized in many acoustic field, e.g., Dolby ATMOS for cinemas [10]. 

To facilitate high-quality bitrate-efficient distribution of audio objects, several methods have 
been developed, one of these techniques is MPEG Spatial Audio Object Coding (SAOC) [11,12]. 
SAOC encodes audio objects into a mono/stereo downmix signal plus side information via 
Quadrature Mirror Filter (QMF) and extract the parameters that stand for the energy relationship 
between different audio objects. Additionally, Directional Audio Coding (DirAC) [13,14] compress a 
spatial scene by calculating a direction vector representing spatial location information of the virtual 
sources. At the decoder side, the virtual sources are created from the downmixed signal at positions 
given by the direction vectors and they are panned by combining different loudspeakers through 
VBAP. The latest MPEG-H 3D audio coding standard incorporates the existing MPEG technology 
components to provide universal means for carriage of channel-based, object-based and Higher 
Order Ambisonics (HOA) based inputs [15]. Both MPEG-Surround (MPEG-S) and SAOC are 
included in MPEG-H 3D audio standard. 

Recently, a Psychoacoustic-based Analysis-By-Synthesis (PABS) method [16,17] was proposed 
for encoding multiple speech objects, which could compress four simultaneously occurring speech 
sources in two downmix signals relied on inter-object sparsity [18]. However, with the number of 
objects increases, the inter-object sparsity becomes weakened, which leads to quality loss of decoded 
signal. In our previous work [19–21], a multiple audio objects encoding approach was proposed 
based on intra-object sparsity. Unlike the inter-object sparsity employed in PABS framework, this 
encoding scheme exploited the sparseness of object itself. That is, in a certain domain, an object 
signal can be represented by a small number of time-frequency instants. The evaluation results 
validated that this intra-object based approach achieved a better performance than PABS algorithm 
and retain the superior perceptual quality of the decoded signals. However, the aforementioned 
technique still has some restrictions which leads to a sub-optimum solution for object compression. 
Firstly, Short Time Fourier Transform (STFT) is chosen as the linear time-frequency transform to 
analyze audio objects. Yet the energy compaction capability of STFT is not optimal. Secondly, the 
above object encoding scheme concentrated on the features of object signal itself without 
considering the psychoacoustic, thus it is not an optimal quantization means for Human Auditory 
System (HAS). 
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This paper expands on the contributions in [19]. Based on intra-object sparsity, we propose a 
novel encoding scheme for multiple audio objects to further optimize our previous proposed 
approach and minimize the quality loss caused by compression. Firstly, by exploiting intra-object 
sparsity in the Modified Discrete Cosine Transform (MDCT) domain, multiple simultaneously 
occurring audio objects are compressed into a mono downmix signal with side information. 
Secondly, psychoacoustic model is utilized in the proposed codec to accomplish an optimal 
quantization for HAS. Hence, a Psychoacoustic-based Time-Frequency (TF) instants sorting 
algorithm is proposed for extracting the dominant TF instants in the MDCT domain. Furthermore, 
by utilizing these extracted TF instants, we propose a fast algorithm of Number of Preserved 
Time-Frequency Bins (NPTF, defined in Appendix A) allocation strategy to ensure a balanced 
perception quality for all object signals. Finally, the downmix signal can be further encoded via 
SQVH technique at desirable bitrate and the side information is transmitted in a lossless manner. In 
addition, a comparative study of intra-object sparsity of audio signal in the STFT domain and MDCT 
domain is presented via statistical analysis. The results show that audio objects have 
sparsity-promoting property in the MDCT domain, which means that a greater data compression 
ratio can be achieved. 

The remainder of the paper is structured as follows: Section 2 introduces the architecture of the 
encoding framework in detail. Experimental results are presented and discussed in Section 3, while 
the conclusion is given in Section 4. Appendix A investigates the sparsity of audio objects in the 
STFT and MDCT domain, respectively. 

2. Proposed Compression Framework  

In the previous work, we adopted STFT as time-frequency transform to analyze the sparsity of 
audio signal and designed a codec based on the intra-object sparsity. From the statistical results of 
sparsity presented in Appendix A, we know that audio signals satisfy the approximate k-sparsity 
both in the STFT and MDCT domain, i.e., the energy of audio signal is almost concentrated in k 
time-frequency instants. In other words, audio signals have sparsity-promoting property in the 
MDCT domain in contrast to STFT, that is, ( ) ( )<

MDCT STFTFEPR FEPRk r k r . By using this advantage of 

MDCT, a multiple audio objects compression framework is proposed in this section based on 
intra-object sparsity. The proposed encoding scheme consists of five modules: time-frequency 
transform, active object detection, psychoacoustic-based TF instants sorting, NPTF allocation 
strategy and Scalar Quantized Vector Huffman Coding (SQVH). 

The following process is operated in a frame-wise fashion. As is shown in Figure 1, all input 
audio objects (Source 1 to Source Q) are converted into time-frequency domain using MDCT. After 
active object detection, the TF instants of all active objects will be sorted according to Psychoacoustic 
model in order to extract the most perceptually important time-frequency instants. Then, a NPTF 
allocation strategy among all audio objects is proposed to counterpoise the energy of all preserved 
TF instants of each object. Thereafter, the extracted time-frequency instants are downmixed into a 
mono mixture stream plus side information via downmix processing operation. Particularly 
attention is that the downmix signal can be further compressed by existing audio coding methods. In 
this proposed method, SQVH technique is employed after de-mixing all TF instants, because it can 
compress audio signal at desirable bitrate. At the receiving end, Source 1 to Source Q can be decoded 
by exploiting the received downmix signal and the side information. The detailed contents are 
described below. 

2.1. MDCT and Active Object Detection 

In nth frame, an input audio object sn = [sn(1), sn(2), …, sn(M)] is transformed into the MDCT 
domain, denoted by S(n, l), where n (1 ≤ n ≤ N) and l (1 ≤ l ≤ L) are frame number and frequency 
index, respectively. M = 1024 is the frame length. Here, a 2048-points MDCT is applied with 50% 
overlapped [22]. By this overlap, discontinuity at block boundary is smoothed out without 
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increasing the number of transform coefficients. Afterwards, MDCT of an original signal sn can be 
formulated as: 

( ) ( ) ( )+
 = ⋅ + ⋅  
s s1 2T T

1, 2 n nl lS n l φ φ
 

(1) 

where L = 1024, { } 1 1 1 1(1) (2) ( ), , ,l l ll φ φ φ Mφ , { } 2 2 2 2(1) (2) ( ), , ,l l ll φ φ φ Mφ  are the basis functions 

corresponding to nth frame and (n + 1)th frame. 
  +   = ⋅ ⋅ + ⋅ −    

    
1 1 1( ) ( ) cos

2 2l
π Mφ m ω m m l

M
, 

( )   +   = + ⋅ ⋅ + ⋅ −    
    

2 3 1 1( ) cos
2 2l

π Mφ m ω m m lM
M

 and T is the transpose operation. In addition, a 

Kaiser–Bessel derived (KBD) short-time window slid along the time axis with 50% overlapping 
between frames is used as window function ( )ω m . 
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Figure 1. The block diagram for the proposed compression framework. (MDCT, Modified Discrete 
Cosine Transform; IMDCT, Inverse Modified Discrete Cosine Transform; NPTF, Number of 
Preserved Time-Frequency Bins; SQVH, Scalar Quantized Vector Huffman Coding; TF, 
Time-Frequency). 

In order to ensure the encoding scheme only encodes active frames without processing the 
silence frames, an Active Object Detection technique is applied to check the active audio objects in 
the current frame. Hence, Voice Activity Detection (VAD) [23] is utilized in this work, which is based 
on the short-time energy of audio in the current frame and comparison with the estimated 
background noise level. Each source uses a flag to indicate whether it is active in current frame. i.e., 


= 


1, if the current object is active
0, otherwi  se

flag
 

(2) 

Afterwards, only the frames which are detected as active will be sent into the next module. In 
contrast, the mute frames will be ignored in the proposed codec. This procedure ensures that silence 
frames cannot be selected. 

2.2. Psychoacoustic-Based TF Instants Sorting 

In Appendix A, it is proved that the majority of the frame energy concentrates in finite k 
time-frequency instants for each audio object. For this reason, we can extract these k dominant TF 
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instants for compression. In our previous work [19–21], TF instants are sorted and extracted by 
natural ordering via the magnitude of the normalized energy. However, this approach does not take 
into account HAS. It is well-known that HAS is not equally sensitive to all frequencies within the 
audible band since it has a non-flat frequency response. This simply means that we can hear some 
tones better than others. Thus, tones played at the same volume (intensity) at different frequencies 
are perceived as if they are being played at different volumes. For the purpose of enhance perceptual 
quality, we design a novel method through absolute auditory masking threshold to extract the 
dominant TF instants. 

The absolute threshold of hearing characterizes the amount of energy needed in a pure tone 
such that it can be detected by a listener in a noiseless environment and it is expressed in terms of dB 
Sound Pressure Level (SPL) [24]. The quiet threshold is well approximated by the continuous 
nonlinear function, which is based on a number of listeners that were generated in a National 
Institutes of Health (NIH) study of typical American hearing acuity [25]: 

( ) ( ) ( )− − × − −= × − × + ×
20.8 40.6 1000 3.3/ 3( ) 3.64 1000 6.5 10 1000/ /fT f f e f

 
(3) 

where T(f) reflects the auditory properties for human ear in the STFT domain. Hence, the T(f) should 
be discretized and converted into the MDCT domain. The whole processing procedure includes two 
steps: inverse time-frequency transform and MDCT [26]. After these operations, absolute auditory 
masking threshold in the MDCT domain is denoted as Tmdct (l) (dB expression), where l = 1, 2, …, L. 
Then, an L-dimensional Absolute Auditory Masking Threshold (AAMT) vector T ≡ [Tmdct(1), Tmdct(2), 
…, Tmdct(L)] is generated for subsequent computing. From psychoacoustic theory, it is clear that if 
there exists a TF bin (n0, l0) that the difference between SdB(n0, l0) (dB expression of S(n0, l0)) and 
Tmdct(l0) is larger than other TF bins, which means that S(n0, l0) can be perceived more easily than 
other TF components, but not vice versa. Specifically, any signals below this threshold curve (i.e., 
SdB(n0, l0) − Tmdct(l0) < 0) is imperceptible (because Tmdct (l) is the lowest limit of HAS). Rely on this 
phenomenon, the AAMT vector T is used for extracting the perceptual dominant TF instants 
efficiently. 

For qth (1 ≤ q ≤ Q) audio object Sq(n, l), whose dB expression is written as Sq_dB(n, l). An 
aggregated vector can be attained by converging each Sq_dB(n, l) denoted as Sq_dB ≡ [Sq_dB(n, 1), Sq_dB(n, 
2), …, Sq_dB(n, L)]. Subsequently, a perceptual detection vector is designed as: 

_ –  ,1 , ,2( ,) ( ) (, ),q q dB q q qP n P n P n L ≡ = SP T   (4) 

where Pq(n,l) = Sq_dB(n,l) − Tmdct(l). To sort each element in Pq according to the magnitude in 
descending order, mathematically, a new vector can be attained as: 

′  ≡  1( , ), , ( , )q q
q q q LP n l P n lP

 
(5) 

the elements in ′
qP  satisfy: 

}{≥ ∀ < ∈ ，，( , ) ( , ), , , 1 2 ,q q
q i q jP n l P n l i j i j L

 
(6) 

where 1 , ,q q
Ll l  is the reorder frequency index which represent the perceptual significantly TF 

instants in order of importance for HAS. In other words, 1( , )q
qS n l  is the most considerable 

component with respect to HAS. In contrast, ( , )q
q LS n l  is almost the least significant TF instant for 

HAS. 

2.3. NPTF Allocation Strategy 

Allocating the NPTF for each active object signal can be actualized with various manners 
according to realistic application scenarios. As a most common used means called simplified average 
distribution method, all active objects share the same NPTF has been employed in [19,21]. This 
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allocation method balances a tradeoff between computational complexity and perceptual quality. 
Therefore, it is a simple and efficient way. Nonetheless, this allocation strategy cannot guarantee all 
decoded objects with similar perceptual quality. Especially, the uneven quality can be emerged if 
there exists big difference of intra-object sparseness amongst objects. To conquer the 
above-mentioned issue, an Analysis-by-Synthesis (ABS) framework was proposed to balance the 
perceptual quality for all objects through solving a minimax problem via the iterative processing 
[20]. The test results show that this technique yields the approximate evenly distributed Frame 
Energy Preservation Ratio (FEPR, defined in Appendix A) for all objects. Despite the harmonious 
perceptual quality can be maintained, the attendant problem which is the sharp increase in 
computational complexity cannot be neglected. Accordingly, relied on the TF sorting result obtained 
in Section 2.2, an NPTF allocation strategy for obtaining a balanced perceptual quality of all inputs is 
proposed in this work.  

In the nth frame, we assume that the qth object will be distributed kq NPTF, i.e., kq TF instants will 
be extracted for coding. An Individual Object Energy Retention ratio (IOER) function for the qth 
object is defined by: 

( )
( )
( )

=

=




1

1

,
, =

,

k
q

q i
i

IOER L

q
l

S n l
f k q

S n l
 

(7) 

where q
il  is the reorder frequency index obtained in the previous section. IOER function represents 

the energy of the k perceptual significant elements against the original signal Sq(n, l). Thus, kq will be 
allocated for each object with approximate IOER. Under the criterion of minimum mean-square 
error, for all  {1,2, , }q Q∈ …  the kq can be attained via a constrained optimization equation as follow: 

=

=

−

=





1 2

2

, , , 1

1

min ( , )

          s.t.   

Q

Q

IOER qk k k q

Q

q
q

f k q f

k L
 

(8) 

where ( )
=


1

1= ,
Q

IOER
q

f f k q
Q

 represents the average energy of all objects. The optimal solution k1, k2, …, 

kQ for each object are the desired NPTF1, NPTF2, …, NPTFQ, which can be searched by our proposed 
method elaborated in Algorithm 1. 

Algorithm 1: NPTF allocation strategy based on bisection method 
Input: Q ►number of audio objects 

Input: ( ){ }
=1

,
Q

q q
S n l  ►MDCT coefficients of each audio object 

Input: { }
=1

Lq
i i

l  ►reordered frequency index by psychoacoustic model 

Input: BPA ►lower limit used in dichotomy part 
Input: BPB ►upper limit used in dichotomy part 
Input: BPM ►median used in dichotomy part 
Output: K ►desired NPTF allocation result 

 
1. Set K = Ø 
2. for q = 1 to Q do 
3.  for k = 1 to L do 

4.  Calculate IOER function fIOER(k, q) using ( ){ }
=1

,
Q

q q
S n l  and { }

=1

Lq
i i

l  in Formula (12). 

5.  end for 
6. end for  
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7. Initialize BPA = 0, BPB = 1, BPM = 0.5·(BPA + BPB), STOP = 0.01 chosen based on a series of 
informal experimental results.  

8. while (BPB–BPA > STOP) do 
9.  Find the index value corresponding to BPM value in IOER function (i.e., fIOER(kq, q) ≈ BPM), 

denoted by kq.  

10.    if 
=

>
1

Q

q
q

k L  then 

11.     BPB = BPM, 
12.     BPM = [0.5·(BPA + BPB)]. 
13.    else 
14.     BPA = BPM, 
15.     BPM = [0.5·(BPA + BPB)]. 
16.    end if 
17.  end while 

18. { }
=

=
1

Q

q q
kK   

19. return K 

The proposed NPTF allocation strategy allows different reserved TF instants (i.e., MDCT 
coefficients) for each object among a certain group of multi-track audio objects without iterative 
processing, therefore, the computational complexity decrease rapidly through the dynamic TF 
instants distribution algorithm. In addition, a sub-equal perception quality for each object can be 
maintained via our proposed NPTF allocation strategy rather than pursuit the quality of a 
particular object. 

Thereafter, vector ′
qP  needs to be extract the NPTFq (kq) elements to forming a new vector 

 ≡  
 1( , ), , ( , )

q

q q
q q q NPTFP n l P n lP . It should be note that …1 2, , ,

q

q q q
NPTFl l l indicate the origin of 

( ) ( ) ( )…1 2, , , , , ,
q

q q
q q q

q
NPTFS n l S n l S n l , respectively. We group …1 2, , ,

q

q q q
NPTFl l l  into a vector 

 ≡  …1 2, , ,
q

q q q
NPTFq l l lI , in the meantime, a new vector containing all extracted TF instants 

( ) ( ) ( ) ≡ …  1 2
ˆ , , , , , ,

q

q q q
q Nq Tq Fq PS n l S n l S n lS  is generated. Finally, both Iq and ˆ

qS  should be stored 

locally and sent into the Downmix Processing module. 

2.4. Downmix Processing 

After extracting the dominant TF instants ˆ
qS , source 1 to source Q only contains the perception 

significantly MDCT coefficients of all active audio objects. However, each source include a number 
of zero entries, hence, the downmix processing must be exploited which aims to redistributing the 
nonzero entries of the extracted TF instants from 1 to L in the frequency axis to generate the mono 
downmix signal. 

For each active source q, a k-sparse (k = NPTFq) approximation signal of Sq(n, l) can be attained 
by rearrange ˆ

qS  in the original position, expressed as: 

 ∈= 


 ( , ), if 
( , )

0, otherw si e
q q

q

S n l l
S n l

I

 
(9) 

The downmix matrix is denoted as 
T

1 2, , ,n Q
 ≡  D S S S   , where 

 ( )  ( )  ( ) ≡ … 
 ,1 , ,2 , , ,q q qq S n S n S n LS and T is the transpose operation. This matrix is sparse matrix 

containing M × L entries. Through a column-wise scanning of Dn and sequencing the nonzero entries 
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onto the frequency axis according to the scanning order, the mono downmix signal and side 
information can be obtained via Algorithm 2. 

Figure 2 indicates the demixing procedure in accordance with an example of eight 
simultaneously occurring audio objects. Each square represents a time-frequency instant. The 
preserved TF components for each sound source (a total of 8 audio objects in this example) are 
represented by various color-block and shading. 
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Figure 2. Example of TF (Time-Frequency) instants extraction and de-mixing procedure with eight 
unique simultaneously occurring sources. 

Furthermore, the above-presented downmix processing guarantees the redistributed TF 
components locating in the nearby frequency position as their original position, which is 
prerequisite for subsequent Scalar Quantized Vector Huffman Coding (SQVH). Consequently, the 
downmix signal dn can be further encoded by SQVH technique. Meanwhile, the side information 
compressed via the Run Length Coding (RLC) and the Golomb-Rice coding [19] at about 90 kbps. 

2.5. Downmix Signal Compressing by SQVH 

SQVH is a kind of efficient transform coding method which is used in fixed bitrate codec 
[26–28]. In this section, SQVH with variable bitrate for encoding downmix signal is designed and 
described as follows. 

For the nth frame, the downmix signal dn attained in Algorithm 2 can be expressed as: 

(1), (2), , ( )n n n nd d d L≡   d
 (10) 

dn need to be divided into 51 sub-bands, each sub-band contains 20 TF instants, respectively 
(without considering the last 4 instants). The sub-band power (spectrum energy) is determined for 
each of the 51 regions and it is defined as root-mean-square (rms) value of coterminous 20 MDCT 
coefficients computed as: 

( )
=

= − +
20

2

1

1( ) 20( 1)
20rms n

l
R r d r l

 
(11) 

where r is region index, r = 0, 1, …, 50. The region power is then quantized with a logarithmic 
quantizer, 2(i/2+1) are set to be quantization values, where i is an integer in the range [−8, 31]. Rrms(0) is 
the lowest frequency region, which is quantized with 5 bits and transmitted directly in transmission 
channel. The quantization indices of the remaining 50 regions, which are differentially coded against 
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the last highest-numbered region and then Huffman coded with variable bitrates. In each sub-band, 
the Quantized Index (QI) value can be given by: 

( )( )  ⋅ − +  = +  ×   

20 1
( ) min ,

( )
n

r
rms stepsize

d r l
QI l b MAX

R r q
 

(12) 

where qstepsize is quantization steps, b is an offset value according to different categories,     denotes 

a round-up operation, MAX is maximum of MDCT coefficients corresponding to that category and l 
represents the lth vector in the region r. There are several categories designed in SQVH coding. The 
category assigned to a region defines the quantization and coding parameters such as quantization 
step size, offset, vector dimension vd and an expected total number of bits. The coding parameters for 
different category is given in Table 1. 

Algorithm 2: Downmix processing compression algorithm 
Input: Q ►number of audio objects 
Input: L ►frequency index 
Input: λ  ►downmix signal index 
Input: qS  ►k-sparse approximation signal of Sq 

Output: SIn ►side information matrix 
Output: dn ►downmix signal 

 
1. Initializeλ  = 1. 
2. Set SIn = 0, dn = 0. 
3. for l = 1 to L do 
4.  for q = 1 to Q do 
5.   if  ( , )qS n l  ≠ 0 then 

6.    = ( ) ( , )n qλ S n ld . 

7.    SIn(q, l) = 1. 
8.    Incrementλ . 
9.   end if 
10.  end for 
11. end for 
12. return dn and SIn 

Table 1. The coding parameters for different category. 

Categories qstepsize b MAX vd Bit Count 
0 2−1.5 0.3 13 2 52 
1 2−1.0 0.33 9 2 47 
2 2−0.5 0.36 6 2 43 
3 20.0 0.39 4 4 37 

As is depicted in Table 1, four categories are selected in this work. Category 0 has the smallest 
quantization step size and uses the most bits, but not vice-versa. The set of scalar values, QIr(l), 
correspond to a unique vector is identified by an index as follows: 

1
[ ( 1)]

0
( ) ( )( 1)

d
d

v
v j

index r d
j

v i QI i v j MAX
−

− +

=

= × + +
 

(13) 

where i represents the ith vector in region r and j is the index to the jth value of QIr(l) in a given vector. 
Then, all vector indices are Huffman coded with variable bit-length code for that region. Three types 
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of bit-stream distributions are given in the proposed method, whose performance is evaluated in 
next section. 

2.6. Decoding Process 

In decoding stage, MDCT coefficients recovery is an inverse operation of de-mixing procedure, 
thus it needs the received downmix signal and the side information as auxiliary information. The 
downmix signal is decoded by the same standard audio codec as used in the encoder and the side 
information is decoded by the lossless codec. Thereafter, all recovered TF instants are assigned to the 
corresponding audio object. Finally, all audio object signals are obtained by transforming back to the 
time domain using the IMDCT. 

3. Performance Evaluation 

In this section, a series of objective and subjective tests are presented, which aim to examine the 
performance of the proposed encoding framework. 

3.1. Test Conditions 

The QUASI audio database [29] is employed as the test database in our evaluation work, which 
offers a vast variety categories of audio object signals (e.g., piano, vocal, drums, vocal, etc.) sampled 
at 44.1 kHz. All the test audio data are selected from this database. Four test files are used for 
evaluate the encoding quality when multiple audio objects are active simultaneously. Each test file 
consists of eight audio segments which is created with the length of 15 s. In other words, eight audio 
segments representing eight different types of audio objects are grouped together to form a 
multi-track test audio file, where the notes are also different among the eight tracks. The MUltiple 
Stimuli with Hidden Reference and Anchor (MUSRHA) methodology [30] and Perceptual 
Evaluation of Audio Quality (PEAQ) are employed in subjective and objective evaluation, 
respectively. Moreover, there are 15 listeners who took part in each subjective listening test. A 
2048-points MDCT is utilized with 50% overlapping while adopting KBD window as window 
function. 

3.2. Objective Evaluations 

The first experiment is performed in the lossless transmission case, it means that both the 
downmix signal and the side information are compressed using lossless techniques. The Sparsity 
Analysis (SPA) multiple audio objects compression technique proposed in our previous work is 
served as reference approach [19] (named “SPA-STFT”) because of its superior performance. 
Meanwhile, the intermediate step given by SPA that uses the MDCT (named ‘SPA-MDCT’) is also 
compared in this test. The Objective Difference Grade (ODG) score calculated by the PEAQ of ITU-R 
BS.1387 is chosen as the evaluation criterion, which reflect the perceptual difference between the 
compressed signal and the original one. The ODG values vary from 0 to −4 with 0 being 
imperceptible loss in quality and −4 being a very annoying degradation in quality. What needs to be 
emphasized is that ODG scores cannot be treated as an absolute criterion because it only provide a 
relative reference value of the perceptual quality. Condition ‘Pro’ represents the objects encoded by 
our proposed encoding framework while condition ‘SPA-STFT’ and ‘SPA-MDCT’ are the reference 
approaches. Note that ‘SPA-STFT’ encoding approach exploits a 2048-points Short Time Fourier 
Transform (STFT) with 50% overlapping. 

Statistical results are shown in Figure 3 where each subfigure corresponds to an eight-track 
audio file. From each subfigure, it can be observed that the decoded signals through our proposed 
encoding framework has the highest ODG score compared to both the SPA and the MDCT-based 
SPA approach, which indicates that the proposed framework can cause less damage to audio quality 
compared to these two reference approaches.  
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(a) (b) 

(c) (d) 

Figure 3. ODG (Objective Difference Grade) Score for the proposed audio object encoding approach 
and the SPA (Sparsity Analysis) framework (both in the STFT (Short Time Fourier Transform) and 
MDCT domain). (a–d) represent the results for 4 multi-track audio files. 

In addition, the performance of the MDCT-based SPA approach is better than the SPA, which 
prove that the selection of MDCT as time-frequency transform is efficient. Furthermore, in order to 
observe the quality differences of decoded objects, the standard deviation of each file is given as 
follow: 

As illustrated in Figure 4, our proposed encoding framework has a lower standard deviation 
than the reference algorithms for each multi-track audio file. Hence, it proves that a more balanced 
quality of decoded objects can be maintained compared to the reference approaches. In general, this 
test validates that the proposed approach is robust to different kinds of audio objects. 

 
Figure 4. The standard deviation of ODG score of four multi-track audio files. 
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In the lossy transmission case, the downmix signal which generated by encoder is further 
compressed using the SQVH at 105.14 kbps, 112.53 kbps and 120.7 kbps, respectively. Each sub-band 
corresponds to a group of certain qstepsize, whose allocation for three types of bitrates can be calculated 
as shown in Table 2. 

Table 2. The qstepsize allocation for three types of bitrates. 

The Index of the Bitrate Sub-Band 
r

1~13 14~26 27~39 40~51 
105.14 kbps 2−1.5 2−1.0 2−0.5 20.0 
112.53 kbps 2−1.5 2−1.0 2−1.0 2−1.0 
120.7 kbps 2−1.5 2−1.5 2−1.5 2−1.5 

The ODG score in three types of bitrates are presented in Figure 5. Condition ‘Pro-105’, 
‘Pro-112’, ‘Pro-120’ correspond to compress downmix signal at 105.14 kbps, 112.53 kbps and 120.7 
kbps, respectively. It can be observed that the higher quantization precision leads to the better 
quality of decoded objects but the total bitrates increase as well. Therefore, we cannot pursuit a 
single factor such as high audio quality or low bitrate for transmission [25]. In consequence, we need 
to make a trade-off between audio quality and total bitrates in practical application scenarios. 

(a) (b)

(c) (d)

Figure 5. The ODG score of four multi-track audio files, where each file correspond to three types of 
bitrates. (a–d) represent the results for 4 multi-track audio files. 

3.3. Subjective Evaluation 

The subjective evaluation is further utilized to measure the perceptual quality of decoded object 
signals, which consists of four MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) 
listening tests. Sennheiser HD600 headphone is used for playback. Note that for the first three tests, 
each decoded object generated by the corresponding approach is played independently without 
spatialization.  
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The first test is the lossless transmission case, aims to make a comparison between our proposed 
encoding framework and the SPA algorithm. Four group multi-track audio files used in previous 
experiments are also treated as test data in this section. Condition ‘SPA’ means the reference 
approach (the same as condition ‘SPA-STFT’ in Section 3.2) and condition ‘Pro’ means the proposed 
framework. The original object signal is served as the Hidden Reference (condition ’Ref’) and 
condition ‘Anchor’ is 3.5 kHz low-pass filtered anchor signal. A total of 15 listeners participated in 
the test. 

Results are shown in Figure 6 with 95% confidence intervals. It can be observed that the 
proposed encoding framework achieves a higher score than the SPA approach with clear statistical 
significant differences. Moreover, the MUSHRA scores for the proposed framework achieve over 80 
indicating ’Excellent’ subjective quality compared to the Hidden Reference, which proves that the 
better perceptual quality can be attained compared to the reference approach. 

 
Figure 6. MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) test results for the SPA 
framework and the proposed framework with 95% confidence intervals. 

For lossy transmission case, the downmix signal encoded at 105 kbps via SQVH corresponds to 
‘Pro-105’. Condition ‘SPA-128’ means the reference approach whose downmix signal compressed at 
the bitrate of 128 kbps using the MPEG-2 AAC codec.  

Results are presented in Figure 7 with 95% confidence intervals. Obviously, our proposed 
encoding scheme has a better perceptual quality and a lower bitrate compared to the SPA approach. 
That is, when a similar perceptual quality is desired, the proposed method requires less total bitrate 
than the SPA approach. 

 
Figure 7. MUSHRA test results for the SPA method encoding at 128 kbps and the proposed approach 
at 105.14 kbps with 95% confidence intervals. 



Appl. Sci. 2017, 7, 1301 14 of 20 

Furthermore, we evaluate the perceptual quality of the decoded audio objects using our 
proposed approach, using MPEG-2 AAC to encode each object independently and using Spatial 
Audio Object Coding (SAOC). The MUSHRA listening test is employed with five conditions, 
namely, Ref, Pro-105, AAC-30, SAOC and Anchor. The downmix signal in condition ‘Pro-105’ is 
further compressed using SQVH at 105.14 kbps. Meanwhile, the side information can be compressed 
at about 90 kbps [19]. Condition ‘AAC-30’ is the separate encoding of each original audio object 
using the MPEG-2 AAC codec at 30 kbps, the total bitrate is almost the same as ‘Pro-120’ (30 
kbps/channel × 8 channels = 240 kbps). Condition ‘SAOC’ represents the objects are encoded by 
SAOC. The total SAOC side information rate of input objects is about 40 kbps (5 kbps per object), 
while the downmix signal generated by SAOC is compressed by the standard audio codec MPEG-2 
AAC at the bitrate of 128 kbps. 

It is demonstrated in Figure 8 that our proposed approach at 105 kbps possess the similar 
perceptual quality as separate encoding approach using MPEG-2 AAC. Yet the complexity of 
separate encoding is much higher than our proposed approach. Furthermore, both our proposed 
method and separate encoding approach attained a better performance compared with SAOC. 

 
Figure 8. MUSHRA test results for separate AAC (Advanced Audio Coding) encoding at 30 kbps, 
SAOC (Spatial Audio Object Coding) and our proposed approach at 105 kbps with 95% confidence 
intervals. 

The last test devotes to evaluate the quality of the spatial soundfield generated by positioning 
the decoded audio objects in different spatial locations, which stands for the real application 
scenario. Specifically, for each eight-track audio, which are positioned uniformly in a circumference 
with a center at the listener, i.e., the locations are 0°, ±45°, ±90°, ±135°, ±180°, respectively. A binaural 
signal (test audio data) is created by convoluting each independent decoded audio object signal with 
the corresponding Head-Related Impulse Responses (HRIR) [31]. The MUSHRA listening test is 
employed with 6 conditions, namely, Ref, Pro-105, SPA-128, AAC-30, SAOC and Anchor, which are 
the same as previous tests. Here, Sennheiser HD600 headphone is used for playing the synthesized 
binaural signal. 

It can be observed from Figure 9 that our proposed method can achieve a higher scores 
compared to all the rest encoding approaches. The results (Figures 8 and 9) also show that the 
proposed approach achieves a significant improvement over separate encoding method using 
MPEG-2 AAC for binaural rendering but not in the independently playback scenario. This is due to 
the spatial hearing theory, which reveals that in each frequency only a few audio objects located at 
different positions can be perceived by the human ear (i.e., not all audio objects are sensitive at same 
frequency). In our proposed codec, only the most perceptually important time-frequency instants 
(not all time-frequency instants) of each audio object are coded with a higher quantization precision, 
while these frequency components are important for HAS. The coding error produced by our codec 
can be masked by spatial masking effect to a great extant from the last experiment. However, 
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MPEG-2 AAC encodes all time-frequency instants with a relatively lower quantization precision at 
30 kbps. When multiple audio objects were encoded separately by MPEG-2 AAC, there are some 
coding error that cannot be reduced by spatial masking effect. Hence, the proposed approach shows 
significant improvements over condition ‘AAC-30’ for binaural rendering. 

From a series of objective and subjective listening test, we prove that the proposed approach 
can adapt to various bitrates conditions and it is suitable for encoding multiple audio objects in real 
application scenarios. 

 
Figure 9. MUSHRA test results with 95% confidence intervals for the soundfield rendering using 
separate AAC encoding at 30 kbps, SAOC, SPA and our proposed approach at 105 kbps. 

4. Conclusions 

In this paper, an efficiently encoding approach for multiple audio objects based on intra-object 
sparsity was presented. Unlike the existing STFT-based compression framework, statistical analysis 
validated that for the case of tonal solo instruments audio objects possess better energy 
concentration property in the MDCT domain so that MDCT is selected as basic transform in our 
encoding scheme. In order to achieve a balanced perceptual quality for all object signals, both 
psychoacoustic-based and energy balanced NPTF allocation strategy algorithm is proposed for 
obtaining the optimal MDCT coefficients of each object. Moreover, SQVH is utilized to further 
encode downmix signal at variable bitrates. Objective and subjective evaluations shows that the 
proposed approach outperforms the existing intra-object based approach and achieves a more 
balanced perceptual quality when eight simultaneously occurring audio objects were encoded 
jointly. The results also confirmed that the proposed framework attained higher perceptual quality 
compared to SAOC. Further research could include the investigation of relative auditory masking 
threshold, in order to acquire a better perceptual quality amongst all objects. 
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Appendix A. Sparsity Analysis of Audio Signal in the MDCT Domain 

Considering that the MDCT is a commonly used time-frequency transform in signal processing, 
the intra-object sparsity of audio signal in the MDCT domain should be investigated. Thus, a 
quantitative analysis for sparsity of audio signals both in the MDCT and STFT domain is given in 
this appendix. 

According to the k-sparsity theory interpreted in compressed sensing [32,33], a signal/sequence 
is regarded as (strict) k-sparse when it contains k nonzero entries with k « K, where K is the length of 
the signal or sequence. In addition, a sequence can be considered as an approximate k-sparse if k 
entries of the sequence occupy the majority of the total amount in magnitude, while the magnitude 
of other entries are remarkable small. In our previous work [19], we validated that an audio signal is 
not sparse in time domain, but its STFT coefficients in frequency domain fulfills the approximate 
k-sparsity. For this reason, STFT is selected as basic transform in our preceding designed object 
encoding system. The perceptual quality of the decoded signal can achieve a satisfactory level. 
However, STFT is not an optimum sparseness time-frequency transform. In consideration of the 
energy compaction property (i.e., a small number of TF instants capture the majority of the energy) 
of MDCT, therefore, approximate k-sparsity of audio signal in the MDCT domain will be 
investigated compared to that in the STFT domain by statistical analysis. 

Appendix A.1. Measuring the Sparsity of Audio Signal 

A time-frequency representations of an audio signal can be obtained by a linear transform. 
Specifically, for a general dictionary of atoms { }lD = φ , the linear representation of an audio signal 

sn(m) in nth frame can be defined by: 

( ) ( ) ( )
=

=
1

,
M

n l
m

S n l s m φ m  (A1) 

where n, m and l represent frame number, time index and frequency index, respectively. M is the 
length of each frame. Short-time Fourier Transform (STFT) basis functions and Discrete Cosine 
Transform (DCT) basis functions are ordinarily used as time-frequency atoms in speech and audio 
signal compression. DCT is widely used in audio coding mainly because of its energy compaction 
feature. Nevertheless, due to the blocking effect caused by the different quantitative level between 
frames, the processed signal cannot be perfectly reconstructed by IDCT. Evolved from DCT, MDCT 
has emerged as an efficaciously tool in high quality audio coding over the last decade because it 
helps to mitigate the blocking artifacts that deteriorate the reconstruction of transform audio coders 
with non-overlapped transforms [34]. It should be noted that MDCT can be taken as a filterbank 
with 50% overlapped window, hence, Time Domain Aliasing Cancellation (TDAC) must be 
exploited in the practical processing. Meanwhile, the chosen window function must satisfy the 
TDAC requirement. In this work, a Kaiser-Bessel derived (KBD) window [35] is chosen to meet the 
computing needs of TDAC and overlap-add algorithms. Particularly, for a finite-length audio signal 
whose MDCT coefficients are densely concentrated at low indices than the STFT (Short Time Fourier 
Transform) does, which is called “energy compaction” property [36]. With this prerequisite, a 
detailed comparative study and analyses of energy compaction feature (a.k.a. sparsity) of different 
audio objects in the STFT domain and MDCT domain is implemented. 

To measure and explore sparsity of audio signal in the time-frequency domain, a measurement 
addressed as Frame Energy Preservation Ratio (FEPR) and the Number of Preserved TF bins (NPTF) 
was proposed in [19]. Specifically, the sparse approximation signal of S(n, l), referred as S’(n, l), 
contains the maximum K* TF instants by preserving the portion of TF instants according to their 
amplitude of S(n, l) while setting the other TF instants to zero, which can be expressed by: 
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( ) ( ) ∈= 


, ,      if  
' ,

0,              otherwise
S n l l

S n l


 
(A2) 

where { }  *1 2, , ,
K

l l l , is the set of K* frequency indices corresponding to the maximum K* 

time-frequency instants. Thus, S’(n, l) is a K*-sparse signal. 
Suppose ( ) ( ) ≡  ,1 , , ,n S n S n Lθ  is the L-dimensional vector denotes the TF representation of 

the audio object signal in nth frame, ( ) ( )' ,1 , , ' ,n S n S n L ′ ≡  θ   is sparse approximation vector of 

nθ . Then, the Frame Energy Preservation Ratio (FEPR) can be given by: 

( )
′

1

1

=FEPR
n

n

r n
θ

θ
 

(A3) 

where 
p
 denotes the lp-norm. 

Afterwards, for arbitrary given *
FEPRr , if there exists a series of subset { }⊂ 1,2, ,i L , i = 1, 2, 

…, such that the corresponding sparse signal vector ( ) ( ) ′ ′ ′≡  , ,1 , , ,n i i iS n S n Lθ . The Number of 

Preserved TF instants (NPTF), written as k, is defined as a function of *
FEPRr : 

( )
 ′ ′ ≥ 
 

,* *1
, 0

1

=inf  , =1,2, ,n i
FEPR n i FEPR

n

k r r i
θ

θ
θ

 

(A4) 

where inf{·} represents the infimum. ( )*
FEPRk r  describes the least achievable preserved TF bins for 

arbitrary *
FEPRr . Especially, a lower ( )*

FEPRk r  with a certain *
FEPRr  means stronger sparsity for an 

audio signal.  

Appendix A.2. Statistical Analysis Results 

To reveal the superior properties of MDCT, in each frame, 315 mono audio recordings selected 
from University of Iowa Music Instrument Samples (Iowa-MIS) audio database [37] sampled at 44.1 
kHz and 100 mono speech recordings selected from Nippon Telegraph & Telephone (NTT) database 
are chosen as the test data. The selected audio recordings contain 7 types of tonal solo instruments. 
In this statistics work, a 2048-point STFT and MDCT basis with 50% overlapping is applied to form 
the time-frequency instants. Meanwhile, a KBD window with the size of 2048 points is used as the 
window function to meet the demand of overlap-add. A statistical analysis of NPTF is taken with the 
FEPR ranged from 98% to 80%. Results are shown in Figure A1 with 95% confidence intervals. Note 
that STFT-domain descriptions corresponding to instruments or speech are respectively denoted by 
‘Flute-STFT’, ‘Violin-STFT’, ‘Sax-STFT’, ‘Oboe-STFT’, ‘Trombone-STFT’, ‘Trumpet-STFT’, 
‘Horn-STFT’ and ‘Speech-STFT’. In contrast, MDCT-domain representations are respectively 
regarded as ‘Flute-MDCT’, ‘Violin-MDCT’, ‘Sax-MDCT’, ‘Oboe-MDCT’, ‘Trombone-MDCT’, 
‘Trumpet-MDCT’, ‘Horn-MDCT’ and ‘Speech-MDCT’. 
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Figure A1. NPTF (Number of Preserved Time-Frequency Bins) results calculated from eight types of 
audio signals in various FEPR (Frame Energy Preservation Ratio). 

Figure A1 indicates that by decreasing FEPR, the averaged NPTF degrades as well. More 
precisely, NPTF is a convex function as FEPR decreases uniformly in terms of all test instruments 
and speech, that is, audio object or speech signal are sparse both in STFT and MDCT domain. 
Furthermore, it shows that there exists a noticeable difference between adjacent light color and dark 
color bars, in other words, the averaged NPTF in the MDCT domain is much lower than that in the 
STFT domain for each instrument and speech with a certain FEPR. 

While the energy compaction property of MDCT is fairly intuitive, it becomes agnostic as the 
FEPR changes. To measure the disparity between the averaged NPTF for MDCT coefficients and 
STFT coefficients of audio signal with a known FEPR, a Normalized Relative Difference Ratio 
(NRDR) is defined as (k is NPTF and rFEPR is FEPR): 

( ) ( ) ( )
( )

−
= STFT MDCT

STFT

FEPR FEPR
FEPR

FEPR

k r k r
NRDR r

k r
 

(A5) 

where k(rFEPR)STFT and k(rFEPR)MDCT are the averaged NPTF for an audio signal in the STFT and MDCT 
domain with a certain FEPR, respectively. NRDR is the difference between them. The larger the 
NRDR is, means that the less NPTF needed in the MDCT domain. Then, a statistical bar graph is 
presented which reflects the relationship between NRDR and FEPR. 

Results are shown in Figure A2 with different NRDR at rFEPR = 98~80%. It can be observe that 
the NRDR of all tested audio signals are non-negative, which means that the averaged NPTF in the 
MDCT domain is higher than that in the STFT domain. This result testifies that the performance of 
MDCT is absolutely dominant for all of the tested 8 items. 

Interestingly, we find that NRDR is gradually increasing as rFEPR uniformly decrease from 98% 
to 88%. When 80% ≤ rFEPR ≤ 88%, the NRDR maintains at the same level or slightly grow. Videlicet, 
with the decrement of FEPR, the superiority of MDCT is becoming increasingly obvious. 

The next phenomenon needs to be noted is that the sparsity of violin and trumpet is 
particularly evident in the MDCT domain, because their NRDR can reach up to 60% when rFEPR = 
80% whilst other instruments can only achieve roughly 45%~55%. Besides, the sparseness of 
selected speech signals is weaker than all instruments in the MDCT domain but maintain 
consistency as far as the global regularity. 

Hence, the results in Figure A2 confirm that, for all tested signals, MDCT has a better energy 
compaction capability than STFT to the great extent. It means that audio or speech signal is more 
sparse in the MDCT domain than in the STFT domain.  
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Figure A2. NRDR (Normalized Relative Difference Ratio) of eight types of audio signals under STFT 
(Short Time Fourier Transform) and MDCT (Modified Discrete Cosine Transform) in various FEPR. 
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