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Abstract: Dynamic properties such as natural frequencies and mode shapes are directly affected
by damage in structures. In this paper, changes in natural frequencies and mode shapes were
used as the input to various objective functions for damage detection. Objective functions related
to natural frequencies, mode shapes, modal flexibility and modal strain energy have been used,
and their performances have been analyzed in varying noise conditions. Three beams were analyzed:
two of which were simulated beams with single and multiple damage scenarios and one was an
experimental beam. In order to do this, SAP 2000 (v14, Computers and Structures Inc., Berkeley, CA,
United States, 2009) is linked with MATLAB (r2015, The MathWorks, Inc., Natick, MA, United States,
2015). The genetic algorithm (GA), an evolutionary algorithm (EA), was used to update the damaged
structure for damage detection. Due to the degradation of the performance of objective functions in
varying noisy conditions, a modified objective function based on the concept of regularization has
been proposed, which can be effectively used in combination with EA. All three beams were used to
validate the proposed procedure. It has been found that the modified objective function gives better
results even in noisy and actual experimental conditions.

Keywords: dynamic properties; objective functions; evolutionary algorithm; regularization;
noisy conditions

1. Introduction

Structural identification of constructed systems typically requires the integration of structural
conceptualization, finite element (FE) modeling, experimental execution, data processing, model
calibration, simulation, interpretation and decisions [1]. Experimental responses are related to the
physical properties of the system, and changes in these physical quantities are reflected as a change
in the experimental responses. Therefore, in order to identify the actual physical characteristics of
structures, it is necessary to carry out field tests and measure the resulting responses to correlate and
validate the associated FE models. Both static and dynamic tests can be carried out on the actual
structure for structure assessment.

FE models are mathematical models that provide a means of predicting characteristic responses of
structures without actually building them. In FE models, the continuous domain of the actual physical
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structure with infinite degrees of freedom (DOF) is discretized into small components called FEs. These
models have been extensively used in industrial and research applications as they give a reasonable
representation of the actual structure, but they are prone to certain inaccuracies and errors [2]. Structure
health monitoring (SHM) is defined as tracking the structural responses, possibly along with inputs,
over a sufficiently long duration to determine deterioration, anomalies and damage in a structure,
in order to make optimal decisions for asset management [3]. More specifically, the responses of the
system should be measured in such a way that any operational incidents, damage or anomalies that
can affect the serviceability and reliability of the structure are detected [4]. Model updating is a branch
of optimization wherein the differences in the experimental responses and their FE model counterparts
are minimized using mathematical techniques.

Generally, in model updating and damage assessment problems, not only is a good correlation
required between experimental and analytical results, but also the updated parameters should have
physical significance. The success of model updating is dependent on three key factors, setting up of
the objective function, the selection of parameters and a robust optimization algorithm [5]. A proper
objective function is necessary to effectively minimize the difference between the experimental and
analytical results. Selection of parameters is an important issue as there may be many sets of parameters
that can produce acceptable results. A robust optimization algorithm is required to find the minimum
in the search space. The algorithm should be able to find a global minimum out of many local minima
with precision and accuracy.

The key step is to define residual vectors for the experimental and analytical values in terms
of experimental frequencies and mode shapes. The residual vectors lead to objective functions that
can contain different criteria for finding out the discrepancies between the experiment and FE model
such as differences of frequencies, model coordinates, modal assurance criteria (MAC), coordinate
modal assurance criteria (COMAC) and others [6]. It is the goal of optimization to minimize the
error residual to determine a set of physically-justifiable parameters [7]. The outcome of a model
updating application to a constructed system should be an analytical model that can replicate the
actual mechanical characteristics of the built structure with a good level of confidence.

Damage detection of civil structures is a difficult optimization problem. The algorithm capability
and search domain complexity are the two main aspects to be considered [8]. The sensitivity method
(SM) is traditionally used for model updating and damage assessment, but it is prone to be attracted to
local minima, which may lead to a solution with no physical significance. In certain cases, manual
model updating has to be done in SM, and even then, the global solution is not confirmed [9]. Different
objective functions have also been tried using SM. Commonly-used objective functions using SM
include both natural frequencies and MAC-based objective functions [10]. Further, FE model updating
and damage detection have also been tried with SM using objective functions based on strain energy
residuals [11] and modal flexibility [12].

To alleviate the issues associated with SM being attracted to local minima instead of global
minima in difficult optimization problems, global optimization algorithms (GOAs) have received the
attention of researchers [13]. The main difference between the two approaches is that SM works on
a single point, whereas GOAs work in parallel on many points consecutively [14,15]. Evolutionary
algorithms (EAs) are part of GOAs, which deal with mechanisms inspired by biological evolution
such as cross over, mutation and selection. In the context of model updating and damage detection,
several studies have been conducted using different objective functions with GOAs such as genetic
algorithm (GA) [15–18], simulated annealing (SA) [19] and particle swarm optimization (PSO) [20].
GA was applied to a simulated beam, as well as a frame structure using frequencies and MAC-based
objective functions to efficiently detect damage [16,17]. Multiobjective GA was also used to detect
damage in a simulated beam and signature bridge structure based on MAC and flexibility-based
objective functions [21]. However, due to the simplification of a 3D model to a 2D model, the first three
vertical modes were matched, and torsional modes were not included in model updating. Furthermore,
multiobjective multicriteria GA was studied for damage detection and estimation using MAC and
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flexibility-related objective functions [18]. A numerical beam and wing plate experimental structure
was also investigated using both GA and SA with the frequency response function (FRF)-based
objective function [19], and a new bended SA algorithm was also proposed for improvement of the
results. Damage detection in thin plates based on modal data using a PSO-GA-based approach has
been presented by Vaez and Fallah [22]. In a study, breeder GA was also used for an adaptive FE model
for dome structures [23]. Another study [24] proposed hybrid GA and SA to improve the solution
and convergence. A multiobjective formulation has also been developed for FE model updating using
GA [25]. PSO was also used for assessment of beam and truss structures using the frequency-based
modal residual [20,26]. Modeling errors were also investigated using GA and PSO in a multiobjective
sense for damage estimation using frequency and mode shape residuals [27].

Ill-conditioning is a topic of concern in the FE model updating procedure. In the case of an
ill-conditioned system and measurement noise, the system parameters in different sets can produce
the same set of responses at distinct locations of the search space; hence, the solution cannot be
affirmed as unique. Three remedies are introduced to overcome the ill-conditioning of the problem,
i.e.: (i) modification of the space of the system parameters; (ii) modification of measured data;
and (iii) modification of the error function [28]. The first two remedies are about the relationship
between the number of parameters and measured data. The first remedy calls for a reduction in the
number of uncertain parameters for model updating. The most commonly-used approach is grouping
similar elements into one parameter [29]. Efforts to increase the number of independent vibration
responses have been made in pursuit of the second remedy [30] by using laser vibrometry or by testing
the structure in different configurations [31].

Diverse inverse problems have been attempted by adopting the third remedy, called a
regularization technique [28,32]. Regularization techniques make use of the prior information to
get an additional check for the minimization problem by modifying the error function. The unknown
parameters are assumed to be closer to the known nominal values. The solution space, for example,
is directly reduced by setting the upper limits in close proximity to the baseline characteristics. It is
done by incorporating a weighted norm of the parameter changes to keep the parameter changes small.
The most usual form is known as the Tikhonov regularization [33], as it was introduced to resolve the
ill-conditioning of systems with the aim to control the condition number of the problem. Addressing
the ill-conditioning using a regularization technique is a topic of interest in FE model updating
problems. Sensitivity-based regularization techniques have been explored in this context by various
researchers. Ahmadian et al. [34] addressed the problem by incorporating side constraints and used
singular value decomposition, generalized cross-validation (GCV) and L curves for the determination
of the regularization parameter. The L curve approach and the generalized singular value approach are
used reliably to get updated parameters with physical understanding. Weber et al. [35] investigated
structural damage detection with Tikhonov regularization, and Weber et al. [36] introduced consistent
regularization for a non-linear model updating problem. Further studies of regularization techniques
in model updating include Titurus and Friswell [37] and Mottershead et al. [38]. In these studies,
the sensitivity-based updating with a special focus on optimization of the response prediction
and a priori information about the uncertain parameters has been investigated with the help of
an additional regularization criterion. Chen and Muang [39] investigated dynamic perturbation
theory for incomplete noisy modal data and used the L-curve approach for regularization parameter
determination. Entezami et al. [40] proposed a new sensitivity-based damage detection method in
which an improved sensitivity function related to modal strain energy and modified GCV is presented.
Grip et al. [41] proposed a new regularization method that is based on the minimization of total
variation on sensitivity-based model updating.

GA, an EA, has been used in this research to exploit the search space fully instead of
sensitivity-based local search optimization. For efficient damage detection, an effective objective
function is needed to match the experimental data with the analytical predictions. Therefore, to harness
the benefits associated with EA and to handle ill-conditioning using the concept of regularization,
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this paper aims to propose a new objective function using EA. Initially, the performance of different
objective functions has been compared for damage detection in noisy conditions to select the best
objective function. The updated parameters may not turnout to be necessarily realistic in noisy
conditions, thus making damage detection difficult. Therefore, an additional regularization criterion
has been proposed especially in noisy conditions to assess the damage correctly. In Section 2, theories
related to objective functions, noise additions, mass normalization and regularization using EA are
detailed. In Section 3, the different objective functions are compared in terms of their efficiency
in damage assessment of two simulated beams and one experimental beam, and the proposed
regularization has been applied. The results are analyzed and conclusions are drawn from the current
study finally.

2. Theoretical Background

To assess the quality of the analytical model with respect to experimental data, correlation is
normally the first step. It is a usual practice to correlate the analytical model results with experimental
results to see if the analytical model is in reasonable agreement and can be updated in a reasonable
way [42]. In dynamic modal updating, the modal data of the FE model are compared with modal
data obtained from the experiment. The following are the commonly-used techniques to correlate the
analytical and experimental data (such as frequencies and mode shapes) for model updating.

2.1. Objective Functions

In this research, a combination of objective functions related to the natural frequencies and mode
shapes has been used.

2.1.1. Natural Frequency

The frequency difference between the experimental and analytical frequencies is given as:

F1 =
n

∑
i=1

[(ωa,i −ωe,i)/ωe,i]
2 (1)

where n is total number of modes, subscript a and e represent analytical and experimental counterparts,
respectively, n is the number of measured modes and ω is the natural frequency of the mode in question.

2.1.2. Mode Shape

Numerous studies have indicated that the location of damage can be detected using the changes
in mode shape. MAC is used to compare the modal vectors quantitatively. Its value is limited between
zero and one, with one representing fully-consistent mode shapes and zero representing inconsistent
mode shapes.

For two modes φj and φ∗j , the MAC value is given as:

MAC =
|φ′jφ∗j |2

(φ′jφj)(φ
∗′
j φ∗j )

(2)

where φj and φ∗j are the mode shapes of an undamaged and a damaged structure, respectively. For a
given structure, if a MAC value obtained from a comparison of two mode shapes deviates from one,
it can be taken as an indication of damage in the structure.

The MAC-related objective function used in the current study is defined [43] as:

F2 =
n

∑
i=1

(
1−
√

MACi
)2

MACi
(3)
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The correlation between two modes and the use of MAC values have been outlined by
Allemang [2]. For a shell structure, Srinivasan and Kot [3] found that if mode shape changes, it gives a
more sensitive indication of damage as compared to a change in resonant frequencies.

2.1.3. Modal Flexibility

The dynamically-measured flexibility matrix can be used to estimate the damage in the actual
structure. It actually is the inverse of the stiffness matrix and replicates the applied force and structural
displacement relationship. Each column represents nodal displacements when a unit force is applied
at one of the DOF. The flexibility matrix may be calculated from the lower vibration modes as:

F =
1

ω2
j

φjφ
′
j (4)

F∗ =
1

ω∗2j
φ∗j φ∗′j (5)

where F and F* are the flexibility matrices of a undamaged and a damaged structure, ωj is the frequency
of a particular mode, φ is the mass normalized mode shape and asterisks show properties of the
damaged structure. The diagonal values of the matrices obtained using Equations (4) and (5) has been
taken, and flexibility based modal assurance criteria (FMAC) is formulated as:

FMAC =
|ϕjϕ

∗
j |

2

(ϕ′jϕj)(ϕ
∗′
j ϕ∗j )

(6)

where ϕj and ϕ∗j represent the diagonal values of the flexibility matrices obtained from
Equations (4) and (5), respectively.

The objective function is then formulated to calculate FMAC between F and F* as:

F3 =
n

∑
i=1

(
1−
√

FMACi
)2

FMACi
(7)

where FMAC represents the change in the flexibility matrix due to damage formulated in light
of Equation (3).

2.1.4. Strain Energy

Another index sensitive to damages is modal strain energy (MSE). In this method, damage in a
region is located between two structural DOFs if a decrease in strain energy is caused. A change in
strain energy has an inverse relation with the damage in the structure. MSE for a particular mode for a
healthy and a damaged structure is given as:

MSE = φ′jKφj (8)

MSE∗ = φ∗′j Kφ∗j (9)

where MSE is the healthy-simulated strain energy for the j-th mode shape and MSE* is
thedamage-simulated strain energy for the j-th mode shape.

Therefore, for the undamaged and damaged structure, the difference in MSE is shown as:

F4 =
n

∑
i=1
|φ∗′i Kφ∗i −φ′iKφi| (10)
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The combined objective function is given as:

∏1 = F1 + F2

∏II = F1 + F3

∏III = F1 + F4

(11)

Minimization of these functions will maximize the correlation of the experimental and analytical
model. Furthermore, the Objective Functions II and III require mode shapes to be expanded (to address
the mismatch between the DOF in the FE model and experimental data), which has been done using
the expansion using modal data (EMD) technique [42].

2.1.5. Noise Addition and Mass Normalization

To investigate the behavior of different objective functions in noisy conditions, random noise has
been added as:

Φj = Φj (1 + αnoiseε) (12)

where αnoise is the degree of noise being added, ε represents a random number between −1 and +1,
and ‘j’ is the component to which noise has been added. The approach has been investigated in eight
noise conditions, i.e., 1%, 3%, 5% and 10%in both frequencies and mode shapes and 1%, 3%, 5% and
10% in mode shapes only [16].

The random noise was added using the MATLAB command rand, which uses a standard uniform
distribution. Furthermore, for noise addition of 1% to the modal data, the αnoise value has been taken
as 0.01 in Equation (12). The noise has been added in the frequencies and mode shapes with respect to
the noise-free case. Furthermore, the investigations were done in the frequency domain instead of the
time domain in this paper; therefore, noise has been directly added to the frequency domain data.

Normalization is a process in which scale factors have been applied to mode shapes, such that
they can be standardized (scale factors are sometimes applied to natural modes to standardize their
elements associated with various DOFs). In certain cases, top floor displacement is taken as unity,
whereas in other cases, the largest modal amplitude is taken as unity. However, in this research,
mass-normalized mode shapes have been obtained as:

Mn = φ′ Mφ (13)

such that φ′ Mφ = I where I is the identity matrix. The resulting modes are orthogonal, as well as
normalized with respect to mass matrix M.

2.1.6. Damage Parameterization

In this work, single beam elements have been considered for structural representation,
and uncertain physical properties were considered as updating parameters. No mass reduction
has been assumed as is acceptable in most real-life damage detection studies. The damage index
d can be represented in terms of the bending stiffness of an individual element. Therefore, relative
variation of the bending stiffness of the damaged element EId compared to the initial estimated value
EIr (reference model) according to damage mechanics [44] is given as:

d = 1− EId
EIr

(14)

This definition is advantageous as not only can it estimate the damage severity, but also its
location at the element level. Although the damage index usually takes values between zero and one,
this formulation can be used between the values of −1 and 1, thus acting more like a correction factor
to the stiffness of the elements. Therefore, the formulation can be effectively used for model updating
of a reference model, as well as for the damage severity estimation.
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2.1.7. Regularization in Model Updating Using Evolutionary Algorithm (EA)

Regularization techniques in the context of model updating have been conventionally applied
by various researchers using SM as explained in the literature review. However, in the context of
this paper, where EA has been used to better explore the search domain, a regularization technique
was combined with EA. Regularization usually attempts to control the parameter variations. In this
research, the parameter values with respect to the original model are kept small during subsequent
iterations. In other words, the physical assumption of the original model has been considered [37]
such that the parameter values remain close to the original FE model. Therefore, the minimization
term can be modified to give preference to a solution as:

∏damaged.reg = ∏damaged + τ‖x− xo‖ (15)

where x refers to the parameter values in the current iteration and xo refers to the initial parameter
values. τ is the tradeoff parameter between the two parts of the objective function. For a small τ,
the updated parameters are almost unrestricted, and the solution resembles the original ill-posed
problem. However, for a large value, the updating parameters remain limited in size and may have
larger errors in the fitting of the data.

3. Damage Detection Case Studies

In order to investigate different objective functions for the model updating problem, three beams
were considered. Two beams were simulated beams, and one was an experimental beam. The first
simulated beam is only damaged at one location, and the second simulated beam is damaged at more
than one location to check the effectiveness of objective functions at various noise levels. For the
third beam, experimental data are available for damage [45]. The effectiveness of the three objective
functions is then evaluated on both simulated and experimental data. Only the first three mode shapes
and model frequencies are considered, as it is likely that only a few modes can be identified during
actual experiments. The FE model updating procedure and damage assessment are carried out in the
MATLAB environment.

3.1. Simulated Simply Supported Beam 1 (Case 1)

The simulated beam has a rectangular cross-section of 0.25 × 0.20 m and a 6-m length (Figure 1a).
It was equally divided into 10 two-dimensional beam elements. The values for other material properties
corresponding to reinforced cement concrete were taken as 2500 kg/m3 for density and 32 GPa for
elastic modulus. The constitutive laws assumed for the beam were linear perfectly elastic. Case 1 with
the single damage scenario is considered (Figure 1b). A number of approaches can be used to model
cracks in beams. In this research, the cracks were simulated by reducing the stiffness of a particular
element of the structure locally [46]. This approach can approximate the stiffness changes for beams
with open cracks under low frequency vibrations, as compared to breathing cracks, which open and
close and produce non-linear dynamics [47]. In the beam, only the sixth element of the beam was
considered to be damaged. A 20% reduction in the moment of inertia (MOI) has been assumed as
compared to the reference model for damage detection at different noise levels. This leads to a value
of 0.8 for the ratio EId/EIr in Equation (12) and a corresponding damage index of 0.2. Only the first
three lower natural frequencies and mode shapes have been used in the current research. The mode
shapes were expanded and then mass normalized using Equation (13). No modeling or mesh errors
were assumed in the simulated study (Case 1 and Case 2) as the simulations were aimed at observing
the performance of different objective functions on damage assessment.

The general background theory of GA can be found elsewhere [48]. GA implemented in MATLAB
was used in this research. GA was used to minimize the Objective Functions I, II and III with noise.
Eight noise cases have been considered: noise both in frequencies and mode shapes at 1%, 3%, 5% and
10% and noise only in mode shapes at 1%, 3%, 5% and 10%. A population of 100, maximum iterations
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of 500, tournament selection with tournament size of 4, two-point cross over with 70% probability,
mutation with a probability of 1% and a threshold for minimum change in five consecutive generations
was set as 10−10.The upper bound for all the parameters was set at 1.15-times the initial model, and the
lower bound was set as 0.25-times the initial model parameter values as it can be assumed that the
frequencies decreased due to damage in the elements.Appl. Sci. 2017, 7, 1245 8 of 27 
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pronounced in Objective Functions II and III at higher noise levels (above 1%).The results are nearly 
pointless in these cases, as the damages in other elements exceeded the original damage level in 
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Figure 1. (a) Simulated healthy beam. (b) Damaged model (Case 1) withsingle damage scenario.
(c) Damaged model (Case 2) with multiple damage scenario. MOI, moment of inertia.

The damage distribution for Case 1 is reported in Figure 2 using Objective Function I. Furthermore,
to check the effect of noise on frequencies and mode shapes, two noise cases were investigated, wherein
noise was added both in frequency and mode shapes (Figure 2a) and noise in mode shapes only
(Figure 2b). Likewise, Figures 3 and 4 represent the damage distribution for Case 1 using Objective
Functions II and III.

It has been noted that all the objective functions detected the damage correctly with 0% noise in the
measurement. However, it can also be noticed that when the noise level increases, the damage detection
capabilities of all the objective functions are degraded. Only Objective Function I performed better
than the other two combinations. Wrong detection of damage in other elements is more pronounced
in Objective Functions II and III at higher noise levels (above 1%).The results are nearly pointless in
these cases, as the damages in other elements exceeded the original damage level in Element No. 6.
Therefore, it can be concluded that Objective Function I (Figure 2) performed better than the other two
(Figures 3 and 4).
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Figure 2. Damage distribution for Case 1 using Objective Function I for (a) noise both in frequency 
and mode shapes and (b) noise in mode shapes only. 
Figure 2. Damage distribution for Case 1 using Objective Function I for (a) noise both in frequency and
mode shapes and (b) noise in mode shapes only.

The results of Objective Function I are discussed further here (Figure 2). For different noise levels,
the damage index is detected to be very near the actual damage index of 0.2 at 0%, 1% and 3% noise
(Figure 2a,b). However, for noise at 5% in both frequencies and mode shapes (Figure 2a), the damage
index was 0.24, which further degraded to 0.37 for 10% noise levels. Similarly, the damage index for
noise in mode shapes only (Figure 2b) degraded to 0.22 and 0.17 as compared to the actual damage
index of 0.2 in the case of 5% and 10% noise, respectively. It can be noticed that less degradation is seen
in the mode shape noise than noise in both frequencies and mode shapes, which is rational. Likewise
erroneous detection of damage in other elements especially close to damage elements is also more
evident in noise in both the frequencies and mode shapes case than the noise in mode shapes only.
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and mode shapes and (b) noise in mode shapes only. 
Figure 3. Damage distribution for Case 1 using Objective Function II for (a) noise both in frequency
and mode shapes and (b) noise in mode shapes only.

It can be noted that all the objective functions have similar frequency-related residual included in
their first part (see Equation (11)). Therefore, the differences in the results can be mainly attributed to
the second part of the objective functions, and possible reasons related to the performance of each of
the objective function are discussed now.
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The Objective Function I is based on the MAC value, which is a basically a statistical indicator
between two mode shapes. A single value for a particular mode shape near one indicates perfect
correlation. The MAC value has been shown to be more sensitive to large difference in mode shapes
as compared to small differences [49]. Furthermore, it has also been noted that the MAC value is
less sensitive to noise as it tries to average out the values of mode shapes for a particular mode.
However, Objective Function II is mainly related to modal flexibility. The coefficients of the modal
flexibility matrix have been recognized as being very sensitive to damage [50]. The error gets amplified
as the values of frequencies and mode shapes having noise get multiplied with each other. Thus,
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although it is a good detector of the relative damage between the elements, it may also result in large
numerical errors at elements where damage is not present. Lastly, Objective Function III related to
strain energy also amplifies the errors as the expanded noisy mode shape gets multiplied with the
stiffness matrix to calculate the strain energy. This discussion could be further associated with the
objective function values obtained for each case. For example, the objective function values obtained
for 10% noise in frequencies and mode shapes for all the objective functions are discussed here for
comparison. The objective function values were 1 × 10−5, 1.03 and 0.004 for Objective Functions I,
II and III, respectively, for 10% noise in frequencies and mode shapes. It can be seen that the minimum
value has been obtained for Objective Function I and the maximum value for Objective Function II.
This is also consistent with the damage indices obtained in Figures 2–4. As a result, the sparseness of
the results with respect to different elements is more for Objective Functions II and III as compared to
Objective Function I. Therefore MAC-based Objective Function I presents itself as a good candidate for
damage detection purposes due to less sparseness in the results.

Due to wrong detections with different objective functions especially in noisy conditions,
a suitable technique needs to be applied to address the damage detection issue in non-damaged
elements. A sensitivity analysis of all the elements was performed. It has been revealed that elements
closer to the supports have very low sensitivities. Such elements can cause ill-conditioning of the
problem, and a small change in the value results in a large change in the modal data. Furthermore,
elements at equal distance from the center of the beam have equal sensitivities, e.g., Element
Nos. 5 and 6 influence the modal data in a similar manner. Such elements can also lead to similar
modal values. Regularization techniques in the context of model updating have been applied by
various researchers using SM. SM has the drawback of being stuck in local minima and involves
finding the inverse of the sensitivity matrix. The choice of suitable regularization parameter was
also based on the sensitivity matrix, and corresponding filter factors have been calculated using
techniques such as GCV, L-curve or quasi-optimality functions [37]. However, in the context of this
paper, a regularization technique was applied using GA to harness the benefits of both techniques.
The method adopted in this study is a forward analysis method, which does not involve solving the
inverse of matrices. Furthermore, EAs have a limitation that they work on a number of points in
parallel contrary to SM-based methods, which work on a single point at a time. Therefore, in this
paper, based on the basic concept of the L-curve, Pareto fronts using multiobjective optimization were
employed, as these can be applied graphically in the context of EAs. The tradeoff value can be selected
where the curvatures of the three corresponding points change with maximum bend angle [25].

Therefore, the Pareto optimal front has been used in this study to find out the tradeoff between
the objective function and regularization part as explained in Equation (15). Multiobjective GA
implemented in MATLAB using function gamultiobj has been used. A population size of 100, maximum
generation limit of 1000 and function tolerance of 1 × 10−10 havebeen used for the multiobjective
function. A typical Pareto front was obtained for Damaged Beam 1 and is shown in Figure 5 for 5%
noise in frequencies and mode shapes. It has been found that a value of 6 × 10−6 gives a suitable
tradeoff between the two axes. Likewise, other tradeoff points have been selected for other noise levels
based on their corresponding Pareto fronts and are reported in Table 1. It can be seen that the value of
these parameter decreases with low noise and increases with high noise. Likewise for noise in mode
shapes only, the values of these parameters are generally less than noise both in frequencies and mode
shapes. This is logical as the parameter essentially is a penalty function, which weights the need for
inclusion of the function ‖x− xo‖ in the overall objective function value. The more the noise, the more
will be the tradeoff value.
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Figure 5. Typical Pareto front for Case 1 using Objective Function I with 5% noise both in frequencies
and mode shapes.

Table 1. Tradeoff value for Case 1 for all noises cases.

Serial No.
Noise in

Tradeoff Value
Frequencies (%) Mode Shapes (%)

1 0 0 -
2 1 1 1× 10−7

3 3 3 9 × 10−6

4 5 5 6 × 10−6

5 10 10 3 × 10−4

6 0 1 1 × 10−10

7 0 3 7 × 10−7

8 0 5 6 × 10−7

9 0 10 4 × 10−6

GA was applied using Equation (15) with Objective Function I, II and III. The effect of
regularization on all the objective functions is shown in Figures 6–8. It can be seen that
Objective Function I has shown promising results as compared to the other two objective functions.
This advocates that noise errors cannot be eliminated through regularization without a proper objective
function. Figure 6 shows the damage index of the updated damaged model for all noise levels for
regularized Objective Function I. For the damaged beam, the damage index for Element No. 6 for
the regularized objective function was found to be very close to the actual value of 0.2 in most cases;
e.g., for 10% noise in frequencies and mode shapes, the damage index is found to be 0.24 as compared
to the actual damage index of 0.2 (Figure 6a). Likewise, for 10% noise in mode shapes, the damage
index for Element No.6 turns out to be 0.14 (Figure 6b). Likewise, the wrong detections in other
elements are also much less with the maximum value at −0.028 for 10% noise in frequencies and
mode shapes. It can be noted from the damage indices that regularized model updating has shown
promising results.
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Figure 6. Damage distribution for Case 1 using Objective Function I with regularization for (a) noise 
both in frequency and mode shapes and (b) noise in mode shapes only. 
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This proves that the proposed approach is more efficient in updating. The regularization has
improved the conditioning of the problem and thus leads to physically justifiable solutions. However,
this regularization has assumed that the initial estimate of the model, i.e., x0 is considered as a good
representative of the actual structure. This assumption may not be valid in all the cases where a
priori model realization may be significantly different from the actual physical structure. However,
the results advocate that the proposed method utilizes the benefits of both EAs, as well as regularization
function simultaneously.
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both in frequency and mode shapes and (b) noise in mode shapes only. 
Figure 7. Damage distribution for Case 1 using Objective Function II with regularization for (a) noise
both in frequency and mode shapes and (b) noise in mode shapes only.

3.2. Simulated Simply Supported Beam 2 (Case 2)

In this case (Case 2), reduction of MOI of multiple elements has been considered to check the
effectiveness of the proposed approach. All the other properties of the beam match with Case 1.
The damage was introduced in the 3rd, 6th and 9th element as 30%, 50% and 20%, respectively, in the
form of reduction in MOI as compared to the reference model, which corresponds to a damage index
of 0.3, 0.5 and 0.2. The location near the support has been selected as it is considered tough to detect
damage located near the supports. GA was again used to minimize the three objective functions.
The first three mode shapes were considered.
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A similar technique as used earlier for Case 1 was used for assessment of the damage severity.
The damage indices were calculated first by applying the three objective functions, and the results are
presented in Figures 9–11 in a similar pattern as in Case 1. At 0% noise levels, all the objective functions
performed well. However, it was noticed that Objective Function I performed better than the other two
in noisy conditions. For 10% noise in frequencies and mode shapes, the damage index for the three
Damaged Element Nos. 3, 6 and 9 was found to be 0.31, 0.52 and 0.11, respectively (actual damage
index = 0.3, 0.5 and 0.2), for Objective function 1; whereas, the corresponding values for these elements
were 0.36, 0.28 and 0.09 for Objective Function II and 0.65, 0.25 and 0.18 for Objective Function III.
It can be seen that Objective Function I gave the best results although some wrong detections were
also present.
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The Objective Function I was then regularized using Equation (15). The damage severity indices
are presented in Figures 12–14 for all three objective functions. As observed in Case 1, the regularization
has been effective for Objective Function I as compared to Objective Functions II and III. From the
results in Figure 12 for Objective Function I, it can be seen in all the cases that damage estimation
from the regularization technique is more accurate than when the Objective Functions I, II and III
were applied without regularization in noisy conditions. For 10% noise, the damage index for the
three Damaged Element Nos. 3, 6 and 9 was found to be 0.28, 0.52 and 0.07, respectively (actual
damage index = 0.3, 0.5 and 0.2). It was also found that the regularized updating has good detection
of undamaged elements when compared to the un-regularized case. Furthermore, the detection was
satisfactory even in the worst case conditions, i.e., at 10% noise.
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Figure 10. Damage distribution for Case 2 using Objective Function II for (a) noise both in frequency
and mode shapes and (b) noise in mode shapes only.

3.3. Experimental Beam (Case 3)

In actual structures, there are differences in the measured quantities as compared to their
theoretical counterparts mainly due to differences in material and geometrical properties. Damage
detection becomes more difficult in these problems, and it is imperative to check the effectiveness of
the proposed approach on actual experimental test. Furthermore, by using this example, comparative
analysis can be easily made with other studies.

The experimental beam was taken from Hu et al. [45]. The aluminum beam has a rectangular
section of 0.05 m × 0.006 m with two fixed ends. The length of the beam is 0.6 m. Other material
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specifications were the modulus of elasticity as 70 GPa, the Poisson’s ratio as 0.3 and the density as
2700 kg/m3. A saw cut damage was induced in the beam at the ninth element by cutting a quarter of
the total thickness from the top and bottom surface of the intact specimen. The theoretical damage
index for the cracked location was 0.875, i.e., an 87.5% reduction of MOI in y direction. The first three
mode shapes were compared as these were measured experimentally.
Appl. Sci. 2017, 7, 1245 19 of 27 

 
(a) 

 
(b) 

Figure 11. Damage distribution for Case 2 using Objective Function III for (a) noise both in frequency 
and mode shapes and (b) noise in mode shapes only. 
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and mode shapes and (b) noise in mode shapes only.
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SAP 2000 was used to model and analyze the beam. For the experimental beam, the adopted
mesh has been selected based on convergence analysis of the FE model. For this purpose, the beam
was divided into 10, 20 and 40 nodes having a thickness of 0.5 cm, and the mesh convergence
effect has been checked based on the first three natural frequencies. The % error between the
10- and 20-node beam was 0.0034, 0.0058 and 0.1641%, whereas the error between the 20- and 40-node
beam was 0.0000, 0.0016 and 0.0070 for the first three frequencies respectively. Therefore, due to the
maximum error of 0.1641% between 10 and 20 nodes and 0.0070% between 20 and 40 nodes, the beam
with 20 nodes has been selected. The beam with 20 equal two-dimensional beam elements is also
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consistent with the measured DOF in the experiment. Fixed end supports were imposed on the corner
elements of the beam. The mass and stiffness matrices were afterwards exported to MATLAB for
optimization purposes.
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The model was updated considering the first three natural frequencies and mode shapes for
damage detection. The three objective functions are applied to update the beam to check the suitability
of the objective functions in the actual test. The damage indices identified by using Objective
Functions I, II and II are shown in Figure 15a. It can be noticed that for this damage case, the damage
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index for Element No. 9 (actual damage index = 0.875) was found to be 0.55, 0.65 and 0.61 for Objective
Functions I, II and III, respectively. However, as compared to Objective Function I, misdetection in
other elements was of much greater magnitude in Objectives II and III. The results are also consistent
with the earlier results of Case 1 and Case 2.Appl. Sci. 2017, 7, 1245 22 of 27 
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Later on, model updating was again done with all three objective functions with regularization,
and the results are given in Figure 15b. The damage index for Element No. 9 was found to be 0.61,
0.58 and 0.43 (actual damage index = 0.875) for regularized Objective Functions I, II and III, respectively.
Likewise, wrong detections in other elements were less in the regularized Objective Function I than the
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other two. The results show that the method proposed in the paper is efficient and utilizes the benefits
of both EA, as well as the regularization function by giving much better damage assessment. It can
be seen that better results are obtained with the proposed approach as compared to other researchers
using this example [16,45].
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4. Conclusions

In this research, three different objective functions based on frequencies, MAC, modal strain
energy and flexibility have been analyzed for damage detection. Two simulated beams and an
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experimental beam were investigated to check the performance of these objective functions using GA.
The following conclusions were drawn from the study:

1. The simulated beam (Case 1) was investigated with a single damage scenario. First, three
mode shapes have been considered for damage assessment for the different objective functions.
Two different noise cases, i.e., noise in both frequencies and mode shapes and noise in mode
shapes only at 1%, 3%, 5% and 10% have been investigated in the frequency domain. It has been
found that with no noise, all the objective functions performed well and detected the damage
correctly. However, results indicate that with an increase in the noise, the damage detection
capabilities of all the objective functions decreased. Objective Function I based on frequencies
and MAC has worked better in damage detection than Objective Functions II and III in noisy
conditions. However, less degradation has been seen in the noise in mode shapes-only case
as compared to noise both in frequencies and mode shapes. Probable reasons for the better
performance of Objective Function I as compared to the other two were also discussed. It was
found that the function value of Objective Function I is lesser than Objective Functions II and III.

2. A regularization function was added in the objective functions based on the a priori modeling of
the structure. The multi-objective GA was used to find the optimal tradeoff between the objective
function and the regularization part. The results show that the regularization function performed
well even in noisy conditions for Objective Function I.

3. The multiple damage scenario has been simulated in Case 2 where three elements were damaged.
At 0% noise, all the functions detected the damage correctly. However, the performance degraded
when noise levels were increased. The regularization function has performed well for Objective
Function I only, which proves its adequacy in multiple damage scenarios.

4. The simulations were later verified on an experimentally tested beam. Convergence analysis
of the SAP 2000 model was performed for the first three natural frequencies, and the 20-node
beam was selected for the FE model. It was found that detections in non-damaged elements were
of greater magnitude for Objective Functions II and III as compared to Objective Function I.
Regularization was attempted for the experimental beam. The damage index was much
improved for the damaged, as well as for the undamaged elements for Objective Function
I with regularization, which further proves the performance of the proposed approach in actual
experimental conditions.

The paper has proposed the use of EA for beam structures. Further studies on 3D complex
structures where noise has been added directly to time series data are recommended.
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