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Abstract: In order to enhance the practicality of multi-wavelength erbium-doped fiber lasers
(MWEDFLs), a novel hybrid dual-ring configuration is proposed in this article, which can flatten the
outputs through an optical nonlinear-polarization-rotation-based ring cavity and stabilize the shifts
of power and central wavelength of oscillations through an electrical fuzzy-control-based feedback.
The experiment results show that, our scheme achieves more than 10 stable oscillations with the
dramatic improvements in flatness and working stability. Under dual-ring configuration, the output
intensity of MWEDFL reaches ~−7.5 dBm with the flatness of ±0.42 dB. And the in-stabilities in
terms of power and central wavelength are respectively constrained ±0.182 dBm and ±0.029 nm
within 10-h continuous operation.

Keywords: multi-wavelength erbium-doped fiber laser; nonlinear polarization rotation; hybrid
control; working stability; flatness

1. Introduction

Owing to high efficiency of erbium-doped fiber (EDF), multi-wavelength erbium-doped fiber
lasers (MWEDFLs) have become one of hot topics in optical fiber communication, sensing and testing
systems since the 1990s [1–4]. The first comb-filter-based MWEDFLs is reported by Chow which
operates at ultralow temperature (−77 K, liquid nitrogen) [5]. To overcome homogeneous broadening
of EDF, the generating methods of multi-wavelength fiber lasers operated at room temperature based
on stimulated Brillouin–Raman scattering [6], four-wave-mixing [7], polarization hole burning [8] and
nonlinear optical loop mirrors [9], etc., have been demonstrated. Moreover to enhance practicality,
some novel comb filters are continuously adopted in MWEDFLs, such as multimode fiber Bragg
gratings, in-fiber Mach–Zehnder interferometer and microfiber knot resonator [10–15]. However, the
flatness (uniform amplitude) and stability (peaking power and central wavelength) of the generated
oscillations are not ideal in MWEDFLs due to the effects of mode-competition and self-pulse.

On one hand, to improve the flatness, nonlinear polarization rotation (NPR) is frequently used in
the ring/linear-cavity-based MWEDFLs [16–22]. A typical NPR is generally formed by polarization
controllers (PCs), polarizer and a section of single-mode fiber (SMF). Under the enough power of
pump, NPR can efficiently constrain the mode-competition and equalize the intensity among different
oscillations through inducing a suitable wavelength- and intensity-dependent loss. In general, the
number of oscillations is positive, but the flatness is negative proportional to the pump power [17].
By finely adjusting PCs, the intensity difference of oscillations can be limited less than 1.4 dB [18].
On the other hand, to provide the stable outputs, Feng optimizes the operated parameters of optical
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passive devices (e.g., the length of polarization-maintenance fiber (PMF) and SMF) [19]. Quan focuses
on adjusting and optimizing the power of pumps [20]. Alimi and Han respectively introduce an optical
feedback loop and PMF-based loop mirror into the NPR-based MWEDFLs [21,22]. According to the
results in above articles, in a short period (~60 min), the power stability of MWEDFLs is maintained
within 0.7~2.0 dB and the wavelength shift is generally less than 0.08 nm. Nevertheless, it is worth
noting that the fluctuation of pump power and accumulation gain of EDF will be obvious with the
increase of operation time, and they surely impact the working stability of MWEDFLs [22–25].

To enhance practicality, we propose a novel dual-ring-configuration-based scheme to simultaneously
keep high flatness and stability within a long working term through hybrid optical-electrical control.
In optical ring, a NPR-based ring cavity is formed by a C-band (1520~1560 nm) broadband source
and a Lyot filter, and the high output power and flatness are obtained by optimizing the ratio of
coupler and pump power. In electrical ring, a dual-channel fuzzy-controller with flexibility and
robustness is introduced to simultaneously stabilize the power shift and wavelength shift of outputs by
accurately adjusting the power of pump. The experiment results show that, our scheme achieves more
than 10 stable oscillations in a MWEDFL with the dramatic improvements in flatness and working
stability. Under dual-ring configuration, the output intensity of MWEDFL reaches ~−7.5 dBm with the
flatness of ±0.42 dB. And the in-stabilities in terms of power and central wavelength are respectively
constrained ±0.182 dBm and ±0.029 nm within 10-h working period.

2. Principles and Setups

From Figure 1, the proposed MWEDFL is mainly composed of a broadband source (BBS), a comb
filter (i.e., Lyot filter) and an electrical monitoring and controlling system. In such hybrid dual-ring
configuration, BBS and Lyot filter form an optical ring cavity (denoted by Ring-1) to generate and
flatten multi-wavelength oscillations in the band of 1550 nm through connecting a section of SMF,
coupler (C1) and isolator. And the monitor and controller form an electrical negative-feedback ring
(denoted by Ring-2) to further stabilize the outputs of MWEDFL.
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In Ring-1, the BBS consists of a forward pump source (@974.9 nm, Oclaro, San Hose, CA, USA), 
a 980/1550 wavelength division multiplexor and a section of EDF (EDFC-980-HP-C, Nufern, East 
Granby, CT, USA) with fixed length. By a stable driver (LDC250C, Thorlabs, Newton, NJ, USA) and 
cooler (TED200C, Thorlabs, Newton, NJ, USA), the pump source can output the stable power of 
0~330 mW, and the corresponding output of BBS is about 0~100 mW. As shown in Figure 2a, the 
Lyot filter is made up two PCs, an isolator, a polarizer and a section of PMF (PM1017C, YOFC, 

Figure 1. Scheme of multi-wavelength erbium-doped fiber laser (MWEDFL) with dual-ring configuration.

2.1. Optical NPR-Based Control for Flattening

In Ring-1, the BBS consists of a forward pump source (@974.9 nm, Oclaro, San Hose, CA, USA), a
980/1550 wavelength division multiplexor and a section of EDF (EDFC-980-HP-C, Nufern, East Granby,
CT, USA) with fixed length. By a stable driver (LDC250C, Thorlabs, Newton, NJ, USA) and cooler
(TED200C, Thorlabs, Newton, NJ, USA), the pump source can output the stable power of 0~330 mW,
and the corresponding output of BBS is about 0~100 mW. As shown in Figure 2a, the Lyot filter is
made up two PCs, an isolator, a polarizer and a section of PMF (PM1017C, YOFC, Wuhan, China).
According to [19], the NPR effect will be generated in the combination of PC-SMF-PC-Polarizer and its
transmission (T) can be depicted as
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|T|2 = sin2 α1 sin2 α2 + cos2 α1 cos2 α2 +
1
2

sin(2α1) sin(2α2) cos(∆ϕ) (1)

where α1 and α2 are respectively the incidence angle and emergence angle between the input light
and SMF, and ∆ϕ denotes the summary of phase difference induced by PC (∆ϕPC), PMF (∆ϕPMF)
and SMF (∆ϕSMF). Further, ∆ϕPMF = 2πLp·∆n/λ (where Lp is the length of PMF, ∆n the refractive
index difference), and ∆ϕSMF = −2γLsP·cos2α1/3, where γ and Ls is the nonlinear factor and length
of SMF, P is the pump power. We then set P = 100 mW, λ = 1550 nm, ∆n = 0.00057, γ = 3W−1km−1,
LP = 10 m, α1=π/3, α2 = 5π/6, and the calculated transmission spectrum is shown as Figure 2b.
The spectral-spacing is determined by ∆λ = λ2/∆nLp and its value is ~0.44 nm. Moreover, a section of
SMF (SMF-28e, Corning, Corning, NY, USA) with the length of 3.3 km is added to further enhance the
non-uniformity of optical ring cavity.
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Under the enough pump power, the Lyot filter can be viewed as a saturable absorber and bring the
inhomogeneous wavelength- and intensity-loss to alleviate the mode competition of oscillations caused
by the homogeneous gain broadening of EDF. Consequently, the intensity among the oscillations is
automatically balanced, and the flat outputs of MWEDFL will be observed by an optical spectrum
analyzer (81642B, Angilent, Santa Clara, CA, USA) or a power meter (1830c, Newport, Irvine, CA, USA).

2.2. Electrical Control for Working Stability

In order to reduce the impacts from the fluctuation of pump power and accumulation gain of
EDF, a dual-channel fuzzy-control scheme is adopted to stabilize the outputs of MWEDFL in a long
and short working term. As shown in Figure 3, the input light from the coupler C2 enters the monitor.
There are two channels in the designed monitor to respectively test the shifts of mean power and
central wavelength of oscillations. A tunable Fabry-Perot filter (1554A, NewFocus, Newport, Irvine,
CA, USA) is used in the wavelength-channel to lock the selective oscillation. The intensity changes
of oscillations (denoted by λ-shift and P-shift, respectively) will be monitored by detector D1 and
D2 (PDB450A, Thorlabs). After current-voltage (I/V) transform and amplifying, the sampled signals
enter the differential amplifier diff -1 and diff -2, and the corresponding errors eλ and eP will be gained
through a subtraction operation with the set aim voltages (denoted by aim-1 and aim-2, respectively).

Fuzzy rule base is the essence of the designed one-level controller and it will deliver the factors
(denoted by ελ and εP, respectively) to negatively feedback the shifts in terms of wavelength and mean
peaking power, according to the values of eλ and eP. Set the membership of eλ and eP belonging to
the subset: {High, MH (middle-high), N (normal), ML (middle-low), Low}, and the membership of
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ελ and εP belonging to the subset: {PL (positive large), PM (positive middle), O (zero), NM (negative
middle), NL (negative large)}. Concretely, the circuit of controller is shown in Figure 3, which is mainly
composed of microcontroller unit (MCU), gain turning buttons and display. MCU (STM32F103C8T6)
is the core of circuit and it conducts the digital subtraction operation, fuzzy control and outputs the
feedback current. The output current can be displayed and amplified by the gain turning buttons
in the range of 1~103. Moreover, we fabricate a new line with D-type 9-pin connector and input the
current from driver into the circuit of controller. Finally, through a high precision amplifier (AD620),
the feedback current and driving current are added and outputted.
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Figure 3. Scheme of dual-channel fuzzy controller, D1/D2: detector, A: amplifier, diff -1/diff -2: differential
amplifiers, MCU: microcontroller unit.

Further, assuming the current of driver is Id, the feedback currents (Ic) for λ-shift and P-shift are
then presented as

Iλ = −a1ελ · I0 (2)

IP = −a2εP · I0 (3)

where a1 and a2 are the gain factors, I0 is the minimum of feedback current, accordingly Ic = Iλ + IP.
And through an adder, the output current Idc will be

Idc = Id + Ic = Id − (a1ελ + a2εP)I0 (4)

So, in the electrical Ring-2, Idc is the final driving current for pump source and its value will be
dynamically adjusted to enhance the working stability of MWEDFL. It is noted that the fuzzy rule base
should be determined by the detailed eλ and eP, and it will be depicted in Section 3.

3. Experiments and Results

We set the length of EDF is 11 m, LPMF = 9.8 m, LSMF = ~3.3 km, the ratio of C2 (denoted by R2) is
10/90, and the pump source operates in the range of 0~180 mW. Specially, the ratios of C1 (denoted by
R1) are 10/90, 20/80 and 50/50, respectively. We then set up a MWEDFL according to Figure 1 and
conduct the comprehensive tests with respects to flatness and stability. Besides, the total connecting
loss is smaller than 1.5 dB, and the room temperature is kept at 26 Celsius in experiments.

3.1. Optimization of Parameters and Flatness through Optical Ring Cavity

First of all, by varying pump power and R1, the outputs of MWEDFL are given in Figure 4
without electrical feedback. From Figure 4a, the mean output power is linearly increased with the
raise of pump power, and when R1 = 50/50 the maximum always occurs in the pumping range of
0~180 mW, obviously. Additionally, according to the results in Figure 4b–d, the smallest intensity
difference (~2.87 dB) also occurs when R1 = 50/50. Comparatively, the similar but larger intensity
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differences (>4 dB) are presented when R1 = 10/90, 20/80. In result the optimal output power and
spectral flatness are obtained when R1 = 50/50, although the number of oscillations is smaller.
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Under the condition of R1 = 50/50, the output characteristics of MWEDFL are tested by varying
pump power. From Figure 5a, the oscillation number is quickly increased in the range of P = 0~70 mW,
but it is slowly and nonlinearly raised when P > 90 mW. Figure 5b shows the similar results also occur
in term of mean intensity. Moreover, the stimulated green light with the central wavelength of 546 nm
(may due to the excited state absorption in EDF [26]) is found and linearly increased with the addition of
pump power (see Figure 5b). We then select P = 113 mW to get a trade-off among the oscillation number
(>10), intensity (~−7.5 dBm) and power of green light (<0.05 mW). Furthermore, the output spectrum
of MWEDFL is flattened through accurately adjusting PCs position and pump power. As shown in
Figure 6a, in the range of 1556.2~1560.7 nm there are 11 stable oscillations generated with an interval
of 0.434 nm and the intensity difference reaches ±1.54 dB within 3-dB bandwidth. Comparatively,
we gain the ±0.42-dB flatness through a fine adjustment and the improvement of flatness is 72.7%
(= |±0.42−±1.54|

|±1.54| ) by calculation. Additionally from Figure 6b the side mode suppression ratio reaches
over 30 dB.
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3.2. Improvement of Working Stability by Electrical Feedback Control

In this section, we set P = 113 mW, R1 = 50/50, R2 = 10/90, and Ic = 0, the working stabilities
of MWEDFL are then tested in long and short terms, respectively. We find an obvious blue-shift
occurs in the observed oscillation (@1560.46 nm) within a continuous 10-h (i.e., 600 min) operation.
From Figure 7a, the total λ-shift is about ±0.1 nm. And in Figure 7b the λ-shift in the short working
term (50 min) is less than ±0.07 nm. It means that the λ-shift of oscillations is small and stable in our
designed MWEDFL. We define the change of λ-shift (denoted by ∆λ) is

∆λ =
eλ

eλ0
(5)

where eλ0 is the base line of λ-shift. We according to the results in Figure 7a,b set eλ0 = 0.08 nm,
and the corresponding fuzzy subset of ∆λ is {MH (middle high), N (normal), ML (middle low)}.
Its membership is shown as Figure 7c. Similarly, the changes of mean power in long and short working
terms are presented in Figure 8a,b. The results show that the power fluctuation is over 1.0 dB but
uniform within 10-h operation. Comparatively, there are some unexpected raises during the short-term
testing and the total power shift also reaches ~1.0 dB. This indicates the P-shift of oscillations should
be much concerned in MWEDFLs.
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We define the change of P-shift (denoted by ∆P) is

∆P =
eP
eP0

(6)
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where eP0 is the base line of P-shift. Further we set eP0 = 0.6 dB according to the results in Figure 8a,b,
and the corresponding fuzzy subset of ∆P is {H (high), MH (middle high), N (normal), ML (middle low),
L (low)}. Its membership is shown as Figure 8c. Furthermore, we respectively set the fuzzy subsets of
ελ and εP are {PM, O, NM} and {PL, PM, O, NM, NL}, and their corresponding memberships are shown
in Figure 9. Consequently, the fuzzy rule bases for λ-shift and P-shift are given in Tables 1 and 2.
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Table 1. Fuzzy Rule base of λ-shift.

∆λ ελ

MH NM
N O

ML PM

Table 2. Fuzzy Rule base of P-shift.

∆P εP

H NL
MH NM
N O

ML PM
L PL

We then set a1 = a2 = 6.9 × 102 and I0 = 0.003 mA, so in the controller the value of Iλ is in the
range of 0~±2.07 mA, and IP is in the range of 0~±5.18 mA. Under the electrical feedback controlling,
the working stabilities of MWEDFL are demonstrated in Figure 10. Obviously, the blue-shift of central
wavelength is efficiently constrained. From Figure 10a,b, the long-term (10-h) and short-term (50-min)
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stabilities of wavelength shift are respectively ±0.029 nm and ±0.022 nm in our scheme. Furthermore,
compared to the results in Figure 8, the power stability is dramatically improved by electrical controller.
In Figure 10c,d, the power-shift is limited ±0.182 dBm within 10-h period and the short-term shift of
power reaches ±0.141 dBm. By calculation the improvements of stability in terms of wavelength-shift
and power-shift respectively reach 64.2% (= (1− 0.029

eλ0
)× 100%) and 69.7% (= (1− 0.182

ep0
)× 100%) in

our dual-ring configuration.
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4. Conclusions

In a NPR-based ring-cavity MWEDFL, an electrical feedback control is introduced to improve the
long- and short-term stability with respects to power and central wavelength. Under the optimal pump
power and coupling ratio, we alleviate the stimulated green light and gain a −7.5 dBm mean intensity
of oscillations with the flatness of ±0.42 dB. Through an electrical fuzzy-control-based feedback,
the wavelength shift of MWEDFL is constrained in 0.03 nm and its power shift is less than 0.2 dBm
within 10-h continues operation. With this hybrid automatic control, the improvements of stability in
central wavelength and power are 64.2% and 69.7%, respectively. This is a very promising technology
for practicality of multi-wavelength optical fiber laser.
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