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Abstract: In this paper, a review on road friction virtual sensing approaches is provided. In particular,
this work attempts to address whether the road grip potential can be estimated accurately under
regular driving conditions in which the vehicle responses remain within low longitudinal and lateral
excitation levels. This review covers in detail the most relevant effect-based estimation methods;
these are methods in which the road friction characteristics are inferred from the tyre responses:
tyre slip, tyre vibration, and tyre noise. Slip-based approaches (longitudinal dynamics, lateral
dynamics, and tyre self-alignment moment) are covered in the first part of the review, while low
frequency and high frequency vibration-based works are presented in the following sections. Finally,
a brief summary containing the main advantages and drawbacks derived from each estimation
method and the future envisaged research lines are presented in the last sections of the paper.

Keywords: road friction potential; automotive virtual sensing; slip-based friction estimation;
noise-based friction estimation; vibration-based friction estimation

1. Introduction

Tyre forces influence largely the chassis stability and manoeuvrability [1]. These forces are limited
by the maximum friction that can be generated between the tyre carcass and the road surface, which is
the result of complex phenomena on the rubber-road interface. According to [2], such phenomena
comprise molecular adhesion and indentation between the road irregularities and the tyre rubber.
Despite rigorous studies having been developed to understand such interactions, vehicle dynamics
engineers often feel more comfortable reducing these analyses to the estimation of a normalised
coefficient, often called road friction potential [3] or tyre-road friction coefficient (TRFC) [4,5].

The estimation of the road friction potential has been studied exhaustively during recent
years [3,6–11]. Specifically, it is envisaged that the accurate determination of such a coefficient can
contribute to improve the performance of current vehicle systems such as Anti-Lock Braking System
(ABS), Traction Control System (TCS), or Electronic Stability Program (ESP) [12–14]. An important
drawback remarked by several authors is that a high excitation level (e.g., an emergency braking
manoeuvre) is necessary in order to obtain an accurate estimation of the road grip potential when
traditional slip-based approaches are employed [15–18]. Nevertheless, as the previous systems are
triggered when a significant excitation is present, the friction coefficient can be estimated during the
system intervention [19,20] and the system thresholds can be readjusted in parallel.

With the development of modern Advanced Driver Assistance Systems (ADAS), new stricter
requirements regarding the road friction estimation have arisen [21–24]. Novel functions such as
Adaptive Cruise Control (ACC) [25], Autonomous Emergency Braking (AEB) [26] or drift-based lateral
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collision avoidance [22,27,28] require an accurate and timely estimation of the maximum road grip prior
to the intervention of the system. Thus, the road grip potential needs to be continuously monitored
during free-rolling, coast-down or gentle acceleration events to correct critical variables such as the
minimum separation between vehicles depending on the available friction. Moreover, novel drift-based
applications not only require an estimation of the maximum road grip potential, but also a more
detailed characterisation of the tyre-road friction (e.g., force versus slip curve [3,27,29–31]).

Several approaches have been discussed in the literature to estimate the road grip potential. A first
classification provided in [7] establishes a distinction between cause-based and effect-based approaches.
While cause-based approaches focus on estimating the road grip potential from aspects such as the
lubricant present at the road surface [32,33], effect-based approaches infer the road grip from the tyre
responses (e.g., slip [34,35]). Despite the fact that the former approaches can provide an accurate
estimation of the grip potential during free-rolling driving conditions, an important handicap of
these is that a database and extensive training is required in order to achieve an accurate correlation
between the monitored road property and the road grip potential [7]. Therefore, such approaches
might present insufficient correlation [36] or extrapolation issues where situations not included in the
training dataset are faced. Regarding effect-based approaches, tyre slip-based, tyre vibration-based
and tyre noise-based works have been found in the literature.

A general trend exhibited by slip-based approaches is that a significant excitation level (up to
80–90% on low-mu conditions [16]) is required to provide an accurate estimation of the road grip
potential [37]. Such excitation thresholds have been reduced during recent years employing tyre-self
alignment-based estimation methods [9,38–41]. These approaches take advantage of the higher
sensitivity exhibited by the tyre self-alignment torque to changes in the road friction coefficient.
Still, a certain level of grip utilisation is required, which according to the literature ranges between
30% and 50%. For pure longitudinal conditions, some authors argue that a clear correlation can
be established between the road friction potential and the tyre longitudinal stiffness [6,7,42–44],
and therefore the maximum road grip can be estimated if the previous tyre parameter is inferred
from the vehicle longitudinal dynamics. On the other hand, recent experiments demonstrate that
the longitudinal stiffness or slip slope does not change significantly when different high and low
mu rigid surfaces are tested [45]. Therefore, the slip slope approaches might approximate well for
severe changes in the road friction (e.g., from dry asphalt to gravel), but fail to estimate mu-jumps
on rigid surfaces (e.g., colgrip board jump to painted board [45]). This discussion is continued in the
following sections.

The limitations exhibited by slip-based approaches (mainly the necessity of generating large slip
values) have encouraged researchers to explore low frequency [46–49] and high frequency [4,5,50,51]
vibration-based approaches. The main objective of these solutions is to achieve an accurate grip
potential identification during regular driving conditions. The general trend of noise-based solutions
lies in the acquisition and subsequent post-processing of the high-frequency noise emitted by the
tyre-road interface. Then, a suitable feature vector is designed and a classifier is trained to estimate
the grip potential when new samples are available. Classifiers to distinguish roads of different
roughness [46] as well as wetness [49] are present in the literature.

For low frequency vibration-based approaches, a wide range of solutions have been adopted,
among which the analysis of the influence of the road grip potential on the frequency response of the
driveline or steering system stands out in the literature. In particular, some authors have indicated that
the tyre longitudinal stiffness can be correlated with the resonance frequency of the transfer function
relating tyre torque disturbances and wheel speed [4,50]. In addition, authors found an empirical
correlation between the tyre longitudinal stiffness and the road grip potential following the same
slip slope concept employed in preceding longitudinal slip-based approaches [7,44]. Thus, if the
previous correlations are employed, the road friction potential can be estimated from the wheel speed
frequency responses.
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To sum up, a complete picture of the road friction estimation problem discussed in this review is
provided in Figure 1. The analysis is limited to effect-based approaches as these have received greater
interest during recent years due to their cost-effectiveness and robustness. For additional discussions
on cause-based approaches [7] can be consulted. The rest of the paper is organised as follows.

Road friction potential estimation
Cause-based Approaches

Effect-based Approaches

Tyre slip-based Vibration-based (Low freq.)
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Figure 1. Overall picture of the effect-based road grip recognition approaches treated in this work.

In Section 2 relevant background regarding vehicle modelling and tyre friction is provided.
Moreover, the section is completed with a brief discussion regarding the potential impact of an accurate
estimation of the road grip potential on current vehicle systems and envisaged future ADAS
systems. The paper continues with a comprehensive discussion on slip-based road friction recognition
approaches in Section 3. As remarked previously, special emphasis is put on the excitation levels
required to achieve an accurate estimation of the grip potential. The same line of discussion is
followed when tyre vibration-based (high and low frequency) are considered in Section 4. Finally,
a comprehensive summary of the different approaches presented in this work is provided in Section 5
and conclusions and future research steps are detailed in Section 6.

2. Background

In this section relevant background to understand the tyre friction estimation problem is provided.
Due to space limitations, only a brief discussion is given here regarding vehicle modelling, road friction
modelling and the impact of the road friction information on the performance of vehicle systems and
novel ADAS functions.

2.1. Vehicle Modelling

The vehicle planar dynamics can be approximated by the so-called single-track vehicle model,
Figure 2b. This model is often employed in vehicle dynamics virtual sensing due to its reduced
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complexity [3,52]. If force balance and moment equilibrium equations are taken, Equations (1)–(3) can
be obtained.

m(v̇x − vyψ̇) =Fx, f cos(δ) + Fx,r − Fy, f sin(δ) (1)

m(v̇y + vxψ̇) =Fy, f cos(δ) + Fx, f sin(δ) + Fy,r (2)

Iψψ̈ =(Fy, f cos(δ) + Fx, f sin(δ))l f − Fy,rlr (3)

The vehicle longitudinal and lateral velocities are denoted by vx and vy respectively, and the
yaw rate by ψ̇. The vehicle mass is m, the yaw inertia Iψ, the distances from the front and rear axles
to the centre of gravity l f and lr respectively, and the angle steered by the front wheels δ. Finally,
the longitudinal forces are denoted by Fx,i and the lateral forces by Fy,i, with i ∈ { f ront, rear}. Once the
vehicle planar motion states are determined, the tyre lateral slips (α f , αr) can be computed from
expressions (4) and (5).

α f = δ− arctan
( l f ψ̇ + vy

vx

)
(4)

αr = − arctan
(−lrψ̇ + vy

vx

)
(5)

If the ISO convention is adopted, the tyre longitudinal slip (λ) is obtained from the expression (6),

λi =
ωire − vx

vx
(6)

with i ∈ { f ront − le f t, f ront − right, rear − le f t, rear − right}, ω being the wheel rotational speed,
and re the effective radius [14]. Several slip conventions (e.g., ISO, PRAXIS) have been described in the
literature. For simplicity, only the ISO convention is used here. For a more detailed discussion [53,54]
can be consulted.
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Figure 2. (a) Wheel rotating dynamics; (b) Single-track vehicle model.

Finally, the wheel speed evolves according to the wheel rotating dynamics, expression (7),

Itotẇi = Tdrv,i − Tb,i − fresFz,ire − Fx,irl (7)

In this case, Itot is the total rotating inertia of the wheel and driveline assembly, Tdrv is the driving
torque, Tb is the braking torque, fres is the rolling resistance, Fz the tyre vertical force, and rl the
loaded radius.
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2.2. Road-Rubber Friction

In Section 4 a comprehensive review of friction estimation methods based on the tyre’s
vibration/frequency response is presented. These are broadly distinguished in those that use
low-frequency range features and high-frequency range ones. In order to facilitate the understanding
of some of the concepts described in Section 4, a short discussion regarding the dependence of the tyre
properties and forces on the temperature and stress frequency is introduced here.

2.2.1. Tyre Properties as a Function of Temperature and Stress Frequency

As mentioned previously, the friction generated in the road-rubber interface is the result of
a set of complex interactions between the tyre and the road, which can be summarised by two stress
mechanisms: road roughness effect and molecular adhesion [2]. Such effects arise from the viscoelastic
properties of the tyre, which can be approximated by a spring K connected in parallel to a damper of
damping coefficient η [2], Figure 3a. Therefore, the force generated by the tyre can be expressed as
a function of the deformation y, the rate of deformation ẏ, and the tyre properties.

Ftyre = Ky + ηẏ (8)

�
K

y

y
.
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Figure 3. (a) The tyre as a viscoelastic material can be approximated as a spring K connected in parallel
to a damper η; (b) The influence of temperature on the tyre as a viscoelastic material. The modulus of
elasticity is maximum for temperatures lower to the glass transition temperature. Hysteresis (energy
loss) is maximum at the glass transition temperature [2].

Tyre properties K, η are function of temperature, see Figure 3b. The tyre’s modulus of elasticity,
represented by the spring K, is maximum below the glass transition temperature Tg, and reduces for
temperatures greater than that. The tyre’s damping mechanism, also known as hysteresis or energy
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loss, represented by η is maximum at the glass transition temperature. For temperatures different to
that, the energy loss is smaller. As a matter of fact, winter tyres are designed to have a lower glass
transition temperature compared to summer tyres. Consequently, when only the tyre force between
the tyre and the road is considered, winter tyres generate larger forces at low temperatures compared
to summer tyres and summer tyres generate larger forces at increased temperatures [2].

Tyre properties are also a function of stress frequency, the frequency at which the load is applied,
see Figure 4. At low excitation frequencies/velocity ẏ, the damper η does not contribute much,
therefore the influence of the spring K is dominant. The opposite happens at higher frequencies,
where the damper η becomes more important. Regarding the energy loss, this becomes maximum
at an intermediate range of frequencies and falls for frequencies different to that. At low excitation
frequencies, the energy loss is small because the damping mechanism is not important. At higher
excitation frequencies there is not enough time for the tyre’s rubber molecules to return to equilibrium
and thus rubber remains constantly in tension. Therefore, the tyre’s modulus of elasticity is low in the
low excitation frequency range and high in the high-frequency excitation range. A careful observation
reveals that maximum energy loss occurs when the modulus of elasticity changes.

Glassy

state

Rubbery

state

Modulus

Frequency log

(at a given temp.)

Maximum

hysteresis

Tread rubber operating area

Glassy

state

Rubbery

state

Energy loss

Frequency log

(at a given temp.)

Maximum

hysteresis zone

Tread rubber operating area

Figure 4. The influence of stress frequency on the tyre as a viscoelastic material. The modulus of
elasticity becomes maximum above a stress frequency threshold. Hysteresis (energy loss) is maximum
at this threshold and reduces at frequencies different to that [2].

Hence, to understand how a tyre behaves, the tyre type needs to be considered and the
temperature and stress frequency monitored [55]. When temperature increases the material becomes
softer (lower modulus of elasticity), while when stress frequency increases the material becomes more
rigid (higher modulus of elasticity). Other parameters, such as the tyre inflation pressure, also influence
the rigidity of the tyre [56], and therefore are expected to be monitored.

2.2.2. Tyre Friction Force as a Function of Stress Frequency

The friction force between the tyre and the road is generated as a result of the relative slippage
between the elastomer and the road surface. If there is no relative slippage then there is no tyre
force. Two stress mechanisms intervene during the generation of tyre forces: molecular adhesion
and indentation.

• Molecular adhesion: The first mechanism is the adhesion [57]. The grip derived from the
adhesion between the rubber and the road is the result of the Van der Waals bonding phenomena.
The rubber’s molecular chains form, stretch and break, following a cycle of stretching and
breaking, and generating visco-elastic work. This adhesion mechanism occurs in a range of
stress frequencies between 106 Hz and 109 Hz, and requires the separation distance between the
road and the rubber to be below 10−6 mm [2]. The bonding phenomena can be explained in
a simplified manner by three steps, Figure 5b. In the first step the bond is created. After that,
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in step 2, the molecular chain is stretched, and a friction force which opposes the tyre skidding is
generated. Finally, in the last step, the bond breaks and new bonds form again successively.

• Road roughness effect: The road roughness effect (also denoted as indentation) is primarily caused
by the road irregularities [58,59] and the hysteresis of the rubber [2]. The road texture (with rough
spots that vary from 1 centimetre to 1 micron) induce a high-frequency excitation on the rubber
(with frequencies ranging from 102 to 106 Hz [2]), which is distorted and undergoes several
compression-relaxation cycles. As the rubber presents an inherent hysteresis, the rubber does not
return immediately to its initial position, but exhibits an asymmetrical movement (and therefore
an energy loss). Such asymmetrical movement of the rubber block around the rough spot results
in a force field, with a tangential component which opposes the slippage and is seen as the tyre
force [2].

Road surface

Rubber Speed of slippage

z

x

z

x

Road surface

(a) Roughness effect (b) Molecular adhesion

Road surface

Rubber
Speed of slippage

x

(1) (2) (3)

Figure 5. (a) Road roughness (indentation) friction mechanism; (b) Molecular adhesion friction mechanism.

The proportion in which each friction generation mechanism contributes to the total amount
of grip available between the tyre and the road depends on the road irregularities and the road
contamination, the latter factor having the highest influence. Regarding the road roughness,
an analytical expression for the kinetic coefficient of friction has been proposed by Persson [60]
as a sum of a set of hysteresis forces caused by the multiple scales of the road surface texture,

µ =
1
2

∫ q1

qL

q3C(q)P(q)dq
∫ 2π

0
cos(φ)Im

(
E(qv cos(φ))
(1− ν2)σ0

)
dφ (9)

P(q) =
2
π

∫ inf

0

sin(x)
x

exp(−x2G(q))dx = er f
(

1
2
√

G(q)

)
(10)

G(q) =
1
8

∫ q

qL

q3C(q)dq
∫ 2π

0

∣∣∣∣E(qv cos(φ))
(1− ν)2σ0

∣∣∣∣2dφ (11)

ξ =
2π

q
(12)

q = (qx, qy) = (q cos(φ), q sin(φ)) (13)

where q is the spatial angular frequency or magnitude of the wave vector corresponding to the
wavelength ξ, qL is the lower integration limit (where L depends on the length of a tread block), q1 is
the upper cut-off frequency, E is the complex viscoelastic modulus of the rubber, v is the sliding velocity,
ν is rubber’s Poisson ratio, φ is the direction of the wave vector in relation to sliding and P(q) is the
relative contact area. For dry friction, the short wavelength limit is 1 micrometre, as mentioned in
previous works [61].
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The function C(q) denotes the two-dimensional power spectral density (PSD) of the
pavement surface:

C(q) =
1

(2π)2

∫
< h(x)h(0) > exp(−iq · x)d2x (14)

where h(x) is the surface height measured from the average plane with x = (x, y) and h = 0, and < ... >
stands for ensemble averaging. The statistical properties of the texture are assumed to be isotropic so
that C(q) only depends on the magnitude q = |q| of the wave vector q. Typical examples of Power
Spectral Densities (PSD) for different types of road surfaces, according to ISO 8608 [62], are shown in
Figure 6.
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Figure 6. PSD for roads of different class according to [62]. Figure adapted by the authors from [63].

In [2] it is remarked that while the road roughness presents little influence on the maximum
friction potential in dry conditions, this changes drastically when third bodies are present on the
rubber-road interface [61,64,65]. Examples include wet road surfaces, icy surfaces that melt under the
application of braking force or dry particles deposited on the road surface (gravel). Depending on the
micro or macroroughness of surfaces subjected to damp or wet conditions the road friction potential
µmax can rage from 0.9 to 0.2. For example, in the case of wet road surfaces the tyre force due to
adhesion, i.e., Van der Waals forces, is absent. Furthermore, the upper cut-off frequency q1 is reduced
depending on the amount of third bodies that need to be expelled and the macro and micro texture of
the road surface [60].

According to [2], the highest friction values are observed on roads with microrough surface
characteristics. The rough spots create individual high-pressure points that break-through the film
of water present at the road-rubber interface. On the other hand, lowest values of friction potential
(0.2–0.1) are observed on microsmooth wet surfaces, where neither the roughness nor the molecular
adhesion mechanisms are generated appropriately, Table 1.
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Table 1. Friction coefficient for four different broad categories of wet road surfaces [2].

Road Category Friction Coefficient Range µmax

Macro rough/micro rough surface 0.5–0.9(draining mixes, bituminous concretes)

Macro smooth/micro rough surface 0.4–0.8(fine mixes)

Macro rough/micro smooth surface 0.2–0.3(rolled aggregates)

Macro smooth/micro smooth surface 0.1–0.2(flushing asphalt)

2.2.3. Tyre Models as a Function of the Friction Coefficient

Relevant models have been presented in the literature to infer the maximum road-rubber friction
characteristics employing the surface profile and the rubber characteristics [60,66]. A brief introduction
was provided in the previous paragraphs. In practice, such an analysis is not adopted in vehicle
dynamics applications. Instead, the road-rubber friction is expressed as a function of the lateral (4)
and (5) and longitudinal (6) slip quantities, which can be easily computed from standard vehicle
on-board measurements. Thus, analytical (e.g., Brush model [67]), empirical (e.g., Magic Formula [67])
and data-based (e.g., Neural Networks [3,68]) friction models are constructed to calculate the friction
forces derived from a certain combination of α and λ values, expression (15).

µ = f (α, λ)|γ0,P0 (15)

The evolution of the road friction µ with the tyre slips is often portrayed (see Figure 7) assuming
a fixed wheel inclination angle (γ0), and tyre pressure (P0). The lateral or longitudinal slip value at
which the maximum friction µmax is located varies significantly with the road characteristics and the
tyre tread. As a reference, low values are seen on competition tyres (high longitudinal and lateral
tyre stiffness), and high values are obtained on loose surfaces (e.g., deep snow, gravel) [2,31,69–71].
The most extended friction models are the Magic Formula [67] presented by Hans B. Pacejka,
the Dugoff [14,72] tyre model, and the Brush analytical formulation [16,17,67]. The Dugoff and
Brush tyre models are often given preference in road friction recognition problems due to their
implementation easiness and cost-effectiveness [53]. Other friction modelisations have been proposed
in the literature (e.g., Burckhardt friction model or Lugre and Dahl dynamic tyre models) [73,74], but these
are omitted in this section due to their reduced use in the reviewed works and their added complexity.
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Figure 7. Friction versus longitudinal slip curves representative of (a) high mu asphalt and
(b) gravel surface. Curves generated with the tyre parameters presented in [31].
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In the following section the Magic Formula, the Brush formulation, and the Dugoff model are
introduced. For additional friction models and a more detailed discussion [53] can be consulted.

• Magic Formula

The Magic Formula [67] consists of a nonlinear formulation based on arctan functions.
The coefficients Dj, Cj, Bj, Ej, with j ∈ {x, y}, are determined empirically, based on experimental
data. A simplified Magic formula formulation is presented here [8,31]. More sophisticaped
and complex formulations can be consulted in Hans B. Pacejka [67]. Firstly, the one-directional
normalised tyre forces (µx0, µy0) are computed from expressions (16) and (17).

µx0(λ) = Dx sin(Cx arctan(Bxλ− Ex(Bxλ− arctan(Bxλ)))) (16)

µy0(α) = Dy sin(Cy arctan(Byα− Ey(Byα− arctan(Byα)))) (17)

After that, in order to handle combined efforts, the weighting functions (Gxα, Gyλ) can be defined
in the following manner [8]:

Gxα = cos(Cxα arctan(Bxαα− Exα(Bxαα− arctan(α)))) (18)

Gyλ =
cos(Cyλ arctan(Byλ(λ + SHyλ)))

cos(Cyλ arctan(ByλSHyλ))
(19)

Finally, the one-directional friction coefficients are obtained from the product of these weighting
functions and the normalised forces calculated previously, expression (20).

µx = Gxαµx0, µy = Gyλµy0 (20)

If load sensitivity effects are disregarded, the tyre planar forces can be obtained from the vertical
forces as (Fj = µjFz), [8].

• Brush model

In this formulation the pure longitudinal force is obtained from expressions (21)–(24).
During gentle driving conditions, the tyre longitudinal slip λ keeps below the critical slip λsl
and the first expression is used. Under strong braking or acceleration events (λ > λsl) the entire
contact patch is sliding, and the second expression is used.

µx(λ, µmax) =

{
3µmaxθxσx{1− |θxσx|+ 1

3 |θxσx|2}
µmaxsign(λ)

(21)

θx = 2
cpl2

(3µmaxFz)
(22)

σx =
λ

(λ + 1)
(23)

λsl =
1

(θx − 1)
(24)
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In this case the normalised tyre forces are presented (µj = Fj/Fz), the tyre tread stiffness is denoted
by cp, and the longitudinal slip at which the full-sliding condition starts is λsl . The derivation of
the friction model in the lateral direction is straightforward from expressions (25)–(28) [17].

µy(α, µmax) =

{
−3µmaxθyσy{1− |θyσy|+ 1

3 |θyσy|2}
−µmaxsign(α)

(25)

θy = 2
cpl2

(3µmaxFz)
(26)

σy = tan(α) (27)

αsl =
1

tan(1/θy)
(28)

Once again, during gentle cornering, the lateral slip (α) remains far below the nonlinear region
(α < αsl), and the lateral friction is approximated by the first expression. Otherwise, during limit
cornering and full sliding conditions, the second expression is used. Finally, the tyre self-alignment
torque (SAT) τa can be calculated with the expression (29) [17].

τa(α, µmax) =

{
µmaxFzlθyσy(1− |θyσy|)3, |α| ≤ |αsl |
0, |α| > |αsl |

(29)

As occurs in the Magic Formula model, in the event of simultaneous efforts in the longitudinal and
lateral directions, a resultant friction µ is calculated (30) based on the total slip σ [17].

µ(α, λ, µmax) =

{
µmax(1− ρ3) f or |σ| ≤ |σsl |
µmaxsign(α) f or |σ| > |σsl |

(30)

The resultant friction is then projected in the lateral and longitudinal directions assuming the
slip-proportionality principle.

µx = µ
σx

σ
, µy = µ

σy

σ
(31)

ρ = 1− θσ (32)

θ = 2
cpl2

(3µmaxFz)
(33)

σ =
√

σ2
x + σ2

y (34)

σsl =
1
θ

(35)

Finally, the tyre SAT is computed from the projected lateral force as

τcomb = −tp(σ)Fy (36)

where the pneumatic trail tp is computed from the expression (37) [17].

tp(σ) =
l(1− |θσ|)3

3− 3|θσ|+ |θσ|2 (37)
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• Dugoff model

The Dugoff model [75] derives from the research described in Fiala [76]. A uniform rectangular
pressure distribution and a rigid tyre carcass are assumed in this model. In addition, conversely
to the Brush model described previously, individual tread stiffnesses (Cλ, Cα) are considered.
In first place, a coefficient ξ is defined to account for the coupling between lateral and longitudinal
forces, (38) [14,72].

ξ =
µmaxFz(1 + sl)

2
√
(Cλsl)2 + (Cα tan(ss))2

(38)

In the formulation presented here, the PRAXIS slip notation [54] is adopted, and the lateral (ss)
and longitudinal (sl) slips are computed differently depending on the driving situation:

– Driving:

ss =
vy

ωre
, sl =

ωre − vx

ωre
(39)

– Braking:

ss =
vy

vx
, sl =

ωre − vx

vx
(40)

After that, the function f (ξ) is computed from the saturation level of the tyre, (41).

f (ξ) =

{
(2− ξ)ξ, ξ < 1
1, ξ ≥ 1

(41)

Finally, longitudinal and lateral forces are obtained from expression (42) [14,72],

Fx = Cλ
sl

1 + sl
f (ξ), Fy = Cα

tan(ss)

1 + sl
f (ξ) (42)

and the road-rubber friction values (µx, µy) can be easily obtained if the longitudinal and lateral
tyre forces are divided by the vertical force as µj = Fj/Fz, with j ∈ {x, y}. The application of these
models to road friction estimation will be studied in Section 3, Slip-based road friction monitoring.

2.3. Vehicle Systems: The Role of Road Friction

As remarked by several authors, the knowledge of the road friction potential µmax can
contribute significantly to the enhancement of vehicle systems [14,15,23,36,37,77,78]. According to [23],
the enhancement of vehicle systems can benefit largely the driver, and in an upper level, the society
(e.g., improved traffic safety/accident prevention). The author provides a diagram where it is showed
how the collection and distribution of road friction information can benefit several applications,
Figure 8.
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Figure 8. Benefit of the collection and distribution of the friction information on several applications.
Diagram adapted by the authors from Koskinen [23].

In particular, Koskinen [23] highlights that such applications can be summarised into driver
information systems, vehicle dynamic control systems, Advanced Driver Assistance Systems (ADAS),
and co-operative applications. In this subsection, the focus lies on discussing how the road friction
estimation can enhance the performance of vehicle systems, and in particular, Advanced Driver
Assistance Systems (ADAS). For additional discussion on the rest of applications, Koskinen [23] can
be consulted.

In Figure 9 the influence of the road friction potential information on different vehicle systems
is provided. Well-known chassis systems such as Anti-lock Braking System (ABS), Traction Control
System (TCS), and Electronic Stability Program (ESP) are situated at the lowest level. Such systems
already compute an estimation of the road friction potential to adjust their thresholds during high
dynamic excitation. An accurate a priori knowledge of the road friction potential might enhance
the performance of these systems during the beginning of the intervention (e.g., brake pressure
modulation during the first cycles of the ABS), but apart from this, a significant improvement would
not be seen [23]. On the other hand, current ADAS such as Autonomous Emergency Braking (AEB) [26]
or Adaptive Cruise Control (ACC) [25] depend strongly on the road grip potential and therefore are
situated in a higher level. These systems rely on an a priori knowledge of the road friction potential
to compute the minimum separation distance (i.e., safety distance) between the ego and a preceding
vehicle. A wrong assumption of the true road grip potential can lead to a severe collision or to a false
unwanted intervention [77]. Moreover, in this case, the road grip potential must be estimated during
regular driving conditions in which the lateral or longitudinal excitation is reduced (e.g., free-rolling
driving). This complicates significantly the applicability of traditional slip-based approaches on the
previous ADAS.
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Figure 9. Impact of the road friction potential estimation µmax on different generations of vehicle
systems. Current vehicle systems (e.g., ABS) are less dependent on the a priori road friction information
than current (e.g., AEB) or expert ADAS (e.g., ADC).

Finally, novel ADAS systems such as Autonomous Drift Control (ADC) [22,27,30], Figure 10,
are situated at the highest level. This system has been proposed by the authors with the aim to
maximise the vehicle cornering performance on loose surfaces of limited manoeuvrability (e.g., gravel,
deep snow [29,31]) and is inspired by previous research works on automated drift control [29,79] and
agile manoeuvring [80,81].

Figure 10. A promising novel ADAS system for vehicle manoeuvrability enhancement on loose
surfaces: Autonomous Drift Control (ADC) [22,27,30].

In particular, the most recent ADC system developed by the authors [30] coordinates individual
wheel torque inputs from in-wheel electric motors [82–86] and the steering wheel angle from an Active
Front Steering (AFS) system to stabilise the vehicle around large body slip angles. The first results
indicate that the correct estimation of the road-friction characteristics has a large impact on the drift
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stabilisation. Moreover, in extreme off-road conditions the traditional grip scaling approach presented
in [67] and commonly adopted in slip-based approaches [3,8] is not valid due to the severe distortion
of the friction versus slip curve (the µ-α curve presents a monotonic shape and a maximum friction
slip is not distinguished, Figure 7). Thus, alternative approaches must be developed to identify online
not only the maximum friction potential but also additional features of the surface-rubber interaction
characteristics (e.g., evolution of the cornering stiffness along the slip curve [52]). Self-adaptive tyre
models based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are currently being investigated
by the authors. Promising results have been presented in [27].

To summarise, while an accurate estimation of the road grip potential might not have a large
impact on current chassis systems, such information is critical for current ADAS functions. In addition,
authors envisage that an accurate estimation of the road friction characteristics will be extremely
important for future autonomous vehicles.

3. Slip-Based Road Friction Monitoring

The estimation of the road friction potential from signals that are already available on the CAN
bus of modern vehicles has been extensively investigated in the literature. The major common point
of these strategies is that the friction potential is extracted from a rubber-road friction model such as
described in Section 2.2.3. In brief, the tyre forces and the tyre slips are observed from the vehicle
dynamics (e.g., using a state estimator) and employed in a friction model. The maximum friction
potential µmax is then inferred from the difference between the reconstructed forces and the forces
provided by the model for the current tyre slip values.

Depending on the approach considered, the friction model can take the form of an analytical
expression (e.g., Brush model [87,88]) or a Neural Networks structure [3,10,68]. The main drawback
derived from this methodology is that a certain longitudinal or lateral slip is necessary in order to
accomplish such estimation.

In Figure 11a the tyre longitudinal forces obtained from a parameterised Magic Formula 6.1 tyre
model [3] are depicted. As can be noticed, the slope of these forces does not change significantly
between high and low adherence rigid road surfaces (e.g., dry asphalt, wet asphalt) when the
longitudinal excitation is kept low (i.e., negligible Cλ difference is observed between µmax = 1
and µmax = 0.6 for λ < 2%). This behaviour is derived from the infinitely rigid road assumption
employed to formulate the Brush and Magic Formula tyre models [67]. As a consequence, the slope
of the tyre forces is considered only a function of the tyre tread stiffness in these models, and is not
affected by the µmax coefficient. This has been evidenced experimentally under well-controlled braking
tests performed in a wide range of rigid surfaces by Andrieux et al. [45]. Nevertheless, in a large
number of works the previous statement is refuted and the so-called “slip slope” concept is presented.
In particular, the slip slope idea states that the tyre longitudinal stiffness (slope on Figure 11a) presents
significant variations between high and low adherence surfaces. In these works it is claimed that the
slip slope tyre phenomena facilitate the estimation of the friction potential under minimum excitation
levels using traditional slip-based approaches. As this approach is often tested on rigid as well as loose
surfaces (e.g., snow, dry asphalt, ice, and gravel) the change in the slip slope might be induced by the
soft material (e.g., sand) deposited between the tyre and the rigid road [17]. Moreover, the slip slope
presents significant variations depending on external tyre parameters, such as the tyre pressure or the
tyre wear [6,7]. As a certain degree of controversy exists around the slip slope idea, these results are
considered in more detail in the following sections.
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Figure 11. (a) Longitudinal forces versus slip ratio λ(%) obtained for different µmax values from
a MF 6.1 205/65 R16 tyre model [3]; (b) Tyre SAT τa and lateral force Fy versus lateral wheel slip α.
Tyre SAT-based methods rely on the earlier saturation of the tyre self-alignment torque.

Leaving aside the slip slope discussion, this survey evidences that a non-negligible grip
consumption level is always required to estimate the road friction potential. This limits the performance
of slip-based strategies during free-rolling driving conditions. Some studies presented in this survey
indicate grip consumption levels that range from 30% to 80 %. Lowest values are observed when tyre
SAT-based approaches are employed due to the higher sensitivity of the former signal to variations
in the lateral slip (i.e., earlier tyre SAT saturation, Figure 11b) [9,38] (See Section 3.3). In spite of
these drawbacks, slip-based road friction monitoring is cost-effective and generally computationally
inexpensive. Moreover, it can provide an accurate online estimation when enough excitation is present
(e.g., during ABS or ESP intervention).

The main aim of this discussion is to provide some clarity regarding the minimum grip
consumption thresholds required by the most relevant slip-based approaches existing in the literature.
This will evidence the necessity of new approaches (e.g., tyre vibration-based) to estimate the maximum
road grip during free-rolling conditions. Furthermore, this will facilitate the selection of the excitation
thresholds required by future combined [17] or “friction fusion” strategies (e.g., vibration-based
during coast down driving and slip-based during hard accelerations [12]). The next subsections
follow the structure presented in Figure 12, and provide a comprehensive discussion on slip-based
methods for longitudinal dynamics manoeuvres, lateral dynamics manoeuvres, and tyre self-alignment
torque measurements. Due to space limitations, only the most relevant works in the opinion of
the authors are discussed in detail. In addition, the analysis is restricted to the friction potential
estimation. A comprehensive list of relevant tyre force estimation methods can be found in [53].
Finally, only real-time works are presented in this review. For further details on other offline
approaches [52,89,90] can be consulted.

Slip-based Road Friction Monitoring 

Long. dynamics

Slip slope

Model-based

Active force exc.

Lateral / coupled dynamicsTyre SAT

[Albinsson 2016]

[Singh 2014]

[Muller 2003]
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Figure 12. Classification followed on the discussion of slip-based road friction monitoring approaches.
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3.1. Longitudinal Dynamics

A large number of works have been presented to estimate the friction potential from the vehicle
longitudinal dynamics (e.g., braking manoeuvres). These can be classified into longitudinal stiffness or
slip slope-based approaches [6,7,17,44,91,92], friction model-based approaches [12,13,16,18,19,21,93–95]
and active force excitation approaches [71,96]. Despite slip slope approaches belong to the friction
model-based group (i.e., linear longitudinal stiffness tyre model), a distinction has been made to treat
them in greater detail. Furthermore, a new promising approach recently developed by Albinsson et al.
(active force excitation) has been added to the discussion.

Slip slope approaches are based on the assumption that the tyre longitudinal stiffness depends on
the maximum road friction coefficient [6]. Therefore, provided that a suitable function Cλ = f (µmax)

is found, the friction estimation problem can be solved by monitoring the tyre longitudinal stiffness.
In Gustafsson [6] a linearised friction model is presented to estimate the slip slope κ = Cλ/Fz and the
friction bias ρ from the tyre longitudinal slip λ and the normalised longitudinal force (µ = Fx

Fz
),

λ =
µ

κ
+ ρ (43)

where the force Fx is obtained from the measured engine torque and λ is calculated using the difference
between the driven and non-driven wheel speeds. Different roads (asphalt, wet asphalt, gravel,
snow and ice) and tyres (MXT, MXV2 (almost worn out), NCT2 and Eurofrost (winter tyres)) were
tested, and a rule-based classifier was proposed based on the empirical results. Slip slope coefficients
varied significantly depending on the tyre considered, and well-clustered surfaces were obtained only
for the Eurofrost tyre. In addition, authors remarked that the values obtained in these tests were very
sensitive to variations in tyre parameters such as the tyre pressure or the tyre tread depth (tyre wear).
In Muller et al. [7] several braking manoeuvres were performed on dry (µmax ≈ 1.1) and soapy
roads (µmax ≈ 0.7). The tyre forces were measured from a strain-based torque sensor and the braking
action was performed only at the front wheels. The slip slope was calculated using recursive least
squares (RLS) on the model given by expression (43) and significant differences between the tested
surfaces were obtained for grip consumption levels of µ = 0.4. These tests were repeated employing
a cost-effective experimental setup and the following slip slope ranges were found, Table 2:

Table 2. Slip slope κ and µmax ranges obtained in [7].

Road κmin κmax µmax

Dry asphalt 23 40 [0.85,1.15]
Soapy asphalt 17 28.2 [0.45,0.75]

Once again, the high variability of the slip slope coefficient was highlighted by the authors.
Moreover, Muller et al. indicated that the κ − µmax relation that works at the present time might
not work during the next month, thus remarking the strong dependence of this coefficient on tyre
parameters such as inflation pressure or tyre wear. In Ahn [17] longitudinal stiffness values of a Pirelli
255/50R-17 installed in a Jaguar S-type are provided, Table 3. Additional details regarding the
temperature at which the tests on ice were performed are not given. As will be seen in Section 4.1,
some authors argue that the ice temperature can have a significant impact on the tyre longitudinal
stiffness or slip slope factor.

Table 3. Longitudinal stiffness Cλ values obtained in [17].

Tyre Parameter Concrete Snow Ice

µmax [0.85–1] [0.35–0.4] [0.15–0.2]
Cλ 16× 104 6.6× 104 1.8× 104
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A linear regression was performed to obtain these values setting the maximum longitudinal slip
to 2%. Ahn presents the “equivalent tyre-road stiffness” theory [42,53] to explain the differences seen
on Cλ. Specifically, this theory attributes the variations in slip slope to the presence of soft material
(e.g., gravel, snow or wet ice) in the road-rubber interface. Under these conditions, the surface can
no longer be considered infinitely rigid with respect to the tyre carcass, as states the accepted tyre
modelling theory [67].

In Rajamani et al. [44] the slip slope κ is estimated using RLS from the linear relationship

Fx

Fz
= κλ (44)

In addition, the authors proposed a linear expression to relate the slip slope to the road friction
potential, µmax = Aκ+C, where A and C are constant parameters determined empirically. In particular,
the authors found the previous coefficients from the slip slope estimates obtained in dry asphalt
and gravel surfaces. In this case, the “equivalent tyre-road stiffness” theory holds, and the abrupt
reduction of κ in gravel conditions correlates well with the experimental tyre model parameterisations
on gravel performed by other authors [71]. Unfortunately, the previous expression has not been
reproduced experimentally in a wider range of rigid road surfaces. The same expression was adopted
by Li et al. [91]. The authors mention that the coefficients A and C were obtained experimentally,
but additional details are not provided. In Wang et al. [92] more details are provided regarding
the linear µmax-κ relationship. Specifically, the slip slope is estimated from gentle braking inputs
performed with a winter maintenance vehicle on dry concrete and concrete with light loose snow
covering, and the slip slope values 9.8 and 7.0 are obtained for each test case.

An attempt to clarify whether the slip slope can be related to the road friction potential has
been performed by Andrieux et al. [45]. The authors performed field trials on five different rigid
pavements of different micro and macro-textures (with friction potential coefficients ranging from 0.1
to 1.2). In addition, manoeuvres were repeated with summer and winter tyres, two tyre manufacturers,
new and worn tyres, and a wet road surface with a water film thickness of 0.4 mm.

The combination of the above conditions provided 40 cases for each one where braking at different
levels of deceleration and slip were conducted. Andrieux et al. found that the longitudinal stiffness
Cλ of summer tyres is greater than that of winter tyres and the longitudinal stiffness of worn tyres is
greater than that of new tyres. They also concluded that the longitudinal stiffness Cλ does not allow
discrimination between the pavements, while their maximum friction coefficients varied almost three
times and presented very different textures. In conclusion, they stated that a clear relationship Cλ-µmax

was not verified, and therefore it may be impossible to estimate the maximum available grip µmax

from the longitudinal stiffness Cλ.
Due to the fuzziness associated to slip slope methods, other authors have opted for

using more sophisticated friction modelisations (e.g., Dugoff model) to estimate the road grip
potential [13,16,18,19,21,93,94]. These are designated here as model-based approaches. In brief,
in these works linear and nonlinear regression algorithms are employed to infer the parameter µmax

from a friction model updated with suitable force and slip estimates. In Singh [16] nonlinear least
squares (NLLS) are applied to the analytical Brush tyre model. The authors provide different minimum
grip consumption thresholds based on the results obtained in high and low mu conditions (µmax ≈ 1
and µmax ≈ 0.2). Specifically, it is highlighted that a grip utilisation between 70% and 85% is required
to estimate µmax with an accuracy within the 10% band. The Brush model was also employed by
Zhao et al. [13]. In this case, the tyre longitudinal stiffness is assigned a fixed value (under the
assumption of invariability during a short period of time) and only the µmax coefficient is estimated.
The nonlinear Brush model is linearised to apply an RLS identification routine and several braking
manoeuvres are simulated under the actuation of a threshold-based ABS and a Sliding Mode control
(SMC) based ABS. Moreover, the estimator was verified experimentally under the actuation of the
former ABS. In this case, the analysis is reduced to limit braking manoeuvres, and further details
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regarding the estimation accuracy on lower consumption thresholds are not provided. Han et al. [19]
proposed a third-order force model of the form,

µx =
a1

3
(λ− a2)

3 +
a1a3

2
3

(45)

where a1 and a2 are model parameters estimated using linearised recursive least squares (LRLS)

and the friction potential is defined as µmax =
a1a3

2
3 . Several simulations and experimental tests are

conducted and authors state that this estimation approach requires around 60–70% of the total friction
consumption to achieve accurate estimates. In Johansson [94] a tyre model designated as BW and
developed by Ola Nockhammar at BorgWarner TorqTransfer Systems AB was employed. Instead of
assuming a constant Cλ, the author used the linear slip slope relationship [44] described in the previous
paragraphs. The A and C parameters were obtained from field tests performed in dry asphalt and
ice/snow surfaces. Once again, the nonlinear tyre model was linearised in order to apply the RLS
routine and a predefined friction consumption threshold was set to carry out the estimation only
during dynamic excitation exceeding this value. A combined linear-nonlinear identification routine was
employed in Svendenius [18]. Specifically, the author employed the least squares method in a linearised
version of the Brush model during low excitation levels and a Gauss-Newton optimisation routine
during high longitudinal excitation levels. Experimental tests (acceleration ramp) were executed with
winter tyres on asphalt, snow and ice surfaces. The maximum friction consumption level during the
execution of these tests was maintained below the 0.4 band in snow and asphalt surfaces, and below
the 0.1 band in icy conditions. Svendenius [18] remarked that good results were obtained in snow
conditions (converging the friction estimate to the true value at a 50% grip consumption level) and ice
conditions (at a full tyre saturation level), but accurate results were not achieved on asphalt due to the
reduced friction potential utilisation.

Li et al. [21] proposed an algorithm to classify the slipperiness of the road surface. A rule-based
classifier is proposed to identify the slipperiness grade (ranging from 1-asphalt to 3-oil or icy patches)
based on the slip estimated at each wheel and the vehicle longitudinal acceleration. Moreover,
the algorithm includes a Magic Formula curve fitting step executed when enough data points spread
along the ax-λ curve are available. Experimental tests at reduced acceleration (ax < 0.2 G) are performed
on a path composed of sand and gravel segments. Despite accurate results are obtained on the sandy
segment (detected as a grade 3 segment), the algorithm misclassified the gravel terrain. The authors
remark that a classifier relying on the wheel slip might not be accurate enough to distinguish
rough road segments from rigid ones, and propose a second classifier based on the wheel speed
fluctuations. Other works employing different friction models have been found in the literature.
A dynamic Lugre model was employed in Alvarez et al. [93]. A fast-convergence observer was
developed based on a parameter adaption law employing wheel angular velocity and longitudinal
acceleration measurements. The observer was simulated under emergency braking manoeuvres.
Finally, Zhang et al. [95] and Zhao et al. [97] employed the Burckhardt [15] tyre model to estimate the
friction potential during braking manoeuvres.

The solutions discussed up to now were proposed based on the assumption that a certain
longitudinal excitation can be generated (e.g., some braking or acceleration events during a regular
driving journey). In order to eliminate this requirement and facilitate the estimation of the friction
potential during constant speed conditions Albinsson et al. introduced recently the “active force
excitation” concept [71,96]. In [96] a method to generate wheel torques of opposite sign on the
front and rear axles (front driving—rear braking in a front-wheel-drive FWD configuration) was
investigated. Such approach depicted schematically in Figure 13, facilitates the generation of high
excitation levels with minimum longitudinal speed variations. A torque input is applied at the front
axle and a proportional-integral-derivative (PID) controller is employed to adjust the rear braking
torque based on the error between the angular velocities of the driven wheels and the longitudinal
velocity at the start of the intervention.
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Figure 13. Active force excitation strategy proposed by Albinsson et al. [96].

An algorithm is proposed to avoid the direct measurement of the longitudinal velocity. Instead,
an estimate of this signal is obtained from wheel speed measurements using a vertical load
proportionality principle [67]. Several ramp acceleration tests were executed on dry asphalt and
wet basalt and the road friction was calculated offline fitting the Brush model to a cloud of experimental
data with nonlinear least squares. Authors remarked that this solution presented a high sensitivity
to the noise present on the wheel speed signals. In addition, high grip consumption levels were
reported to achieve the model fitting, especially during the basalt tests (≈90%). This research has been
continued in [71], where it is investigated how the tyre force should be applied in order to minimise
the friction estimate error. Authors conclude that a suitable force ramp has the benefit of being easily
implementable. Moreover, it is highlighted that if realistic noise levels are considered, at least a 60% of
friction utilisation for a given tyre-road combination (the analysis is focused on wet asphalt and gravel
surfaces) is required in order to have a grip potential estimate with a 0.1 normalised force accuracy
when the Magic Formula is employed. The friction utilisation is increased to 75% when the Brush model
is adopted.

3.2. Lateral Dynamics

A large number of solutions have been presented in the literature in order to extend the operating
range of the friction potential estimation to manoeuvres in which the vehicle lateral dynamics are
excited (e.g., lane change). Such approaches present a higher flexibility and can perform an accurate
grip estimation during acceleration, braking and cornering events. In other cases, the friction
potential estimation is limited to cornering manoeuvres and the longitudinal dynamics are disregarded.
A comprehensive discussion on pure lateral and combined (lateral and longitudinal) dynamics is
presented in this subsection. The majority of the solutions proposed in the literature are predominantly
model-based approaches [8,23,34,43,98–111], and differ depending on the technical solution adopted
to infer the friction potential from the parameterised friction or tyre force model (e.g., Unscented
Kalman filter (UKF) [8] or Bayesian Hypothesis selection [43,111]). Apart from this dominant group,
additional solutions have been proposed using data-based [3,112], rule-based [20], self-excitation [113],
or wheel acceleration-based approaches [114]. These will be briefly discussed in the following.

To start with, Antonov et al. [8] proposed a UKF based on a two-track vehicle model to estimate
the vehicle states and augmented the vector of states with the road friction potential, modelled as
a random walk variable. A simplified Magic Formula tyre model was embedded into the UKF and
the vehicle states and friction potential were calculated from lateral acceleration, yaw rate, and wheel
speed measurements. The UKF was tested experimentally on ABS braking manoeuvres and lane
change tests performed on dry asphalt and ice surfaces. In this case, the analysis was focused on
limit handling manoeuvres, and additional details regarding the grip utilisation thresholds to infer
the road grip were not provided. The same concept was applied in Gao and Yu [98]. A simplified
single-track modelisation was proposed this time, and an arctangent tyre model was implemented
in an Extended Kalman Filter (EKF). The observer is simulated on high and low mu surfaces using
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IPG-CarMaker under limit steering inputs but grip utilisation levels are not provided. An EKF was also
employed in Li et al. [102], and a Dugoff tyre model was adopted to estimate the road friction potential.
Contrary to the approached adopted by Antonov et al. [8], Li et al. estimated the longitudinal forces
in a separated block (using a wheel rotating dynamics-based approach [53]), and limited the friction
potential estimation to pure lateral dynamics events. The vehicle responses were simulated using
veDYNA software and different limit double lane change manoeuvres were performed in surfaces of
µmax = 0.9 and µmax = 0.5. Additional discussion on grip utilisation thresholds is not provided.

Qi et al. [101] performed the estimation of the friction potential and the tyre forces using a two-step
approach, Figure 14. In first place, the tyre forces are modelled as random walk variables and
estimated in addition to the vehicle planar motion states in a EKF structure using readily available
CAN measurements. These estimates are then used in a second EKF structure to calculate the lateral
and longitudinal tyre stiffness (Cλ, Cα), and the friction potential coefficients in the longitudinal
and lateral directions µmax,x, µmax,y. In addition, a novel tyre model of reduced complexity is
proposed. Simulations are carried out on high and low mu surfaces under pure braking, pure steering,
and combined limit inputs. Additional braking tests were simulated under lower excitation levels
and the observer experienced some difficulties to converge to the true maximum friction potential
values. The same two-step approach was followed in Chen et al. [108], where the one-directional
friction potential coefficients µmax,x, µmax,y were estimated using a UKF structure and a modified
Dugoff tyre model. The tyre forces were obtained from a discrete EKF using chassis acceleration and
yaw acceleration measurements. A Mean Square Error (MSE) weighted fusion method is proposed
to obtain the resultant friction potential estimate depending on the uncertainty associated with each
one-directional estimate. Such uncertainties are computed from second-order surfaces that depend
on the lateral and longitudinal tyre slips. Despite this simulation results are presented on surfaces of
different grip potentials, a discussion on grip utilisation levels is omitted.
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Figure 14. Estimation structure proposed by Qi et al. [101]. Figure adapted by the authors from [101].

Shim et al. [103] proposed a proportional-integral-derivative (PID) controller to estimate the road
friction potential. Specifically, the responses obtained from a two-track vehicle model equipped with
an analytical model developed by the authors in [115] are compared to wheel speed and yaw rate
measurements, following the structure depicted in Figure 15. The model was validated experimentally
in dry asphalt and gravel terrains and friction potential estimates were obtained from the wheel
speed and yaw rate signal errors. Finally, a weighting strategy was proposed to fuse these estimates
based on the steering wheel angle and the longitudinal velocity signals. A similar reference vehicle
model-based approach has been reported in the Europen project “Friction” [104] and in Koskinen [23].
This algorithm was developed by VDO Automotive AG and compares yaw rate sensor measurements
with the responses obtained from a reference vehicle model. Additional details regarding the tyre
parameterisation employed in the reference vehicle model were not found in these works. The friction
estimator was integrated with a steering wheel torque-based friction observer (provided by Centro
Ricerche Fiat S.C.p.A.) and a Vehicle Feature Fusion (VFF) block was formed. After performing
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a detailed experimental assessment of the proposed solutions on dry asphalt, snow, and ice surfaces,
Koskinen remarks that acceleration levels higher than 3 m/s2 are required by both structures to achieve
an accurate estimation.

Final � estimate
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Wheel speed 
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Wheel speed 

controller

Wheel speed error

Predicted wheel speed

Friction estimate from wheel speed Friction estimate from yaw rate

yaw rate 
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Predicted yaw rate
yaw rate 

controller

yaw rate error

Figure 15. Estimation structure proposed in Shim et al. [103]. Figure adapted by the authors from [103].

In Wang et al. [106] an observer is proposed to estimate the lateral velocity and the road friction
potential. The authors used separated strategies for the linear and nonlinear lateral dynamics. In the
linear dynamics case, it is assumed that the friction potential does not affect the vehicle response,
and the tyre cornering stiffness (Cα) is considered unaltered. The estimation of the Tyre Road Friction
Coefficient (TRFC) is therefore limited to the nonlinear lateral dynamics and is carried out using
an observation law based on the resultant lateral force error obtained from lateral acceleration
measurements and a Magic Formula tyre model. A kinematic-based observer is used to estimate
the lateral velocity required by the Magic Formula tyre model during the operation in the nonlinear
region. The authors proposed a similar approach in [109]. In this case, the vehicle body slip is assumed
to be measured, and the one-directional friction potential coefficients µmax,x, µmax,y are estimated using
the adaptation laws

˙̂µmax,xi = kp1(Fxi − F̂xi), ˙̂µmax,yi = kp2(Fyi − F̂yi) (46)

with i ∈ { f l, f r, rl, rr} and kp1, kp2 being suitable gains. Fxi is the measured longitudinal force (inferred
from the current of an electric motor) and Fyi is the tyre lateral force (assumed to be measured by
a sensor). Finally, the authors proposed a weighting function based on the tyre longitudinal and
lateral slips to fuse the one-directional grip potential estimates. As occurred in the previous cases,
a detail discussion regarding grip utilisation levels is not provided. Such discussion is also missing
in the solution proposed by Peng et al. [105], where an observer to estimate simultaneously the
vehicle longitudinal and lateral velocities and the road friction potential from wheel speed and
chassis acceleration measurements is proposed. Despite an observer convergence analysis is provided,
details regarding the lateral acceleration levels at which the observer converges are not provided.

To continue with this model-based discussion, Han et al. [100] proposed a feedforward approach
to estimate the friction potential during pure lateral dynamics conditions from a Dugoff tyre model.
Using this model the friction potential was expressed as a function of the lateral force, vertical
force, cornering stiffness and tyre lateral slip angles. The cornering stiffness was assumed a known
constant parameter, the tyre forces were obtained from the measurements provided by a 6-dof inertial
motion unit, and the vehicle body slip necessary to compute the tyre lateral slips from a Luenberger
yaw-sideslip observer. Simulation results were presented and accurate friction estimates were obtained
for µmax = 0.5 and µmax = 0.3 at the expenses of normalised lateral force levels of µy ≈ 0.30–0.4
and µy ≈ 0.20–0.25 respectively. Choi et al. [99] proposed an estimation structure to calculate the
road friction potential and the tyre longitudinal and lateral stiffnesses (Cλ, Cα), Figure 16. In this
structure, the tyre forces and lateral and longitudinal slips are estimated in separated blocks, and fed
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through a linearised recursive least squares block (LRLS) based on a linearised Brush tyre model.
An adaptive multiple forgetting factor strategy is adopted to compensate the variation rate of the
tyre properties (Cλ, Cα, which vary slowly) and the friction potential (µmax, which can vary quickly
during mu-jump situations). Moreover, the structure is enhanced to estimate left and right friction
potentials in case of transversal mu-split conditions. Simulation results are presented in Carsim,
and an accurate tracking of the friction potential and tyre parameters is achieved in a road formed by
µmax = 0.9, µmax = 0.3, µmax = 0.6 under a continuous lateral excitation level of approximately 4 m/s2.
The Brush tyre model has been also employed by Hahn et al. [34,43]. In this case, the authors proposed
an adaptive law to estimate the tyre cornering stiffness and friction potential using a differential Global
Positioning System (DGPS) setup. Several experiments were performed on high µmax = 0.9 and low
mu µmax = 0.4 roads and accurate results were obtained by the proposed algorithms. The author
remarked that the results obtained evidenced a good performance even under small lateral slip values,
but the lack of lateral acceleration or grip utilisation results complicates extracting further conclusions.
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Figure 16. Estimation structure proposed by Choi et al. [99]. Figure adapted by the authors from [99].

Ray [111] presented a Bayesian Hypothesis selection process to infer the friction potential from
a parameterised tyre model. The same approach is also reported in Rajamani et al. [43]. In brief,
this method provides a most likely friction potential value µmax for a given set of tyre forces and tyre
slips. Following a similar approach than the works presented previously, the tyre forces and tyre slips
are estimated in an external Extended Kalman-Bucy filter (EKBF). The estimation routine is validated
experimentally under J-turn and braking manoeuvres performed on a dry asphalt (µmax ≈ 0.9) segment.
The authors remark that for low longitudinal or lateral slip levels (e.g., |ax| < 0.3 G, |ay| < 0.4 G)
the algorithm does not perform well due to the proximity of the tyre force curves in the low slip
regions, Figure 11a. Zhang and Göhlich [110] employed a Bayes-based estimator in combination to
a General Regression Neural Network (GRNN) estimator. Specifically, the GRNN is employed during
low excitation levels (|α| < 0.05, |λ| < 0.02), while the Bayes-based estimator is employed at high slip
values. Finally, acceleration-braking and lane change simulations performed in Carsim are presented.
Further conclusions regarding grip utilisation levels are difficult to extract.

Alternative approaches have been proposed in the literature apart from the model-based solutions
described previously. To start with, a data-based approach was proposed by Song et al. [112]. This time
authors presented a back-propagation (BP) Neural Networks structure to estimate the road friction
potential from wheel speed, tyre longitudinal slip, yaw rate, longitudinal and lateral acceleration,
and steering wheel angle values. A two-hidden-layer structure composed of ten neurons each is
trained from simulation data obtained with veDYNA vehicle dynamics simulation software. Authors
highlight that the approach still presents significant drawbacks (e.g., estimation may become inaccurate
if the simulation model employed during the NN training does not match the real vehicle) and further
improvements are to be performed. In the paper by Acosta and Kanarachos [3] an observer composed
of three Neural Network structures is proposed to estimate the friction potential. In particular, RLS is
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applied to extract the maximum road grip from a linear interpolation model. In order to avoid large
errors during reduced excitation levels (e.g., straight-line driving) the estimation is carried when
a certain lateral acceleration level is present (|ay| > 1.5 m/s2). Overall, grip utilisation levels ranging
from 40 to 80% are required to estimate the road friction potential.

In Kim et al. [114] a novel approach based on the three-axis wheel accelerations is provided.
A parametric model of the form [

ãi
x

ãi
y

]
=

[
µi

x
µi

y

]
(ãi

z + g) = θTφ (47)

is proposed to estimate the friction utilised by each tyre. Individual wheel accelerations are obtained
from the vehicle body accelerations, which are measured using a six-degree-of-freedom (6-DoF) inertial
motion unit, and RLS and Gradient Estimator (GE) are applied to estimate the vector of parameters
θ = [µx, µy]. The authors validated the proposed grip utilisation observer under emergency braking
manoeuvres on dry asphalt. Despite the fact that it is indicated that the friction potential can be
calculated from the friction consumption level additional results in this line are not provided. A tyre
model-less approach was presented by Li et al. in [20]. In this case, the grip utilisation levels during
braking µabs, driving µtcs, and cornering µayc manoeuvres are employed in a signal fusion fashion to
obtain a “comprehensive” road friction estimate (µcomp), defined as

µcomp =
k1µabs + k2µtcs + k3µayc

k1 + k2 + k3
(48)

where k1, k2, k3 are certainty factors computed from the tyre slips and the chassis accelerations.
A rule-based approach is presented in order to update the friction estimates during braking and
cornering manoeuvres only when the utilised friction is closed to the maximum road friction
level. A Fuzzy logic controller is adopted to achieve the previous task during driving events.
Experimental results were reported on dry asphalt, packed-snow, and icy roads for emergency braking
manoeuvres, lane change, hard acceleration, slalom, and steady-state cornering driving. Overall,
the validation of the algorithms focuses on limit handling manoeuvres, and additional conclusions on
low excitation levels cannot be extracted.

Finally, in a similar manner to the active force excitation approach described in the longitudinal
dynamics section [71,96], Wang et al. [113] introduced a yaw-excitation solution to estimate the road
friction potential and tyre cornering stiffness. Such yaw-excitation strategy is based on a four-wheel
independently-actuated (FWIA) electric vehicle, and pursues the estimation of these parameters during
regular driving conditions without affecting the desired vehicle motion. Specifically, during straight
line or slow turns an additional yaw moment is generated by differential traction inputs, and the
cornering stiffness Cα is estimated using an update law based on the Brush tyre model and the lateral
force error. Such estimation is performed assuming a negligible effect of the road friction potential on
the lateral force at reduced lateral slip values. During corners at which the lateral excitation is higher the
same update law is employed, the cornering stiffness estimated in the previous step is kept constant in
the Brush tyre model, and the friction potential is estimated from the lateral force error. The estimation
of Cα is verified experimentally in a dry asphalt road by means of an additional yaw moment applied
by the rear wheels of a prototype vehicle. A corrective steering action is applied manually due to the
lack of steering actuator in the test vehicle. After that, cornering manoeuvres are performed on high
and low mu road segments and the friction potential is estimated without the use of an additional yaw
moment. Despite the cornering stiffness is estimated at low excitation levels additional investigations
on the friction potential estimation at such excitation levels would be of interest.
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3.3. Tyre Self-Alignment Torque

The discussion on slip-based methods is completed with the revision of road friction potential
estimation approaches which rely on the tyre self-alignment torque (SAT) signal. Among the papers
consulted, the vast majority employ an analytical friction modelisation to estimate the coefficient
µmax [9,11,17,35,37,39,40,87,88,107,116–123]. In particular, the Brush tyre model has received greater
attention on the works reviewed. On the other hand, a reduced number of approaches avoiding the
use of any particular friction model have been found in this survey [10,68,124]. Both, tyre model-less
and tyre model-based approaches are treated briefly in the following.

Regarding the tyre model-based works, an extensive research has been performed by different
authors with the aim to extract the road friction potential from the variations of the tyre pneumatic trail.
As was mentioned at the beginning of this section, the tyre SAT peaks at lower lateral slip levels than
the tyre forces. As the tyre SAT τa is directly related to the tyre lateral force Fy by the pneumatic trail tp,

τa = Fytp (49)

some authors argue that by monitoring the evolution of the tyre pneumatic trail, changes on the friction
potential could be identified at significantly lower excitation levels compared to the longitudinal and
lateral dynamics-based works described previously. In Hsu et al. [88] the road friction potential and
the front axle cornering stiffness Cλ are estimated from body slip, yaw rate, longitudinal velocity,
steering wheel angle, and steer-by-wire motor current measurements. The total steering torque is
obtained from the steer-by-wire current using a second-order steering system model. A nonlinear least
square (NLS) optimisation routine is run continuously to estimate the cornering stiffness assuming
a constant µmax = µmax,0. In parallel, the least squares (LS) algorithm is run and the residuals are
compared to those obtained with the NLS. When a large difference is obtained, enough information of
the nonlinear tyre characteristics is available and µmax is estimated and updated in the Brush model.
A ramp experimental test is performed on dry asphalt and steady-state road potential estimates are
obtained when the lateral acceleration exceeds 0.5 G.

The previous work was continued in [87]. In this case, nonlinear adaptation laws are presented to
estimate the friction potential and the front axle lateral slip (α f ) from vehicle speed, yaw rate, steering
wheel angle, lateral acceleration and the total aligning torque seen at the steering system. Regarding the
latter, a linear disturbance observer is employed and the steering system is modelled as a second-order
system. The nonlinear update laws are based on the error between the measured lateral tyre forces
and front total aligning torque, and the estimates of these signals, which are obtained from a Brush
tyre model. The additional torque components derived from the vertical loads are compensated using
suspension and steering kinematic models. The friction estimation algorithm is tested experimentally
in ramp and slalom tests performed on a dry road. In order to avoid issues during moments of low
lateral excitation, the algorithm only provides µmax estimates once the lateral acceleration is above the
0.5 G threshold. In Hsu et al. [41] the authors employed a Brush tyre model for the lateral forces and
a linearised model for the pneumatic trail,

tp = c0 + c1| tan α f |I f (50)

where I f =
1

µmaxFz
and it is assumed that the tyre is not fully sliding. An adaptation law is proposed

to estimate the front axle lateral slip based on the error between the measured and estimated tyre
lateral force. In this case, I f is estimated rather than µmax with the aim to identify the tyre friction
characteristics without requiring a normal force state estimator. Ramp and slalom tests are performed
on a dry surface and the discussion of the results is limited to the axle lateral slip estimates accuracy.
This estimation structure is also addressed in [122]. In [40] the authors revisit the linearised pneumatic
trail model (51). In this work Hsu et al. provide a comprehensive explanation regarding the selection
of the linearised pneumatic trail model. Specifically, it is argued that while the lateral force remains
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invariant for low lateral slip values the pneumatic trail slope changes drastically with the friction
potential, Figure 17.
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Figure 17. (a) Normalised tyre lateral forces; (b) normalised tyre pneumatic trail for different road
friction potential coefficients. Figure adapted by the authors from Hsu et al. [40].

Therefore, by monitoring the factor I f the friction potential can be detected at lower lateral
excitation levels. A nonlinear observer based on the tyre lateral force error and similar to [41] is
described and a proof of stability is provided. Field tests were executed on dry asphalt and gravel
surfaces. Ramp steer and slalom tests are performed in the former surface, and convergence to the
true friction values is observed for excitation levels above 50% grip utilisation. Sharp transient turns
are executed on gravel and authors remark that the proposed observer provides accurate estimates
of the friction potential for grip consumption levels around 50%. Additional details regarding these
publications can be found in [120].

The linear pneumatic trail model (51) was also employed by Han et al. in [39]. In this case,
the authors referred to this model as the pneumatic trail stiffness. An open loop observer is
presented to estimate the axle lateral slips from lateral acceleration and yaw acceleration measurements,
using a simplified single-track planar dynamics model. Moreover, the cornering stiffness is considered
constant along the lateral dynamics linear region and RLS is employed to estimate the pneumatic
trail stiffness from the axle lateral slip and the measured pneumatic trail. Despite further details
regarding the estimation of tp are not provided, authors highlight that the tyre SAT was directly
acquired by wheel force transducers (WFT). Frequency response tests were performed on a high
mu road (µmax ∈ [0.8–0.9]) and convergence of the friction potential estimates was observed for grip
consumption levels between µ = 0.2 and µ = 0.3.

In Ahn et al. [118] two approaches are proposed to estimate the friction potential. Firstly,
the authors introduce a maximum torque method to derive µmax from the peak value of the tyre SAT
versus axle lateral slip curve. As this approach can only provide accurate results once the maximum
tyre SAT is identified (significant lateral excitation is required), Ahn et al. proposed a nonlinear
least squares method to estimate the friction potential and the front axle lateral slip from a blended
function composed of the lateral force and tyre SAT estimated form readily-available measurements
and the same signals obtained from a reference Brush tyre model, Figure 18. Sinusoidal constant
speed manoeuvres were simulated in Carsim on different grips (µmax = 1, µmax = 0.5 and µmax = 0.2).
Overall, results evidence a good performance of the nonlinear least squares observer, and a limited
accuracy of the maximum tyre SAT approach. Nevertheless, authors indicate that the latter method
can be employed to identify the lower bound of the friction potential, using this on the nonlinear least
square optimisation. Additional discussion regarding grip utilisation levels is not provided. This work
is completed later in [107], where Ahn et al. proposed a robust friction potential observer for lateral
and longitudinal dynamics. In this case a division is made between medium and high lateral excitation
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and small and large longitudinal excitation. Update laws for the axle lateral slip and friction potential
are provided. Moreover, the observer gains are optimised using Sequential Quadratic Programming
(SQP) to guarantee the observer robustness to tyre friction uncertainties. This observer is integrated
with the maximum tyre SAT approach described previously, which is used only during high lateral
excitation. The authors proposed a rule-based integration scheme to estimate µmax and α f based on
vehicle dynamics measurements such as the lateral acceleration or the yaw rate. The observer was
tested experimentally in a mu-jump scenario composed of concrete, ice, packed snow and concrete
with ice paths segments. Accurate results were obtained subjecting the test vehicle to sinusoidal-like
inputs with |ay| < 2 m/s2. Additional details can be found on the Ph.D. of the author [17].
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Figure 18. Estimation structure for medium excitation levels described in Ahn et al. [107,118].
Figure adapted by the authors from [107].

In Matilainen and Tuononen [11] an open loop observer is proposed to estimate the friction
potential on the front left and front right wheels using the Brush tyre model. The tyre self-alignment
torque is obtained from the axial forces measured by strain-gauge sensors attached to the tie rods.
A simplified steering and suspension kinematics model is employed to translate the previous forces
from the tie rods to the wheel-ground contact. The observer is validated experimentally under
steady-state mu-split and ramp mu-transition manoeuvres. The observer exhibits a good performance
and is able to infer the friction potential of high and low mu surfaces (µmax = 0.9, µmax = 0.4) for
tyre friction levels ranging from µ = 0.6 to µ = 0.4. The Brush tyre model has been also employed by
Liu et al. in [123]. In particular, authors proposed a modified version of the previous model based on
test data. The friction potential is obtained using an iterative method that requires the axle lateral slip,
and tyre SAT. The former is obtained from a combined auxiliary particle filter and iterated extended
kalman filter (APF-IEKF) observer, while the latter is calculated using a linear disturbance observer,
as in [17]. The observer is verified under steering inputs below 0.3 G performed at a constant speed on
a surface covered by snow (µmax = 0.32). Further conclusions regarding grip utilisation levels cannot
be extracted.

Relevant approaches employing a tyre modelisation different from the Brush model have been
also found in the literature [9,35,116,117,121]. Specifically, in [116] Shao et al. employed two different
models for the tyre lateral forces and the tyre SAT respectively: TMsimple and TMeasy. The authors
grouped the front axle wheel slip and the road friction potential in the term x = α f /µmax with
the aim to detect if the steering excitation is large enough to estimate µmax in spite of the current
surface grip potential. An input-state-stable (ISS) observer is proposed to estimate x from lateral
acceleration, yaw acceleration, steering wheel angle measurements and an estimate of the total front
axle aligning torque obtained from a linear disturbance observer. The road friction potential is obtained
from the previous estimate (x) using recursive total least squares (RTLS). The estimation algorithms
are simulated in IPG-CarMaker under sinusoidal and lane change steering inputs on different road
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conditions. A threshold on the variable x is defined (1.3 degrees) in order to update µmax only when
enough lateral excitation is present. As this threshold is not directly related to the grip utilisation level
extracting further conclusions is complicated. In [117] the same authors proposed a nonlinear adaptive
observer and provided a stability analysis of the same. Nevertheless, the validation of the observer is
performed on a single-track planar dynamics model, and therefore additional conclusions regarding
the observer performance on a high-fidelity vehicle model cannot be extracted. A tyre-SAT-based
friction estimator developed by Centro Ricerche Fiat (CRF) is also reported in the European project
Friction [104] and in Koskinen [23]. The observer is described as a model-based algorithm in which
tyre SAT and “standard” vehicle signals are employed to compute µmax. Additional technical details
are not provided. Authors remark that a certain lateral excitation is required to perform the estimation.
Specifically, a friction utilisation threshold µ = 0.3 is reported in these works as necessary to estimate
the friction potential on a high mu road. This excitation threshold is also found in the Intelligent
Vehicle Safety System (IVSS) project [36,37]. In this case, it is argued that a correlation between the tyre
SAT stiffness and the road grip potential can be established, following an analogy with the slip slope
approach presented in the longitudinal dynamics section. Different experimental tests are performed
on dry asphalt, snow, and ice. Overall, a 0.3 G excitation level is reported as necessary to guarantee
an accurate friction potential estimation.

In Luque et al. [9] the Magic Formula tyre model was employed to infer the road friction potential
from the tyre SAT and the axle lateral slip. Specifically, the authors employed a random-walk EKF
to estimate the axle lateral, longitudinal and vertical forces and vehicle planar motion states from
signals readily available on the CAN bus of modern vehicles. The front axle lateral forces, in addition
to the angle steered by the front wheels and the steering tie rod forces, were employed to estimate
the individual tyre SATs from a Neural Network structure, Figure 19. The NN training was carried
out using simulation data from a multi-body simulation model. Finally, the road friction potential
µmax was obtained from a Magic Formula tyre model using an interpolation algorithm and the pair
(α f ,τa). Despite the fact that several simulation results are presented in the multi-body simulation
software MSC ADAMS the analysis is focused on the observer accuracy, and further conclusions on
grip utilisation levels could not be extracted.
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Figure 19. Estimation structure described in Luque et al. [9]. Figure adapted by the authors from [9].

To conclude with the model-based approaches, solutions employing the friction similarity method
presented in [67] have been found in [35,121]. Ren et al. [121] integrated an UKF to estimate the vehicle
planar motion states and a tyre-road friction estimator in a hybrid fashion. In this case, the maximum
tyre SAT approach introduced in [118] is employed to estimate the road grip potential during medium
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lateral slip levels. For higher excitations, a full sliding model is considered. Fishhook manoeuvres
are simulated in Carsim at three different road friction levels: high mu, low mu, and mixed mu.
As additional manoeuvres at lower excitation levels (e.g., slalom) are not provided it is not possible
to establish a fair comparison with the results described in [118]. Matsuda et al. [35] presented
an EKF observer to estimate the road friction potential from yaw rate, speed, steering wheel angle
and EPS current measurements. Specifically, a simplified single-track yaw-sideslip vehicle model
was employed in the EKF to estimate the vehicle planar motion states and the road friction potential,
modelled as a random-walk variable. A simplified suspension and steering kinematics model was
employed to translate the total axle alignment torque to the tyre SAT, neglecting the jacking torques
at each wheel, assuming that cancel each other. The authors proposed a sigma-modification method
in order to keep the road friction potential estimates within realistic limits. The proposed estimator
was validated experimentally in a mu-jump transition (asphalt µmax = 0.9 to basalt tile µmax = 0.2).
The results evidenced an accurate detection of the mu transition under a reduced lateral excitation
level (|ay| < 2 m/s2).

Regarding tyre model-less approaches, relevant works have been presented in [10,38,68,119,124–126].
To start with, Pasterkamp and Pacejka [10] presented a data-based approach using Neural Networks
to estimate the road friction potential. Specifically, two NN were concatenated to recognise the road
grip potential: the first to estimate the tyre forces in the three axes and tyre SAT when fed by the
steering wheel angle, forces on the king pin, force on the steering link and suspension inclination
angle. The second NN was aimed at estimating the wheel slip and friction potential from the outputs
of the preceding structure. A grip utilisation threshold (µ = 0.3) was set to limit the friction potential
estimation to situations in which a certain excitation is present. The NN was trained with data
from surfaces of µmax = 0.8 and µmax = 0.3. In a second step, data not included on the training
dataset were employed to validate the estimation structure. Despite accurate results are obtained,
only a reduced number of test cases are presented, and therefore a more comprehensive analysis
regarding the extrapolation ability of the proposed NN cannot be assessed. In addition to this work,
the authors provided further details regarding the NN structures on [68].

An alternative tyre model-less approach was proposed by Lee et al. in [124] to detect slippery
road segments. In this case, steering torque thresholds corresponding to a high mu asphalt road are
defined for different vehicle speeds. At each time step, the current steering wheel torque measured
by the EPS system is compared to the dynamic thresholds representative of high-mu situations.
If significant differences are appreciated, the low mu road flag is triggered, and the EPS steering
friction is augmented slightly with the aim to maintain a constant steering effort. Moreover, the authors
proposed an additional algorithm to detect off-road segments from the wheel speed fluctuations. In this
case, it is pursued to have more robustness against kick forces induced by the irregularities rather
than the detection of the road grip potential. As the detection of µmax is not the main aim of this
work, additional results or discussion on this topic is not provided. Other tyre model-less works have
focused on providing a relative measurement of the remaining road friction, known as the lateral
grip margin (LGM), and defined as LGM = µmax − µ, rather than trying to estimate the real value of
µmax [38,119,125,126]. Yasui et al. [38] defined the LGM as:

LGM =
τcur

(∂τ/∂α)0 · α
= 1−

Fy

µmaxFz
(51)

where τcur is the current tyre SAT and ∂τ/∂α is the tyre SAT stiffness. In brief, the LGM is defined as
the ratio between the tyre SAT measured on high mu conditions and the current tyre SAT (assuming
that the tyre lateral slip remains within the tyre SAT linear limits), Figure 20.
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Figure 20. Lateral grip margin concept described in Yasui et al. [38]. Figure adapted by the authors
from [38].

In [38] a modular structure is presented to estimate the tyre SAT from the EPS signals, and the
tyre lateral slip required to compute the LGM is calculated with a single-track yaw-body slip observer.
The authors provided an interesting analysis regarding the sensitivity of the LGM to the grip utilisation
level. Specifically, the authors evidence that the LGM presents an earlier sensitivity to low-mu surfaces
compared to other metrics such as the yaw rate deviation. Ono et al. [119,125] continued with
this research line. The authors enhanced the previous approach to account for the influence of the
longitudinal forces. In this case, the solution adopted is not purely tyre model-less, as the Brush
model is employed to derive a relationship between the tyre SAT, the longitudinal force, the utilised
tyre SAT, and the tyre grip margin TGM (the previous nomenclature is modified in this work).
Following this model, Ono et al. proposed a three-dimensional surface to extract the TGM from
the current Fx and the tyre SAT utilisation level (τ/τ0). The TGM estimation algorithm is embedded
into an integrated four-wheel-distributed steering and four-wheel-distributed traction/braking control
system. Simulations are performed and the discussion is oriented towards the controller closed-loop
behaviour enhancement. Finally, Minaki and Hori [126] employed a TGM observer in a steering
torque control and in-wheel motor control architecture. This time, authors suggested calculating TGM
directly by monitoring the pneumatic trail. This way, the TGM is defined as the state variation of the
pneumatic trail, being zero when the tyre slides laterally and the pneumatic trail is null or negative.
Authors proposed to compute tp directly from tyre SAT estimation and lateral force measurements
provided by Load Sensing Bearings (LSB). For further details regarding LSB [53] can be consulted.
Finally, simulation results are provided to evidence the controller actuation, but a comprehensive
discussion on the TGM observer is not provided.

3.4. Conclusions for Slip-Based Friction Estimation Approaches

The following points summarise the most relevant conclusions extracted from this discussion on
slip-based friction potential monitoring:

• Overall, tyre model-based approaches dominate the slip-based friction estimation problem.
Specifically, the simplified analytical Brush tyre model has been widely employed in the literature.

• Depending on the methodology employed (longitudinal, lateral or SAT-based) slip-based friction
monitoring requires the computation of the tyre forces, tyre SAT and tyre longitudinal or
lateral slips:

– Tyre forces might be estimated from a state estimator (e.g., UKF) using a random-walk approach.
– Tyre SAT is often estimated using a linear disturbance observer and EPS current

measurements.
– Regarding tyre longitudinal slips, the major difficulty resides on estimating the reference

velocity during braking events in which the four wheels present large slips.
– A single-track yaw-body slip observer is often employed to estimate the axle lateral slips.
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• Slip-based approaches can accurately predict the friction potential only when a certain level of
longitudinal or lateral excitation is present:

– Most promising approaches have been found during the tyre SAT-based survey. In particular,
tyre model-less approaches such as the TGM methods are inherently attractive due to its
implementation easiness.

– Regarding slip slope approaches, a clearer treatment between loose surfaces and rigid surfaces
should be provided. There is still a lack of understanding in what concerns the slip slope
changes when the soft material is present in the road-rubber interface.

• Combined approaches based on friction fusion strategies can speed up the friction
potential convergence (fusion of information from tyre SAT, braking manoeuvres and limit
cornering manoeuvres).

• A friction recognition module relying exclusively on slip-based approaches is seen insufficient for
ADAS functions such as ACC or AEB. Additional methodologies capable of sensing the friction
potential during free-rolling events (at least capable of providing an initial rough estimate) should
be incorporated.

4. Vibration-Based Road Friction Monitoring

From the previous survey on slip-based approaches, it is clear that new methodologies should
be explored to achieve a road friction recognition at low longitudinal or lateral excitation levels.
Several authors have proposed different solutions to estimate the road friction potential from the
vibrations originated at the rubber-road interface, Figure 21.
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Figure 21. Classification followed on the discussion of vibration-based road friction monitoring approaches.

Overall, methodologies can be grouped into low and high-frequency vibration-based solutions.
In brief, low-frequency solutions aim at correlating the resonance frequency of different vehicle
subsystems (e.g., steering subsystem) with the road grip potential. Conversely, high-frequency
methodologies pursue inferring the friction potential from the noise emitted by the rubber-road
interface. Other solutions not included in these groups have been proposed to relate the tyre frequency
responses (e.g., tyre circumferential acceleration) to the maximum friction potential [12,16,77]. In these
cases, information from high and low-frequency vibration bands is employed. Most relevant
vibration-based approaches are briefly discussed in the following.

4.1. Low Frequency Vibrations

Following the reasoning defended by slip slope approaches, the main hypothesis behind low
frequency-based contributions is that the tyre longitudinal Cλ or lateral slip stiffness Cα depends on
the road friction potential. Due to the controversy associated with this assertion, experimental research
works on the dependence of the longitudinal stiffness on the road condition are summarised in the
following [127–129].
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In Shimizu et al. [127] tyre force versus slip graphs were presented that showed different
longitudinal and lateral slip slope curves for different icy road surfaces. The icy road surfaces presented
also distinct maximum road friction coefficients. The experimental data were gathered using a drum
tyre tester at 5.55 m/s (20 km/h) and for temperatures ranging from −1 ◦C to −7.5 ◦C. Temperature
influenced significantly the maximum road friction, especially at temperatures close to 0 ◦C where ice
melts. The experiments showed that the road friction potential was maximum at −7.5 ◦C and reduced
significantly at −5 ◦C, −3 ◦C and −1 ◦C. The longitudinal slip stiffness Cλ seemed to remain invariant
at different temperatures, however the lateral slip stiffness coefficient Cα changed. The more close
the temperature was to 0 ◦C, the lower the lateral slip stiffness Cα. In Pavkovic et al. [128] field trials
were conducted on four different road surfaces: dry concrete at T ≈ 0 ◦C, wet ice, and wet snow at
T ≈ 0 ◦C, dry packed snow at T ≈ −7 ◦C and dry rough ice (formed by snowflakes bonding with
ice) at T ≈ −7 ◦C. The vehicle speed ranged between 0 and 22.2 m/s (80 km/h). The experimental
results showed that the longitudinal slip stiffness coefficients Cλ varied on dry rough ice, wet ice and
dry concrete. Wet ice presented the lowest Cλ and largest discrepancy with respect to dry rough ice
and dry concrete. In Carlson and Gerdes [129], a number of field trials were conducted at different
tyre temperature, inflation pressure, normal load, tread depth and road surface wetness. A passenger
car was used for this purpose. The authors estimated the longitudinal stiffness Cλ for all cases and
reported high consistency, 2.5%, between the estimations. The reported changes in longitudinal
stiffness are summarised in Table 4. As observed, the longitudinal slip stiffness is less influenced by
the road wetness.

Table 4. Longitudinal stiffness changes for different tyre temperature, inflation pressure, tread depth,
normal load, and road surface wetness [129].

Longitudinal Stiffness Variation ∆Cλ (%)

Test Tyre 1 Tyre 2

Cold to steady-state temperature −17% −21%
−10% pressure 17% 15%
−20% pressure 29% 28%
Reduced tread (2.5 mm) 34% 91%
+200 kg (normal load ) 13% 7%
+400 kg (normal load ) 60% 42%
Wet road 4% −2%

Moreover, variations in the tyre tread or the normal load have a drastic influence on ∆Cλ.
Such results correlate with the conclusions presented in Gustafsson [6] and Muller et al. [7], where it
was remarked that the slip slope presents significant variations depending on the tyre wear or tyre
pressure. Nevertheless, in spite of these difficulties, a number of recently published papers have
focused on estimating the coefficient of friction assuming a correlation between the tyre frequency
responses, slip slope, and road friction potential [4,5,50,51,130]. It can be understood that there is a lack
of standardised experiments that monitor all the parameters that may influence the tyre performance
(tyre temperature, inflation pressure, tread depth, presence of third bodies etc.).

Umeno et al. [51] presented a method for detecting the coefficient of friction by monitoring the
tyre rotational vibration. By using a simple tyre rotational model, the authors derived a transfer
function relating the road disturbances ∆Td and the wheel speed responses ∆ω. It was showed that the
tyre first natural frequency is only function of constant tyre parameters and that the friction potential
is strongly related to the strength of this resonance frequency. In particular, authors defend that the
tyre longitudinal stiffness Cλ, and more specifically the gradient of the longitudinal force with respect
to the slip velocity (defined as a factor α in this work), affects greatly the prominence of the frequency
magnitude portrait. In order to corroborate experimentally the transfer function model, Umeno et al.
performed several tests using a passenger car on dry asphalt, iced road and submerged road surfaces
(Submerged asphalt with rubber partitions for hydroplaning test). The field trials were conducted at
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a constant speed 16.6 m/s (60 km/h). The algorithm detected changes in the longitudinal stiffness Cλ

when travelling from asphalt to ice road surface and vice versa, as well as when travelling from dry to
submerged asphalt (hydroplaning).

Chen et al. (2015) [4], presented a method that detected the road friction potential based on the
resonance frequency of the driveline of an in-wheel motor drive system, Figure 22. The hypothesis was
based on a linear function between the maximum road friction coefficient µmax and the longitudinal
stiffness Cλ. Despite this not being explicitly mentioned, such function was presented previously
by Rajamani et al. [43]. Chen et al. derived a formula showing that the natural frequency varied,
depending on the longitudinal stiffness Cλ, in the range 15–22 Hz. The velocity of the vehicle did not
change the natural frequency value, but the shape of the frequency response function. Chen et al. tested
their method using a vehicle at constant speed and managed to detect changes in the resonance
frequency for two different road surfaces: cement road and glossy ice road surface. Additional results
on other intermediate rigid surfaces (e.g., wet asphalt) would have been of interest in order to assess
whether the linear dependence between the tyre longitudinal stiffness and the road friction potential
still holds.
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Figure 22. Estimation structure presented by Chen et al. [4].

Schmeitz and Alirezaei followed the same reasoning and presented a method for detecting the
road friction coefficient based on the wheel vibrations [50]. Once again, it was proposed by the
authors that the tyre slip slope presents a clear correlation with the maximum road grip coefficient.
Authors presented experimental data from previous works obtained on dry, wet, snow and icy
road surfaces and remarked that normalised slip slope values (expressed as a factor of slip slope
values obtained in dry concrete, and designated as LKX) could be grouped into 0.13–0.20 for wet
ice, approximately 0.33 for snow and 0.69 for dry rough ice. Schmeitz and Alirezaei employed the
MF-Swift tyre model to enhance the frequency response models presented in previous works and
concluded that the first natural frequency of the tyre’s vibrations and the damping ratio depend on
longitudinal slip stiffness. Specifically, the influence of the tyre longitudinal stiffness on the damping
ratio is greater compared to the influence of the natural frequency. Thus, while the natural resonance
frequency varied between 23 Hz and 36 Hz, the damping ratio ranges from 0.15 to 0.45, Table 5.

Table 5. Values of the peak frequency fp, undamped natural frequency fn, and damping ratio ξ of the
first mode of the tyre for different longitudinal slip stiffness scaling factors LKX, [50].

LKX fn fp ξ

1 35.9 Hz 34.8 Hz 0.17
0.5 34.1 Hz 32.0 Hz 0.24
0.2 29.9 Hz 23.2 Hz 0.44

Finally, Chen et al. [130] developed a method for detecting the tyre-road friction coefficient by
utilising the resonance frequency of an electric power steering system. Following a similar approach to
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their previous work [5], the authors assumed that the tyre self-aligning torque (SAT) stiffness varies
linearly with the road friction potential. Chen et al. derived a formula showing that the resonance
frequency of the steering system varied from 0.5 to 1.6 Hz for tyre SAT stiffness coefficients in the range
that goes from 1000 Nm/rad to 4000 Nm/rad. Due to the low natural frequency value of the steering
system Chen et al. [5] proposed to combine the information deduced from the steering system and the
driveline system for the robust detection of the tyre-road friction coefficient. The method for detecting
the tyre-road friction from the steering system vibrations was experimentally validated on a cement
and snowed road surface. A summary of the contributions discussed in this section on low-frequency
vibration friction estimation is provided in Table 6.

Table 6. Summary of low frequency vibration contributions on friction estimation.

Reference Hypothesis Method Frequency Range

Umeno et al. [51]
Friction influences

damping of tyre vibrations
Transfer function—

Tyre rotational vibrations 20–60 Hz

Chen et al. [4]
Longitudinal slip

stiffness is linearly
dependent on friction

Resonance frequency of the
driveline of an in-wheel

motor drive system
15–22 Hz

Schmeitz and Alirezaei [50]
normalised slip slope factor

LKX is dependent on
friction coefficient

Simulations using
MF-Swift tyre model 23–36 Hz

Chen et al. [130]
tyre self-aligning torque (SAT)

stiffness varies linearly with the
road friction potential

Resonance frequency
of the electric power

steering system
0.5–1.6 Hz

4.2. High Frequency Vibrations

Besides the methods that focus on the low-frequency range, there are a number of
contributions that estimate the tyre-road friction coefficient based on high-frequency vibration
information [46,47,49,66,131,132]. The assumption behind these methods is that the macro and
micro texture of the road surface is influencing heavily the maximum tyre-road friction coefficient.
The assumption is supported by several recent contributions. For example, Rado and Kane [133,134]
correlated the texture of the road surface to the friction coefficient. The texture was measured using
a CircularTextureMeter and the friction coefficient using a Dynamic Friction Tester. A great number
and variety of test track surfaces and lab samples of concrete were used in the test programme.
Tests were conducted at 5.55, 11 and 16.66 m/s (20, 40 and 60 km/h). Obviously, the pads used are
not designed to dissipate water, and therefore resemble the performance of a tyre with minimum
tread depth. The authors applied a signal processing method called HHT (Hilbert-Huang-Transform)
to analyse each road surface texture in four Base Intrinsic Mode Functions (IMFs). The Base IMFs
were representative of each road surface and described the road texture as a function of road length.
Rado and Kane applied the Hilbert Transform to each Base IMF and then for each Base IMF the
instantaneous frequencies and amplitudes were averaged. A linear relationship was derived from the
characteristic values of the Base IMFs and the measured coefficient of friction. Li et al. came to the
same conclusions from a qualitative point of view [135]. In their study, they characterised different
diamond-ground road surfaces using laser scanners and experimentally measured the corresponding
tyre-road friction coefficient by locked wheel braking. The locked wheel test was conducted to measure
the wet pavement skid resistance in accordance with ASTM E-274 using a standard smooth tyre.
As highlighted by Li et al. friction depended not only on texture depth and shape but also on texture
spacing and periodicity.

Hartikainen et al. [66] also predicted the tyre-road friction using road surface texture information.
All road surfaces samples used in the field trials belonged to asphalt or concrete categories with
a maximum aggregate size between 8 and 10 mm. The aggregate types varied between the road
sections as well as the age of the surfaces. The texture of the road surfaces was analysed using a laser
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scanner and the road friction was measured using two methods; the British pendulum, ASTM E303-93,
and skid trailer tests. The skid trailer tests were conducted at constant speed 18.05 m/s (65 km/h) and
water was sprayed in front of the tyre. Two tyres were used in the field trials: ASTM F2493 standard
reference test tyre (SRTT) of size P225/60R16 and ultra-high performance (UHP) summer tyre with
the size P255/40R19. The experimental results showed a correlation between the frictions measured
using the British pendulum and the skid trailer, where the coefficient of determination was R2 = 0.69.
Concerning the correlation coefficient between the frictions measured using the skid trailer and the
surface texture, no correlation was found at low spatial frequencies. However, the correlation increased
significantly for spatial frequencies greater than 30 rad/mm. Therefore, the results indicated that the
shortest measured wavelengths, about 130 µm and below, contributed the most to the differences in
wet rubber friction. Last but not least, the authors highlighted the influence of temperature, as the
correlation was significantly reduced when data captured at different temperatures was considered.

In this context, Boyraz [46,131] presented an acoustic-based approach for automatically classifying
the road friction coefficient. The acoustic data were collected using a cardioid microphone.
The microphone was installed on the suspension strut of a small electric vehicle, taking advantage
of the fact that Electric Vehicles (EV) emit less noise compared to Internal Combustion Engine (ICE)
ones. Foam rubber shield was used to suppress wind noise. Data were collected at low constant
vehicle speeds 2.77–8.33 m/s (10–30 km/h). In brief, the employed system processed audio signals
and extracted features such as linear predictive coefficients (LPC), mel-frequency cepstrum coefficients
(MFCC) and power spectrum coefficients (PSC). The features were extracted using time windows
of 0.02, 0.05 and 0.1 s to facilitate real-time application. The most informative features were then
selected with the aim to train an Artificial Neural Network for the road friction potential classification.
Authors evidenced that the method was able to distinguish between asphalt, gravel, snowed and stone
roads at 91% accuracy in the worst case. Although it was not mentioned exactly how the road friction
coefficient was inferred, this was probably conservatively estimated based on generic values for the
different road types.

Alonso et al. [49] also detected wet road surface conditions by analysing tyre-road noise in
real-time. Field trials were conducted with an instrumented passenger vehicle, on the chassis of which
an electret microphone was installed, at the rear right wheel. An anti-wind foam was attached to the
microphone to minimize wind and turbulence effects, and the tyre size was 195/65 R15. The road
surface in the field trials was a dense asphalt concrete mixture with maximum 12 mm chippings,
in low-to-medium worn condition. The vehicle speed in the tests ranged between 1.38–19.44 m/s
(5–70 km/h), however the validity of the method was proved for speeds higher than 8.33 m/s
(30 km/h). The measurements were first performed on dry and then on wet asphalt. The tyres were
warmed before performing the tests. During the tests performed on wet asphalt, the test section was
constantly watered. The water thickness was not measured, however the track was considered wet
only when there was water sprayed and splashed by the passing test vehicle. The audio samples
were processed in chunks by a 1/3 octave filter band, in the frequency range from 20 Hz to 20 kHz.
Two different methods were applied for selecting the most informative features, which were then
used to train a Support Vector Machine (SVM) for the classification problem, following the approach
depicted schematically in Figure 23. The experimental results showed that when the vehicle was
driven on the wet asphalt, the noise level increased. The level increase was noticeably higher in the
500 Hz to 8 kHz range. The proposed classifier had no misses for the wet asphalt status detection,
and less than 12% misses for the wet to dry transition. Average response time of the system for the dry
to wet transition was very low, in the order of 0.2 s, while for the wet to dry transition it was longer,
in the order of several seconds.
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Figure 23. Block diagram of the road friction characterisation system presented in Alonso et al. [49].
Figure adapted by the authors from [49].

A novel method for estimating the tyre-road friction was presented by Masino et al., whereby
the sound in the tyre cavity was measured [47,132]. The experimental setup depicted schematically in
Figure 24 was employed in this work, where an acoustic sensor was attached to the wheel rim and
simultaneous tyre pressure and temperature measurements were taken. Field trials comprised testing
five different types of road surfaces, with a single tyre and passenger vehicle. The age of the road
surfaces varied between 7–12 years. No data with respect to test speeds were given. To determine the
road surface type features from the PSD of the acoustic signal were extracted. Masino et al. noticed that
the more the power was concentrated in the torus resonances (around 220 Hz and its many harmonics),
the easier it was to find patterns on the PSD curves to distinguish a pavement from another. The features
were used in a Support Vector Machine to perform the classification. However, as a distinction criterion,
the power amplitude at frequencies greater than 5000 Hz was used. The classifier, after post-processing,
had an average precision and recall of respectively 95.1% and 90.6% and an accuracy of 91.8%.
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Figure 24. Experimental setup presented in Masino et al. [47]. Figure adapted by the authors from [47].

Finally in [12,16,77] a vibration-based approach employing low and high frequency information
was proposed. A description of this approach is provided in [77] by Singh et al. In this work, the authors
instrumented a tyre with accelerometers attached to the inner tread. After testing the instrumented
tyre on surfaces of different friction characteristics, the authors computed the power spectrum of each
acceleration signal using the Welch’s average modified periodogram method. A strong correlation
between the tyre circumferential acceleration and the road friction potential was identified by the
authors, particularly on the tyre pre-trailing domain. Singh et al. defined two frequency ranges
(low-frequency band 10–500 Hz and high-frequency band 600–2500 Hz) and defined the vibration
level ratio R as the ratio between the vibration level in the high-frequency band and the vibration level
in the low-frequency band. The authors highlighted that the ratio R increased on wet asphalt surfaces,
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and attributed this change to the higher slippage of the tyre in these circumstances. A fuzzy logic
classifier was constructed taking into account these considerations and validated on smooth asphalt,
regular asphalt, rough asphalt, and wet asphalt. A summary of the research works on high-frequency
vibration friction estimation presented in this section is provided in Table 7.

Table 7. Summary of high frequency vibration contributions on friction estimation.

Reference Hypothesis Method Frequency Range

Boyraz [46,131]
Features of the acoustic

signal depend on the
friction coefficient

Linear predictive coefficients,
mel-frequency cepstrum coefficients

and power spectrum coefficients,
Artificial Neural Networks

Not specified

Alonso et al. [49]
Features of the acoustic

signal depend on the
friction coefficient

Audio samples 20 Hz-20 kHz,
Support Vector Machines 500 Hz to 8 kHz

Masino et al. [47,132]
acoustic signal

in the tyre cavity Power Spectral Density >5000 Hz

Singh et al. [77]
tyre circumferential

acceleration and
the road friction potential

In-tyre accelerometer
measures vibrations,

ratio of vibrations at low
and high frequency range

10–500 Hz
and 600–2500 Hz

4.3. Conclusions of Vibration-Based Friction Estimation Approaches

From our literature review on vibration-based methods for detecting the road-friction coefficient,
the following conclusions were derived:

• Tyre vibration can be used to estimate the friction coefficient. Different approaches have been
tried up to now.

• There are mainly two approaches. One approach focuses on low frequencies and the second
approach on high frequencies.

• Regarding the low frequency approaches most of them are based on the assumption that
longitudinal and lateral slip stiffness depend on the friction coefficient. However, there are
contradicting studies and it seems that researchers cannot agree on this.

• There is more confidence on the influence of micro roughness (high frequencies) on the friction
coefficient. However, there is no model that can describe the mechanism and mostly data-based
approaches have been applied.

• The field trials in the different studies are not consistent or standardised. Various parameters,
such as temperature, tread depth and water level, that influence the developed tyre-road friction
coefficient are not always measured.

• The influence of tread depth and pattern has not been considered in greater detail. The same tyre
with different tread depth will behave very differently for different water levels. It is possible to
estimate tread depth by monitoring the longitudinal slip stiffness over longer periods of time.

5. Summary of Presented Approaches

To conclude this review, Table 8, summarising the main strengths and drawbacks of the approaches
discussed in this paper, is provided.
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Table 8. Major advantages and disadvantages of the approaches presented in this review.

Method Excitation Direction Description Advantages Disadvantages

Slip-based Longitudinal Slip slope Approach easiness Contradictory results
High variability

Slip-based Longitudinal
Friction

Model-based Accuracy
High excitation required

e.g., ABS braking

Slip-based Longitudinal
Active force

excitation
Cons. speed
conditions

“when”?
Blind to mu transitions

Slip-based Lateral
Friction

Model-based Accuracy
High excitation required

Nonlinear cornering region

Slip-based Lateral Data-based No model required
Experimental data needed

Extrapolation issues

Slip-based Tyre SAT
Friction

Model-based

Accuracy
Lowest excitation
among slip-based

Pneumatic trail estimation
EPS requirement

Mech. trail compensation

Slip-based Tyre SAT Data-based No model required
Experimental data needed

Extrapolation issues

Slip-based Tyre SAT LGM
Easiness

Low excitation

Lack of detailed analysis
Existing studies focused on

stability controller validation

Method Frequency band Description Advantages Disadvantages

Vibration-based Low
Resonance
frequency

Reduced
excitation required

Contradictory results
High variability

Vibration-based High Noise
Reduced

excitation required
Based on empirical results
Selection of feature vector

The following points are intended to help the selection of the most suited approach for each road
friction monitoring application and can be taken as a general guide:

• Slip slope solutions present high variability and still lack of robustness. Further investigations on
a wider range of rigid road surfaces are required to corroborate the proposed slip slope versus
friction models.

• Lateral or longitudinal model-based approaches require high excitation levels. These can produce
accurate estimates during emergency braking manoeuvres or limit cornering events, but cannot
anticipate the road grip potential during constant speed conditions. Therefore, such approaches
are limited to vehicle systems, such as ABS or ESP, and are not suitable for ADAS functions,
such as ACC or AEB.

• Active force excitation is a promising and novel methodology with which accurate friction
estimates can be obtained during constant speed driving. Nevertheless, this solution might require
the use of additional sensors (e.g., reference velocity from GPS). Moreover, additional studies
assessing “when” the active excitation has to be performed are still necessary (e.g., tyre/brake
pad wear versus frequency of active excitations to detect sudden changes in the road friction).

• Data-based solutions require the collection of experimental data and the subsequent training with
these data. In addition, extrapolation issues might arise if the training data do not cover a wide
range of road surfaces. Moreover, a certain level of dynamic excitation is required.

• SAT-based approaches are limited to vehicles incorporating an Electric Power Steering (EPS)
system. In case of electrohydraulic steering system, additional measurements (e.g., tie rod axial
force) are required. Model-based approaches that monitor the pneumatic trail can be affected by
the accuracy of the suspension or steering kinematic model employed. Tyre model-less approaches
such as Lateral Grip Margin might be more robust to kinematic model uncertainties. In any case,
lateral excitation levels of at least 0.3 G are reported in the literature to achieve an accurate
friction estimation.
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• Low-frequency vibration-based approaches rely on the slip slope principle. Therefore,
their applicability is subjected to the validity of this principle. As mentioned in the first point,
the relationship between the tyre stiffness and the road friction potential requires further analyses.

• High-frequency vibration-based or noise-based approaches require establishing a mapping
between the feature vector and the road grip potential. Selecting a suitable feature vector is
not trivial. Moreover, a more costly and complicated instrumentation is required. Overall,
these approaches seem most promising for future applications requiring identification of reduced
friction surfaces during constant speed driving. Nevertheless, there is still a long way until these
solutions can be fully implemented robustly and generalised to a wide range of vehicles, tyres,
and roads.

6. Conclusions and Future Challenges

6.1. Conclusions

In this paper, a comprehensive review on existing methods to estimate the road friction potential
has been provided. This work aims at highlighting the main limitations derived from current slip-based
methods, which are unable to provide an accurate estimation of the friction potential during free-rolling
driving conditions.

As has been evidenced, longitudinal dynamics and lateral dynamics slip-based approaches require
significant grip utilisation levels, often close to the maximum road grip potential, in order to achieve
an accurate estimation of the road friction potential. Despite some authors have presented the slip
slope method as an alternative approach to reduce the longitudinal excitation levels, this methodology
presents contradictory results. In brief, additional investigations are still needed to clarify whether this
methodology can be applied reliably to rigid asphalt surfaces or, on the contrary, the changes in the
slip slope are induced by the soft material present at the rubber-road interface. Under the previous
hypothesis, the slip slope approach might be valid only to distinguish loose surfaces such as gravel or
snow from rigid surfaces, such as dry asphalt.

Among the slip-based group, the lowest excitation levels have been reported by works employing
tyre SAT-based approaches. Although the grip utilisation levels are significantly lower than those
observed in the previous slip-based methods, authors remark that lateral acceleration levels of at
least 0.3 G are still required. Such lateral excitation levels suppose a 100% grip utilisation on low mu
surfaces such as ice. In addition, these approaches require modelling the suspension and steering
kinematics. While the total axle aligning torque can be obtained from the EPS current, the estimation
of the tyre SAT requires the subtraction of the moment components derived from the inclination of the
wheel rotation axle (e.g., mechanical trail). Compensating these components complicates significantly
the accuracy of these approaches.

These limitations, particularly the necessity of estimating the grip potential during reduced
excitation levels, evidence the necessity of new friction monitoring solutions. Solutions to the above
limitations have been proposed by means of vibration-based friction estimation methods. Low and
high-frequency approaches have been revised in this survey. Among these methods, high-frequency
solutions seem most promising. Nevertheless, despite relevant classifiers have demonstrated capable
of distinguishing between road segments of different friction potentials, relevant investigations are
still needed prior to commercial implementation. In particular, the derivation of the feature vector for
the grip classifier is not-trivial and relies on a systematic trial-and-error process. Thus, further studies
and metrics relating the tyre frequency responses and the road grip potential are to be investigated.

6.2. Future Challenges

Several future challenges can be envisaged from this survey. These are summarised in the
following lines:
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• Friction fusion (integration of slip-based and vibration-based approaches): It seems clear that
a combination of different approaches will be needed in order to have a continuous estimation of
the friction potential in spite of the driving situations [16,104]. The precise definition of the driving
states and the timely identification of these will be key aspects for the correct implementation of
friction-fusion strategies.

• Robustness of tyre SAT-based approaches: Despite SAT-based approaches seem most promising
among the slip-based group, there are several aspects to consider for future investigations.
In particular, a more detailed evaluation during coupled dynamics (lateral and longitudinal
forces) is still missing from the literature.

• Robustness of noise-based approaches: At the moment, high-frequency vibration-based
approaches have been tested in a reduced number of scenarios. Additional investigations are still
needed in order to find clear patterns that could facilitate the extraction of metrics to generalise
the problem to a wider range of roads, tyres, and vehicles.

• Integration of ADAS with grip estimation approaches: Finally, the ultimate goal of the
investigation on grip recognition approaches is to provide autonomous vehicles with the ability
to detect low mu situations in a wide range of scenarios. Integrating the grip monitoring solutions
on the ADAS and evaluating the impact of the uncertainty associated with the friction potential
estimates on the ADAS performance will be of extreme importance in the future.
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TRFC Tyre Road Friction Coefficient
ABS Anti-lock Braking System
TCS Traction Control System
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ADAS Advanced Driver Assistance System
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ADC Autonomous Drift Control
SAT Self-Aligning Torque
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ANFIS Adaptive Neuro-Fuzzy Inference System
CAN Controller Area Networks
NN Neural Networks
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RLS Recursive Least Squares
NLLS Non Linear Least Squares
SMC Sliding Mode Control
LRLS Linearised Recursive Least Squares
PID Proportional Integral Derivative
UKF Unscented Kalman Filter
EKF Extended Kalman Filter
MSE Mean Squared Error
VFF Vehicle Feature Fusion
DGPS Differential Global Positioning System
EKBF Extended Kalman Bucy Filter
GRNN General Regression Neural Network
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BP Back Propagation
GA Genetic Algorithm
FWIA Four Wheel Independently Actuated
LS Least Squares
WFT Wheel Force Transducers
SQP Sequential Quadratic Programming
APF-IEKF Auxiliary Particle Filter—Iterated Extended Kalman Filter
ISS Input State Stable
RTLS Recursive Total Least Squares
IVSS Intelligent Vehicle Safety System
EPS Electric Power Steering
LGM Lateral Grip Margin
TGM Tyre Grip Margin
LSB Load Sensing Bearing
HHT Hilbert Huang Transform
IMF Intrinsic Mode Function
EV Electric Vehicle
ICE Internal Combustion Engine
LPC Linear Predictive Coefficient
PSC Power Spectrum Coefficients
SRTT Standard Reference Test Tyre
UHP Ultra High Performance
PSD Power Spectral Density
GPS Global Positioning System
SVM Support Vector Machine
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