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Abstract: A novel method for audio time stretching has been developed. In time stretching, the audio
signal’s duration is expanded, whereas its frequency content remains unchanged. The proposed time
stretching method employs the new concept of fuzzy classification of time-frequency points, or bins,
in the spectrogram of the signal. Each time-frequency bin is assigned, using a continuous membership
function, to three signal classes: tonalness, noisiness, and transientness. The method does not require
the signal to be explicitly decomposed into different components, but instead, the computing of phase
propagation, which is required for time stretching, is handled differently in each time-frequency
point according to the fuzzy membership values. The new method is compared with three previous
time-stretching methods by means of a listening test. The test results show that the proposed method
yields slightly better sound quality for large stretching factors as compared to a state-of-the-art
algorithm, and practically the same quality as a commercial algorithm. The sound quality of all
tested methods is dependent on the audio signal type. According to this study, the proposed
method performs well on music signals consisting of mixed tonal, noisy, and transient components,
such as singing, techno music, and a jazz recording containing vocals. It performs less well on music
containing only noisy and transient sounds, such as a drum solo. The proposed method is applicable
to the high-quality time stretching of a wide variety of music signals.
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1. Introduction

Time-scale modification (TSM) refers to an audio processing technique, which changes the
duration of a signal without changing the frequencies contained in that signal [1–3]. For example,
it is possible to reduce the speed of a speech signal so that it sounds as if the person is
speaking more slowly, since the fundamental frequency and the spectral envelope are preserved.
Time stretching corresponds to the extension of the signal, but this term is used as a synonym for TSM.
Audio time stretching has numerous applications, such as fast browsing of speech recordings [4],
music production [5], foreign language and music learning [6], fitting of a piece of music to a prescribed
time slot [7], and slowing down the soundtrack for slow-motion video [8]. Additionally, TSM is often
used as a processing step in pitch shifting, which aims at changing the frequencies in the signal without
changing its duration [2,3,7,9,10].

Audio signals can be considered to consist of sinusoidal, noise, and transient components [11–14].
The main challenge in TSM is in simultaneously preserving the subjective quality of these
distinct components. Standard time-domain TSM methods, such as the synchronized overlap-add
(SOLA) [15], the waveform-similarity overlap-add [16], and the pitch-synchronous overlap-add [17]
techniques, are considered to provide high-quality TSM for quasi-harmonic signals. When these
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methods are applied to polyphonic signals, however, only the most dominant periodic pattern of the
input waveform is preserved, while other periodic components suffer from phase jump artifacts at
the synthesis frame boundaries. Furthermore, overlap-add techniques are prone to transient skipping
or duplication when the signal is contracted or extended, respectively. To solve this, transients can be
detected and the time-scale factor can be changed during transients [18,19].

Standard phase vocoder TSM techniques [20,21] are based on a sinusoidal model of the
input signal. Thus, they are most suitable for processing of signals which can be represented as
a sum of slowly varying sinusoids. Even with these kind of signals however, the phase vocoder TSM
introduces an artifact typically described as “phasiness” to the processed sound [21,22]. Furthermore,
transients processed with the standard phase vocoder suffer from a softening of the perceived attack,
often referred to as “transient smearing” [2,3,23]. A standard solution for reducing transient smearing
is to apply a phase reset or phase locking at detected transient locations of the input signal [23–25].

As another approach to overcome these problems in the phase vocoder, TSM techniques using
classification of spectral components based on their signal type have been proposed recently. In [26],
spectral peaks are classified into sinusoids, noise, and transients, using the methods of [23,27].
Using the information from the peak classification, the phase modification applied in the technique
is based only on the sinusoidally classified peaks. It uses the method of [23] to detect and preserve
transient components. Furthermore, to better preserve the noise characteristics of the input sound,
uniformly distributed random numbers are added to the phases of spectral peaks classified as noise.
In [28], spectral bins are classified into sinusoidal and transient components, using the median filtering
technique of [29]. The time-domain signals synthesized from the classified components are then
processed separately, using an appropriate analysis window length for each class. Phase vocoder
processing with a relatively long analysis window is applied to the sinusoidal components. A standard
overlap-add scheme with a shorter analysis window is used for the transient components.

Both of the above methods are based on a binary classification of the spectral bins. However, it is
more reasonable to consider the energy in each spectral bin as a superposition of energy from sinusoidal,
noise, and transient components [13]. Therefore, each spectral bin should be allowed to belong to all of
the classes simultaneously, with a certain degree of membership for each class. This kind of approach
is known as fuzzy classification [30,31]. To this end, in [32], a continuous measure denoted as tonalness
was proposed. Tonalness is defined as a continuous value between 0 and 1, which gives the estimated
likelihood of each spectral bin belonging to a tonal component. However, the proposed measure alone
does not assess the estimation of the noisiness or transientness of the spectral bins. Thus, a way to
estimate the degree of membership to all of these classes for each spectral bin is needed.

In this paper, a novel phase vocoder-based TSM technique is proposed in which the applied
phase propagation is based on the characteristics of the input audio. The input audio characteristics
are quantified by means of fuzzy classification of spectral bins into sinusoids, noise, and transients.
The information about the nature of the spectral bins is used for preserving the intra-sinusoidal
phase coherence of the tonal components, while simultaneously preserving the noise characteristics
of the input audio. Furthermore, a novel method for transient detection and preservation based
on the classified bins is proposed. To evaluate the quality of the proposed method, a listening test
was conducted. The results of the listening test suggest that the proposed method is competitive
against a state-of-the art academic TSM method and commercial TSM software.

The remainder of this paper is structured as follows. In Section 2, the proposed method for fuzzy
classification of spectral bins is presented. In Section 3, a novel TSM technique which uses the fuzzy
membership values is detailed. In Section 4, the results of the conducted listening test are presented
and discussed. Finally, Section 5 concludes the paper.

2. Fuzzy Classification of Bins in the Spectrogram

The proposed method for the classification of spectral bins is based on the observation that,
in a time-frequency representation of a signal, stationary tonal components appear as ridges in the
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time direction, whereas transient components appear as ridges in the frequency direction [29,33].
Thus, if a spectral bin contributes to the forming of a time-direction ridge, most of its energy is likely
to come from a tonal component in the input signal. Similarly, if a spectral bin contributes to the
forming of a frequency-direction ridge, most of its energy is probably from a transient component.
As a time-frequency representation, the short-time Fourier transform (STFT) is used:

X[m, k] =
N/2

∑
n=−N/2

x[n + mHa]w[n]e−jωkn, (1)

where m and k are the integer time frame and spectral bin indices, respectively, x[n] is the input signal,
Ha is the analysis hop size, w[n] is the analysis window, N is the analysis frame length and the
number of frequency bins in each frame, and ωk = 2πk/N is the normalized center frequency of the
kth STFT bin. Figure 1 shows the STFT magnitude of a signal consisting of a melody played on the
piano, accompanied by soft percussion and a double bass. The time-direction ridges introduced by the
harmonic instruments and the frequency-direction ridges introduced by the percussion are apparent
on the spectrogram.
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Figure 1. Spectrogram of a signal consisting of piano, percussion, and double bass.

The tonal and transient STFTs Xs[m, k] and Xt[m, k], respectively, are computed using the median
filtering technique proposed by Fitzgerald [29]:

Xs[m, k] = median(|X[m− Lt

2
+ 1, k]|, ..., |X[m +

Lt

2
, k]|) (2)

and

Xt[m, k] = median(|X[m, k−
L f

2
+ 1]|, ..., |X[m, k +

L f

2
]|), (3)

where Lt and L f are the lengths of the median filters in time and frequency directions,
respectively. For the tonal STFT, the subscript s (denoting sinusoidal) is used and for the
transient STFT the subscript t. Median filtering in the time direction suppresses the effect of
transients in the STFT magnitude, while preserving most of the energy of the tonal components.
Conversely, median filtering in the frequency direction suppresses the effect of tonal components,
while preserving most of the transient energy [29].

The two median-filtered STFTs are used to estimate the tonalness, noisiness, and transientness of
each analysis STFT bin. We estimate tonalness by the ratio

Rs[m, k] =
Xs[m, k]

Xs[m, k] + Xt[m, k]
. (4)
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We define transientness as the complement of tonalness:

Rt[m, k] = 1− Rs[m, k] =
Xt[m, k]

Xs[m, k] + Xt[m, k]
. (5)

Signal components which are neither tonal nor transient can be assumed to be noiselike.
Experiments on noise signal analysis using the above median filtering method show that the tonalness
value is often approximately Rs = 0.5. This is demonstrated in Figure 2b in which a histogram of
the tonalness values of STFT bins of a pink noise signal (Figure 2a) is shown. It can be seen that the
tonalness values are approximately normally distributed around the value 0.5. Thus, we estimate
noisiness by

Rn[m, k] = 1− |Rs[m, k]− Rt[m, k]| =
{

2Rs[m, k], if Rs[m, k] ≤ 0.5

2(1− Rs[m, k]), otherwise.
(6)
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Figure 2. (a) Spectrogram of pink noise and (b) the histogram of tonalness values for its spectrogram bins.

The tonalness, noisiness, and transientness can be used to denote the degree of membership of
each STFT bin to the corresponding class in a fuzzy manner. The relations between the classes are
visualized in Figure 3.

Figure 4 shows the computed tonalness, noisiness, and transientness values for the STFT bins
of the example audio signal used above. The tonalness values in Figure 4a are close to 1 for the bins
which represent the harmonics of the piano and double bass tones, whereas the tonalness values are
close to 0 for the bins which represent percussive sounds. In Figure 4b, the noisiness values are close
to 1 for the bins which do not significantly contribute either to the tonal nor the transient components
in the input audio. Finally, it can be seen that the transientness values in Figure 4c are complementary
to the tonalness values of Figure 4a.
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Figure 3. The relations between the three fuzzy classes.
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Figure 4. (a) Tonalness, (b) noisiness, and (c) transientness values for the short-time Fourier transform
(STFT) bins of the example audio signal. Cf. Figure 1.

3. Novel Time-Scale Modification Technique

This section introduces the new TSM technique that is based on the fuzzy classification of spectral
bins defined above.

3.1. Proposed Phase Propagation

The phase vocoder TSM is based on the differentiation and subsequent integration of the analysis
STFT phases in time. This process is known as phase propagation. The phase propagation in the new
TSM method is based on a modification to the phase-locked vocoder by Laroche and Dolson [21].
The phase propagation in the phase-locked vocoder can be described as follows. For each frame in the
analysis STFT (1), peaks are identified. Peaks are defined as spectral bins, whose magnitude is greater
than the magnitude of its four closest neighboring bins.
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The phases of the peak bins are differentiated to obtain the instantaneous frequency for each
peak bin:

ωinst[m, k] = ωk +
1

Ha
κ[m, k], (7)

where κ[m, k] is the estimated “heterodyned phase increment”:

κ[m, k] =
[
6 X[m, k]− 6 X[m− 1, k]− Haωk

]
2π

. (8)

Here,
[
·
]

2π
denotes the principal determination of the angle, i.e., the operator wraps the input angle

to the interval [−π, π]. The phases of the peak bins in the synthesis STFT Y[m, k] can be computed by
integrating the estimated instantaneous frequencies according to the synthesis hop size Hs:

6 Y[m, k] = 6 Y[m− 1, k] + Hsωinst[m, k], (9)

The ratio between the analysis and synthesis hop sizes Ha and Hs determines the TSM factor α.
In practice, the synthesis hop size is fixed and the analysis hop size then depends on the desired
TSM factor:

Ha =
Hs

α
. (10)

In the standard phase vocoder TSM [20], the phase propagation of (7)–(9) is applied to all bins,
not only peak bins. In the phase-locked vocoder [21], the way the phases of non-peak bins are modified
is known as phase locking. It is based on the idea that the phase relations between all spectral bins,
which contribute to the representation of a single sinusoid, should be preserved when the phases
are modified. This is achieved by modifying the phases of the STFT bins surrounding each peak
such that the phase relations between the peak and the surrounding bins are preserved from the
analysis STFT. Given a peak bin kp, the phases of the bins surrounding the peak are modified by:

6 Y[m, k] = 6 X[m, k] +
[
6 Y[m, kp]− 6 X[m, kp]

]
2π

, (11)

where 6 Y[m, kp] is computed according to (7)–(9). This approach is known as identity phase locking.
As the motivation behind phase locking states, it should only be applied to bins that are

considered sinusoidal. When applied to non-sinusoidal bins, the phase locking introduces a metallic
sounding artifact to the processed signal. Since the tonalness, noisiness, and transientness of each bin
are determined, this information can be used when the phase locking is applied. We want to be able
to apply phase locking to bins which represent a tonal component, while preserving the randomized
phase relationships of bins representing noise.

Thus, the phase locking is first applied to all bins. Afterwards, phase randomization is applied to
the bins according to the estimated noisiness values. The final synthesis phases are obtained by adding
uniformly distributed noise to the synthesis phases computed with the phase-locked vocoder:

6 Y′[m, k] = 6 Y[m, k] + πAn[m, k](u[m, k]− 1
2
), (12)

where u[m, k] are the added noise values and 6 Y[m, k] are the synthesis phases computed with the
phase-locked vocoder. The pseudo-random numbers u[m, k] are drawn from the uniform distribution
U (0, 1). An[m, k] is the phase randomization factor, which is based on the estimated noisiness of the
bin Rn[m, k] and the TSM factor α:

An[m, k] =
1
4
[

tanh(bn(Rn[m, k]− 1)) + 1
][

tanh(bα(α−
3
2
)) + 1

]
, (13)

where constants bn and bα control the shape of non-linear mappings of the hyperbolic tangents.
The values bn = bα = 4 were used in this implementation.
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The phase randomization factor An, as a function of the estimated noisiness Rn and the TSM
factor α, is shown in Figure 5. The phase randomization factor increases with increasing TSM factor and
noisiness. The phase randomization factor saturates as the values increase, so that at most, the uniform
noise added to the phases obtains values in the interval [−0.5π, 0.5π].

Figure 5. A contour plot of the phase randomization factor An, with bn = bα = 4. TSM: time-scale
modification.

3.2. Transient Detection and Preservation

For transient detection and preservation, a similar strategy to [23] was adopted. However,
the proposed method is based on the estimated transientness of the STFT bins. Using the measure
for transientness, the smearing of both the transient onsets and offsets is prevented. The transients
are processed so that the transient energy is mostly contained on a single synthesis frame, effectively
suppressing the transient smearing artifact, which is typical for the phase vocoder based TSM.

3.2.1. Detection

To detect transients, the overall transientness of each analysis frame is estimated, and denoted as
frame transientness:

rt[m] =
1

N − 1

N−1

∑
k=1

Rt[m, k]. (14)

The analysis frames which are centered on a transient component appear as local maxima in the
frame transientness. Transients need to be detected as soon as the analysis window slides over them in
order to prevent the smearing of transient onsets. To this end, the time derivative of frame transientness
is used:

d
dm

rt[m] ≈ 1
Ha

(rt[m]− rt[m− 1]), (15)

where the time derivative is approximated with the backward difference method. As the analysis
window slides over a transient, there is an abrupt increase in the frame transientness. These instants
appear as local maxima in the time derivative of the frame transientness. Local maxima in the time
derivative of the frame transientness that exceed a given threshold are used for transient detection.

Figure 6 illustrates the proposed transient detection method using the same audio excerpt as above,
containing piano, percussion, and double bass. The transients appear as local maxima in the frame
transientness signal in Figure 6a. Transient onsets are detected from the time derivative of the frame
transientness, from the local maxima, which exceed the given threshold (the red dashed line in
Figure 6b). The detected transient onsets are marked with orange crosses. After an onset is detected,
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the analysis frame which is centered on the transient is detected from the subsequent local maxima in
the frame transientness. The detected analysis frames centered on a transient are marked with purple
circles in Figure 6a.
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Frame transientness rt
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-5

0

5

10
×10

-4 Time derivative of rt

(b)

Figure 6. Illustration of the proposed transient detection. (a) Frame transientness. Locations of the
detected transients are marked with purple circles; (b) Time derivative of the frame transientness.
Detected transient onsets are marked with orange crosses. The red dashed line shows the transient
detection threshold.

3.2.2. Transient Preservation

To prevent transient smearing, it is necessary to concentrate the transient energy in time.
A single transient contributes energy to multiple analysis frames, because the frames are overlapping.
During the synthesis, the phases of the STFT bins are modified, and the synthesis frames are relocated
in time, which results in smearing of the transient energy.

To remove this effect, transients are detected as the analysis window slides over them.
When a transient onset has been detected using the method described above, the energy in the
STFT bins is suppressed according to their estimated transientness:

|Y[m, k]| = (1− Rt[m, k])|X[m, k]|. (16)

This gain is only applied to bins whose estimated transientness is larger than 0.5. Similar to [23], the bins
to which this gain has been applied are kept in a non-contracting set of transient bins Kt. When it
is detected that the analysis window is centered on a transient, as explained above, a phase reset is
performed on the transient bins. That is, the original analysis phases are kept during synthesis for the
transient bins. Subsequently, as the analysis window slides over the transient, the same gain reduction
is applied for the transient bins, as during the onset of the transient (16). The bins are retained in the
set of transient bins until their transientness decays to a value smaller than 0.5, or until the analysis
frame slides completely away from the detected transient center. Finally, since the synthesis frames
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before and after the center of the transient do not contribute to the transients’ energy, the magnitudes
of the transient bins are compensated by

|Y[mt, kt]| =
∑m∈Z w2[(mt −m)Hs]

w2[0]
∑k∈Kt Rt[mt, k]

|Kt|
|X[mt, kt]|, (17)

where mt is the transient frame index, |Kt| denotes the number of elements in the set Kt, and kt ∈ Kt,
which is the defined set of transient bins.

This method aims to prevent the smearing of both the transient onsets and offsets during TSM.
In effect, the transients are separated from the input audio, and relocated in time according to the
TSM factor. However, in contrast to methods where transients are explicitly separated from the input
audio [13,14,28,34], the proposed method is more likely to keep transients perceptually intact with
other components of the sound. Since the transients are kept in the same STFT representation,
phase modifications in subsequent frames are dependent on the phases of the transient bins.
This suggests that transients related to the onsets of harmonic sounds, such as the pluck of a note
while strumming a guitar, should blend smoothly with the following tonal component of the sound.
Furthermore, the soft manner in which the amplitudes of the transient bins are attenuated during
onsets and offsets should prevent strong artifacts arising from errors in the transient detection.

Figure 7 shows an example of a transient processed with the proposed method. The original
audio shown in Figure 7a consists of a solo violin overlaid with a castanet click. Figure 7b shows the
time-scale modified sample with TSM factor α = 1.5, using the standard phase vocoder. In the modified
sample, the energy of the castanet click is spread over time. This demonstrates the well known
transient smearing artifact of standard phase vocoder TSM. Figure 7c shows the time-scale modified
sample using the proposed method. It can be seen that while the duration of the signal has changed,
the castanet click in the modified audio resembles the one in the original, without any visible
transient smearing.

(a)

(b)

(c)
Figure 7. An example of the proposed transient preservation method. (a) shows the original audio,
consisting of a solo violin overlaid with a castanet click. Also shown are the modified samples with
TSM factor α = 1.5, using (b) the standard phase vocoder, and (c) the proposed method.

4. Evaluation

To evaluate the quality of the proposed TSM technique, a listening test was conducted.
The listening test was realized online using the Web Audio Evaluation Tool [35]. The test subjects
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were asked to use headphones. The test setup used was the same as in [28]. In each trial, the subjects
were presented with the original audio sample and four modified samples processed with different
TSM techniques. The subjects were asked to rate the quality of time-scale modified audio excerpts
using a scale from 1 (poor) to 5 (excellent).

All 11 subjects who participated in the test reported having a background in acoustics, and 10 of
them had previous experience of participating in listening tests. None of the subjects reported
hearing problems. The ages of the subjects ranged from 23 to 37, with a median age of 28. Of the
11 subjects, 10 were male and 1 was female.

In the evaluation of the proposed method, the following settings were used: the sample
rate was 44.1 kHz, a Hann window of length N = 4096 was chosen for the STFT analysis
and synthesis, the synthesis hop size was set to Hs = 512, and the number of frequency bins in
the STFT was K = N = 4096. The length of the median filter in the frequency direction was 500 Hz,
which corresponds to 46 bins. In the time direction, the length of the median filter was chosen to
be 200 ms, but the number of frames it corresponds to depends on the analysis hop size, which is
determined by the TSM factor according to (10). Finally, the transient detection threshold was set to
td = 10−4 = 0.00010.

In addition to the proposed method (PROP), the following techniques were included: the standard
phase vocoder (PV), using the same STFT analysis and synthesis settings as the proposed method;
a recently published technique (harmonic–percussive separation, HP) [28], which uses harmonic
and percussive separation for transient preservation; and the élastique algorithm (EL) [36], which is
a state-of-the-art commercial tool for time and pitch-scale modification. The samples processed by
these methods were obtained using the TSM toolbox [37].

Eight different audio excerpts (sampled at 44.1 kHz) and two different stretching factors α = 1.5
and α = 2.0 were tested using the four techniques. This resulted in a total of 64 samples rated by each
subject. The audio excerpts are described in Table 1. The lengths of the original audio excerpts ranged
from 3 to 10 s. The processed audio excerpts and Matlab code for the proposed method are available
online at http://research.spa.aalto.fi/publications/papers/applsci-ats/.

Table 1. List of audio excerpts used in the subjective listening test.

Name Description

CastViolin Solo violin and castanets, from [37]
Classical Excerpt from Bólero, performed by the London Symphony Orchestra
JJCale Excerpt from Cocaine, performed by J.J. Cale
DrumSolo Solo performed on a drum set, from [37]
Eddie Excerpt from Early in the Morning, performed by Eddie Rabbit
Jazz Excerpt from I Can See Clearly, performed by the Holly Cole Trio
Techno Excerpt from Return to Balojax, performed by Deviant Species and Scorb
Vocals Excerpt from Tom’s Diner, performed by Suzanne Vega

To estimate the sound quality of the techniques, mean opinion scores (MOS) were computed for
all samples from the ratings given by the subjects. The resulting MOS values are shown in Table 2.
A bar diagram of the same data is also shown in Figure 8.

As expected, the standard PV performed worse than all the other tested methods. For the CastViolin
sample, the proposed method (PROP) performed better than the other methods, with both TSM factors.
This suggests that the proposed method preserves the quality of the transients in the modified signals
better than the other methods. The proposed method also scored best with the Jazz excerpt. In addition
to the well-preserved transients, the results are likely to be explained by the naturalness of the singing
voice in the modified signals. This can be attributed to the proposed phase propagation, which allows
simultaneous preservation of the tonal and noisy qualities of the singing voice. This is also reflected
in the results of the Vocals excerpt, where the proposed method also performed well, while scoring
slightly lower than HP. For the Techno sample, the proposed method scored significantly higher than

http://research.spa.aalto.fi/publications/papers/applsci-ats/
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the other methods with TSM factor α = 1.5. For TSM factor α = 2.0, however, the proposed method
scored lower than EL. The proposed method also scored highest for the JJCale sample with TSM
factor α = 2.0.

Table 2. Mean opinion scores for the audio samples. PV: phase vocoder; HP: harmonic–percussive
separation; EL: élastique algorithm; PROP: proposed method.

α= 1.5 α= 2.0
PV HP EL PROP PV HP EL PROP

CastViolin 1.8 3.8 3.6 4.1 1.4 3.6 3.3 4.1
Classical 2.3 3.5 3.7 3.3 1.6 3.0 3.7 2.8

JJCale 2.7 2.5 3.4 2.9 1.2 2.5 3.1 3.2
DrumSolo 1.5 3.5 3.2 2.3 1.7 2.4 2.5 1.8

Eddie 1.9 3.1 4.2 3.2 1.2 2.2 3.6 3.1
Jazz 1.9 3.6 3.4 3.6 1.5 3.3 2.7 3.7

Techno 1.3 2.7 3.3 4.1 1.6 2.5 3.1 2.7
Vocals 1.7 3.5 2.9 3.4 1.5 3.3 2.7 3.1

Mean 1.9 3.3 3.5 3.4 1.5 2.9 3.1 3.1

The proposed method performed more poorly on the excerpts DrumSolo and Classical. Both of
these samples contained fast sequences of transients. It is likely that the poorer performance is due to
the individual transients not being resolved during the analysis, because of the relatively long analysis
window used. Also, for the excerpt Eddie, EL scored higher than the proposed method. Note that the
audio excepts were not selected so that the results would be preferable for one of the tested methods.
Instead, they represent some interesting and critical cases, such as singing and sharp transients.

The preferences of subjects over the tested TSM methods seem to depend significantly on the
signal being processed. Overall, the MOS values computed from all the samples suggest that the
proposed method yields slightly better quality than HP and practically the same quality as EL.
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Figure 8. Cont.
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Figure 8. Mean opinion scores for eight audio samples using four TSM methods for (a) medium
(α = 1.5), and (b) large (α = 2.0) TSM factors. The rightmost bars show the average score for all
eight samples. PV: phase vocoder; HP: harmonic–percussive separation [28]; EL: élastique [36];
PROP: proposed method.

The proposed method introduces some additional computational complexity when compared to
the standard phase-locked vocoder. In the analysis stage, the fuzzy classification of the spectral bins
requires median filtering of the magnitude of the analysis STFT. The number of samples in each median
filtering operation depends on the analysis hop size and the number of frequency bins in each short
time spectra. In the modification stage, additional complexity arises from drawing pseudo-random
values for the phase randomization. Furthermore, computing the phase randomization factor, as in
Equation (13), requires the evaluation of two hyperbolic tangent functions for each point in the STFT.
Since the argument for the second hyperbolic tangent depends only on the TSM factor, its value needs
to be updated only when the TSM factor is changed. Finally, due to the way the values are used,
a lookup table approximation can be used for evaluating the hyperbolic tangents without significantly
affecting the quality of the modification.

5. Conclusions

In this paper, a novel TSM method was presented. The method is based on fuzzy classification
of spectral bins into sinusoids, noise, and transients. The information from the bin classification is
used to preserve the characteristics of these distinct signal components during TSM. The listening
test results presented in this paper suggest that the proposed method performs generally better than
a state-of-the-art algorithm and is competitive with commercial software.

The proposed method still suffers to some extent from the fixed time and frequency
resolution of the STFT. Finding ways to apply the concept of fuzzy classification of spectral
bins to a multiresolution time-frequency transformation could further increase the quality of the
proposed method. Finally, although this paper only considered TSM, the method for fuzzy classification
of spectral bins could be applied to various audio signal analysis tasks, such as multi-pitch estimation
and beat tracking.
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