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Abstract: Flexible electronic devices, such as the typical thin-film transistors, are widely adopted in 

the area of sensors, displayers, wearable equipment, and such large-area applications, for their 

features of bending and stretching; additionally, in some applications of lower-resolution data 

converters recently, where a trend appears that implementing more parts of system with flexible 

devices to realize the fully flexible system. Nevertheless, relatively fewer works on the computation 

parts with flexible electronic devices are reported, due to their poor carrier mobility, which blocks 

the way to realize the fully flexible systems with uniform manufacturing process. In this paper, a 

novel circuit architecture for image processing accelerator using Oxide Thin-film transistor (TFT), 

which could realize real-time image pre-processing and classification in the analog domain, is 

proposed, where the performance and fault-tolerance of image signal processing is exploited. All of 

the computation is done in the analog signal domain and no clock signal is needed. Therefore, 

certain weaknesses of flexible electronic devices, such as low carrier mobility, could be remedied 

dramatically. In this paper, Simulations based on Oxide TFT device model have demonstrated that 

the flexible computing parts could perform 5 × 5 Gaussian convolution operation at a speed of 3.3 

MOPS/s with the energy efficiency of 1.83 TOPS/J, and realize image classification at a speed of 10 k 

fps, with the energy efficiency of 5.25 GOPS/J, which means that the potential applications to 

realize real-time computing parts of complex algorithms with flexible electronic devices, as well as 

the future fully flexible systems containing sensors, data converters, energy suppliers, and 

real-time signal processing modules, all with flexible devices. 

Keywords: flexible electronics; thin-film transistors; image signal processing; machine learning; 

analog-to-information processing; physical computing 

 

1. Introduction 

With the advantages of transparency, softness, biocompatibility, etc., flexible electronic devices 

have been widely used in displaying and sensing fields [1]. For example, the flexible electronic 

devices have put the curved screen [2] and the electronic skin [3] into practice. Meanwhile, state of 

the art has done a lot of proven researches in the flexible self-energizing (solar, etc.) [4] and flexible 

antennas [5]. In some applications, like heart care, where biocompatibility is extremely vital, 

realizing a fully flexible system that including flexible sensing, computation, and display are 

necessary for its biocompatible physical properties. 

As shown in Figure 1, the innovative fully flexible system architecture, where the works on 

various types of flexible interfaces toward bio-tissue [3], flexible analog-to-digital converter (ADC) [6], 
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memory [7], sensors, and display [1,2] have been reported, however, the computation based on 

flexible devices is still an unsolved problem for the fully flexible system, especially for the complex 

algorithms with real-time processing requirements. The lower carrier mobility of the devices 

themselves and device deviation that is caused by immature manufactory make it impossible to 

implement the high-frequency and high-resolution digital processing system on flexible technology. 

Besides, high-speed, high-resolution flexible ADC and Digital Signal Processing (DSP) are needed if 

the traditional digital processing flow would be adopted, which is also energy hungry. In order to 

make up for the shortcomings of flexible computing, Yoon [8] has tried to combine the flexible 

devices with the silicon-based devices, where the complex computation part is done by silicon-based 

integrated circuits. Nevertheless, this kind of pseudo-fully-flexible system brings a lot of problems 

inevitably. Silicon is too hard to be applied in the biocompatible application and the interfaces 

between two devices are costly due to the totally different manufacturing process. Kris [9] proposes 

an 8-bit general-purpose microprocessor that is based on thin-film transistor (TFT) devices, which 

could only perform simple algorithm, such as logic, arithmetic, and bit shift functions at a maximum 

frequency of 2.1 kHz. To sum up, the performance of TFT based digital circuit is not comparable 

with conventional silicon-based technology and is difficult to support the computation intensive 

real-time applications, such as the prevailing image signal processing and machine learning. So 

could we realize the fully flexible system by real-time computing with thin-film transistors? 

 

Figure 1. Innovative fully flexible architecture. 

Analog circuits are well known as more energy-efficient and having a higher computing speed 

than their digital counterparts, for the clock-free processing mode and lower resource consumption. 

Analog accelerators for signal processing also have recently achieved the breakthrough in various 

fields [10], but analog TFT circuit is rarely reported due to the device deviation and component 

mismatch, which are also the major disadvantage of the flexible device. However, in some 

fault-tolerant applications, the deviation may not be critical. For example, in feature extraction 

algorithms of image processing, such as Difference-of-Gaussian (DoG) [11] and Histogram of 

Oriented Gradient (HOG) [12], the feature descriptors are generated from local or global statistical 

information, in which the exact original data does not make much sense. Moreover, in machine 

learning algorithms, such as multi-layer perception (MLP) or convolutional neural network (CNN), 

the mismatch, and as such other distortions will be absorbed in the trained classifier [13]. We proposed 

the analog accelerator for image pre-processing that based on the fully flexible system [14,15]. 

Analog-to-Information processing (AIP) architecture was introduced to implement the typical 

neural network MLP [16]. We extended this paper to a fully flexible processing system that includes 

fault-tolerant pro-processing and computation-intensive processing for image classification. 

High-speed and energy-efficient image processing based on flexible devices is realized, which is the 

key to implement the fully flexible system. Besides, the error caused by process variation, 

temperature, etc. is analyzed, and fault-tolerance analysis of system is presented in this paper. 

In the following parts of the paper, Section 2 will introduce the properties of flexible electronic 

device and the fault-tolerant image processing algorithms. The proposed analog accelerator for 

 

Flexible thin
membrane

Flexible  interface  towards  Bio-tissue [3]

Flexible  computing

IO  and  flexible  ADC [6, 7]

Sensors  and  flexible  display [1, 2, 5]

Flexible  
energy  
supply  

system [4]



Appl. Sci. 2017, 7, 1224 3 of 14 

image pre-processing and AIP architecture for image classification are presented in Section 3. The circuit 

design to solve the problems of flexible computing is shown in Section 4. The analysis of error and the 

ways to eliminate process variation are discussed in Section 5, and Section 6 concludes the paper. 

2. Materials and Methods 

2.1. Flexible Electronic Device 

Table 1 shows the comparison of characteristics among CMOS (silicon-based MOSFET), 

A-Si:H-based thin-film transistor (TFT) and A-oxide-based TFT [18]. With the excellent physical 

properties including transparency and soft, flexible devices are irreplaceable to be applied in the 

fully flexible system. In addition, due to the low manufacturing temperature and low cost, the 

manufacturing cycle and price of flexible devices are much smaller than CMOS. However, the 

process variation of the flexible devices is large than CMOS due to the immature process. As the 

previous works report [17,18], the carrier mobility of A-oxide TFTs is 10–50 cm2/Vs, which is an 

order of magnitude smaller than that of CMOS but still large than that of A-Si:H TFTs. That is, it is 

difficult to realize high-speed, high accuracy signal processing with such flexible devices. 

Table 1. Comparisons among different devices [17,18,19]. 

Index CMOS A-Si:H TFTs A-Oxide TFTs 

Carrier Mobility (cm2/Vs) 480–1350 <1 10–50 

Transparent × √ √ 

Soft × √ √ 

Biocompatible × √ √ 

Process Variation Small Medium Large 

Cost High Medium Low 

Manufacture Temperature High ≅110 °C Room temperature 

A-oxide TFTs technology provides 3-terminal thin-film transistors, with a typical channel 

length of 5 μm from the In-Ga-Zn-O system [18]. The substrate of this technology is plastic foil so 

that the circuits are flexible and even rollable. The electronics behavior of Oxide TFT transistors is 

quite similar to the crystalline silicon-based transistors. Thus the model adopted in our simulation is 

like MOSFET models but the model parameters are quite different. During the simulations, the 

mobility data adopted in the oxide TFT model (In-Ga-Zn-O) are around 10 cm2/Vs, which could be 

referred to the experimental data from some TFT device research literature, such as [18], without loss 

of generality. 

2.2. Fault-Tolerant Image Processing Algorithm 

The realization of visual perception with flexible devices is promising and essential, which is 

also critical for greatly broadening applications of the flexible devices. Generally, image 

classification tasks are composed of pre-processing and feature processing phases, which are used 

to enhance the features extraction and classification, respectively. As for the pre-processing phase, 

the widely used Difference-of-Gaussian (DoG) algorithm [11] is adopted to extract and enhance 

edges of pictures. Additionally, as for the classification phase, multi-layer perception (MLP) [20] is 

selected because it contains the common multiply-accumulate units and non-linear activation units 

of neural network, without loss of generality.  

Besides, the computation burden of the Gaussian convolution is higher and the mask size is 

larger with the increasing resolution of image, and it becomes a tough mission for digital processors, 

because the same multiplication and addition operations are performed on every single pixel and 

with neighbor pixels. Moreover, neural network is also a computation-intensive task, for its large 

number of computations between every two layers, which could not be performed on the 

general-purpose processors with real-time processing. Therefore, the DoG and MLP algorithm are 
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sufficient to verify our architectures, which solves the contradiction between low mobility, low 

stability device versus complex computation task.  

Moreover, the fault-tolerant capability of the selected algorithms could tolerate the error that is 

introduced by unstable devices and analog computations. The feature descriptors of DoG are 

generated from local statistical information, in which the exact original data does not make much 

sense; and, the training process of neural network can gradually eliminate the error that is caused 

by imperfect computation. Details of the DoG and MLP are introduced as follows. 

2.2.1. Pre-Processing Algorithms 

Pre-processing algorithms are very important step in image processing including edge 

enhancing, features extracting, etc. Among them, the Difference-of-Gaussian (DoG) [11] is a widely 

used algorithm to extract and enhance edges. Actually, the human retina can be considered as a 

retina kernel filter whose model based on the DoG, which, thus, is an appropriate method that is 

applied to novel flexible computing. 

The DoG is calculated by decreasing the two Gaussian functions with different scales. Assume 

that the input image is 𝐼(𝑥, 𝑦) , the Gaussian kernel function is 𝐺(𝑥, 𝑦, 𝜎)  and output image 

processed by Gaussian convolution noted as M(𝑥, 𝑦, σ), where x and y are horizontal and vertical 

coordinates in pixels space, and σ is the coordinate in scale space. Then, we have: 

𝑀(𝑥, 𝑦, 𝜎)  =  𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦, 𝜎) (1) 

𝐺(𝑥, 𝑦, 𝜎)  =  
1

2π𝜎2
e

−
𝑥2 + 𝑦2

2𝜎2  (2) 

The difference of one image filtered by σ1 and σ2 is: 

𝐷(𝑥, 𝑦, 𝜎1, 𝜎2)  =  𝑀(𝑥, 𝑦, 𝜎1) − 𝑀(𝑥, 𝑦, 𝜎2) (3) 

The feature descriptors here are generated from local statistical information, in which the exact 

original data does not make much sense. Thus, noise or fault in the appropriate range can be 

ignored. Above all, Gaussian convolution is a most common and critical operation in the DoG. It has 

been demonstrated by Lindeberg that the only possible scale-space kernel is the Gaussian function 

among a variety of reasonable assumptions [11,21]. Kang et al. [22] proposed a Gilbert Gaussian 

circuit, whose I–V characteristic is very close to Gaussian function. Based on this circuit, we 

construct an architecture to implement Gaussian convolution in the analog domain, and it is chosen 

to demonstrate the computation potential of Oxide TFT technology. 

2.2.2. Classification Algorithms: Feature Processing 

Multiple Layer Perceptron (MLP) [20] is the typical and classical algorithm of artificial neural 

networks (ANN) due to its computation units is common in the ANN. It is also widely used in the 

image classification and image fitting fields. In general, MLP mainly contains multiply-accumulate 

units and non-linear (NL) units. 

As shown in Figure 2a, is the typical structure of three-layer perceptron. The input layer 

contains the data from the image sensors that have been pre-processed. Once the input data are 

loaded, then the weights of the first layer will be multiplied with the input data and the results are 

accumulated to the data of hidden layer. Next, the data of hidden layer will be processed by 

non-linear algorithm and then working out the results of the second layer. The non-linear used here 

is the sigmoid function, whose curve is shown in Figure 2b, and the function expression is:  

Sigmoid(𝑥)  =  
1

1 +  e−𝑥
 (4) 

After the multiply-accumulate operation of the output layer, the classification results are sent 

to the back propagation (BP) units to update weights. Larger size of hidden layer means higher 

classification accuracy; therefore, it is an excellent solution to balance accuracy and efficiency in 
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complex tasks. Moreover, the training process of neural network can gradually eliminate the error 

that is caused by imperfect computation. 

 

Figure 2. (a) Three-layer perceptron; (b) Curve of non-linear (NL) unit. 

2.3. Analog-to-Information Processing Method 

Neural network is a compute-intensive algorithm with amounts of input data and parameters. 

It is necessary to reduce the price of computation and make it more suitable for flexible circuits. 

“Let physics do compute” [23] is a new approach to deal with massive computational problems in 

the post-Moore era. It reveals the intrinsic physical characteristic of the electronic devices to 

enhance their functionality. That means that some calculations could be done directly on the 

original waveform but not on the bit streams. Based on this theory, a new computational paradigm 

named “analog-to-information processing” is proposed in this work. In this paradigm, some 

calculations and transform could be done right after the original analog data is obtained by sensors 

(shown in Figure 3). For example, in [24], active resistor network or MOSFET network is directly 

attached to the COMS image sensor’s output, performing ultra-fast and energy-efficient Gaussian 

convolution on sensed images. However, resistors are hard to fabricate via the adopted Oxide TFT 

technology, and it is so rigid that we cannot modify the network parameters once the design is finalized. 

Therefore, we compose an oxide transistor network to replace the resistor network. The transistors are 

much more flexible than the resistors because of the programmability. Taking the advantage of 

cost-efficient and easy fabrication via Oxide TFT technology, a profusion of functional transistors that 

can be integrated on the large area of plastic foils. This fact allows for highly parallel computation in the 

analog domain, reaching higher performance than conventional digital architectures. 

 

Figure 3. Tradition perception signal processing versus analog-to-information processing method. 

3. Architecture and System Overview 

As shown in Figure 4, we apply the AIP architecture on flexible electronic to realize 

energy-efficient and high-speed image processing. It is widely accepted that analog circuits are 

faster and more energy-efficient compared with digital circuits. Therefore, we make full use of the 

advantages of the analog domain processing to solve the low carrier mobility problem of flexible 
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devices. Although the unstable flexible devices and analog circuit will introduce noise, the 

algorithms we use have the fault-tolerant characteristics. 

 

Figure 4. The model of analog-to-Information processing (AIP) architecture in fully flexible system. 

The overall system architecture is illustrated in Figure 4. This architecture is aimed at realizing a 

fully flexible system, including sensor, memory, data converter, and the most important signal 

processing. The image sensor, as we mentioned before, is supposed to be the active pix sensor (APS) 

architecture to acquire current-mode pixel output. The outputs of the pixel are directly attached to 

the inputs of the Gaussian convolution unit. The input voltages are generated from on-chip memory 

and digital-to-analog converter (DAC), thus we can change the σ value according to the application 

requirement. The Gaussian convolution unit is organized as convolution mask, whose size is determined 

by the maximum possible σ value. The number of Gaussian convolution unit integrated into the image 

sensor decides the calculation parallelism, which will be analyzed later. But it also depends on the 

constraints of chip area, wire layout, and available power, so it requires careful planning. 

The results of Gaussian convolution are sent to the AIP feature processing unit to do features 

extraction and classification. As presented in Section 2.2.2, input image that has been pre-processed 

is directly attached to the inputs of the multiply-accumulate units. After the operations of MLP, 

output features could be buffered, and read out for display or other application, under the control 

of address and bus controller. In this architecture, the sensing and computing are both done in the 

analog domain. There is no clock participating in the convolution process so that the calculation 

time is only related to the settling time of the circuit. In this way, the image processing could 

implement in real time using the relatively much slower Oxide TFT devices. 

4. Circuit Design 

4.1. The Basic Circuit Unit Design of Gaussian Convolution 

According to Equations (1) and (2), Gaussian convolution basically consists of Gaussian 

multiplication and addition operations. In this presented circuit, the multiplication is implemented 

by Gilbert Gaussian multipliers. Due to the current mode output, the addition operation is simply 

realized by connecting the multipliers’ outputs together, according to Kirchhoff’s current law. The 

Gaussian convolution unit is illustrated in Figure 5 [15], where the numbers (from 1 to 3) means the 

different spread factors. According to [21], it is easy to prove that the Gilbert Gaussian circuit works 

as a multiplier between the tail current and the Gaussian function, using the exponential transfer 

characteristic of the subthreshold region of transistors. Thus, the tail current could be replaced by the 

pixel output to perform the Gaussian multiplication on pix data. Because of the current-mode input, 

the active pix sensor (APS) architecture could be used as the front end. The differential voltage input 

of the multiplier is used to tune the scale or the spread factor σ of the Gaussian kernel function. Once 

the transistors’ parameters are decided, a default σ is determined. In this work, the multiplier’s 

input-output relation is simulated to be:  

𝐼out = 𝐼in × exp (−6.6 ×  Δ𝑉2) (5) 
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If we need an arbitrary σ to perform multi-scale filtering, we only need to calculate the input 

ΔV by: 

Δ𝑉 =  
1

√13.2𝜎
∙ 𝑥 (6) 

By substituting Equation (6) to (5), it is easy to see the relation transform to: 

𝐼out  =  𝐼in  ×  exp (−
𝑥

2𝜎2
) (7) 

The x is an integer in [−n, n], representing the corresponding position in one-dimension 

convolution mask. Its value range is in proportion to the mask size. This transformation is easy to be 

generalized to the two-dimensional (2-D) situation. When the factor σ and the position of the 

multiplier are decided, the input voltage ΔV can be calculated via Equation (6). Therefore, it is easy 

to implement on circuit via on-chip memory and DAC, which have been demonstrated on flexible 

technology. The output is read out in voltage to match the input of MLP. 

 

Figure 5. Gaussian convolution unit in analog signal domain. 

4.2. The Basic Circuit Unit Design of MLP 

As mentioned in Section 3, input signals that from the flexible pre-processing (FPP) circuit are 

connected with multiplying circuit of the first layer directly in the form of voltage, where the Gilbert 

multiplier [25] is applied because of its high linearity. Because the weights of MLP have been trained 

off-line, it is load beforehand on the differential ports of multipliers from the on-chip memory. That 

is, once the data is loaded, results of multiplier-accumulator (MAC) in the first layer, which is 

contained in the differential voltage of the output, can be calculated directly. Without digital clock, 

the computing circuit’s performance has direct correlation with the setting time of the circuit path. 

As shown in Figure 7, addition in analog circuit is achieved by directly connecting the input nodes, 

nevertheless, amounts of input nodes would introduce a high voltage output node (Va or Vb) that 

causes the input MOS working in the linear region. Therefore, the differential outputs of multiplier 

are subtracted to obtain single-end output first by current mirror. When considering the complexity 

of circuit design, ten multipliers with one current mirror to form a processing unit (from PU(1,1) to 

PU(1, 𝑚)), which is shown in Figure 6. For the dataset MNIST, the dimension of input image is 28 × 28, 

thus the value of m in PU(1, 𝑚) is ⌈
28 × 28

10
⌉ = 79. Then, the single-end outputs of multipliers are 

accumulated to the input of hidden layer. When considering the tradeoff between power 

consumption and accuracy, the size of hidden layer is 50, which means that the value of n in PUn is 50.  

After the computation in the fully connection layer, intermediate results, or usually called 

hidden layer, are processed by nonlinear function Sigmoid. As shown in Figure 7, there are two 

transistors in sigmoid structure, whose grids connect input voltage and differential of drains 

represent output voltage, which can be written as [21]: 
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𝑉od  =  𝐼SS  ×  
2R

1 −  exp (−
2𝑉id

𝑛𝑉T
)
 (8) 

where Vid is the differential input voltage between two gates of transistors, R is the resistance, Iss is 

the tail current, and n, VT is the subthreshold-slope parameter and thermal voltage. Then, the signals 

come into the second MAC, where multiplying unit in the output layer is the same structure with the 

first one except the parameters of the circuit, for instance, source voltage, resistance value, and 

breadth length ratio of each transistor and tail current. At last, the computation results are sent to 

post-processing unit for further application. 

 

Figure 6. The computation process of multi-layer perception (MLP) based on flexible devices. 

 

Figure 7. The circuit implementation of multiplier-accumulator (MAC) and Non-linear activation. 

5. Simulations and Analysis 

5.1. Verification of Functional Correctness 

To determine whether our design could perform convolution in the correct way, we choose two 

continuous scale coordinates in scale space: σ1 = 1.5450 and σ2 = 2 = 1.9466. Then, the corresponding 

Gaussian convolution units are constructed based on the Oxide TFT model. A 128 × 128 test image is 

used as the simulated sensor output. The circuit simulation is done by Cadence; meanwhile, the 
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comparison digital result is calculated by MATLAB. The images after Gaussian filtering are shown 

in Figure 8a [15]. It is a little hard to tell the difference between the circuit output and the digital 

results, so we use PSNR to measure the accuracy of the circuit computed result, taking the software 

results as precise data. Calculating formulas for PSNR, are shown as following: 

PSNR =  10 log10(
255

MSE
) (9) 

MSE =  
1

𝑚𝑛
∑ ∑|𝐼(𝑖, 𝑗)  −  𝑆(𝑖, 𝑗)|2 

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (10) 

where I represents the circuit-output image, and S is the precise data. The PSNR of two scales is 54.1 dB 

and 50.7 dB respectively. The reason why the larger σ has the lower accuracy is that the 

corresponding mask size is enlarged when the σ increases. The larger mask size causes more 

information lost on the edge of the image. It is easy to see that the edge of circuit output images 

appears to be black, while the software outputs have more smooth edges because it is easy to 

compensate the edge pixel in the software algorithm. However, it is a relatively acceptable result for 

image filtering. This simulation demonstrated the functionality of the proposed Gaussian 

convolution unit design. 

 
(a) (b) 

Figure 8. (a) Comparison of flexible computing circuit and software outputs of implementing 

convolution algorithm; (b) Classification error rate of MLP. 

As shown in Figure 8b, software and flexible circuit simulation results are compared for the 

capability of classifying input image, where the typical datasheet MNIST with the size of 28 × 28 is 

used. The circuit simulation is done by HSPICE level 62 model for oxide TFT, and the software 

simulation is based on MATLAB. With the same network size, the error rates of software and circuit 

implementation both converge to the same value of 7.01%. Flexibility is an important property of 

Oxide TFT. According to [18], the mobility of oxide TFT decreases by 15.7%, with the device being 

bend at R = 30 mm. In order to evaluate the system performance after the bending of oxide TFT, the 

accuracy simulation with the mobility decreasing by 20% is given as Figure 8b. The error rate with 

the bending oxide TFT converges to the value of 7.7%, which is only 0.69% lower than the circuit 

implementation at the same network size, and still has a fast convergent trend. That is, although the 

analog circuit and the bending of oxide TFT introduce variations to computation, the MLP 

eliminates the error by training. 
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5.2. Performance Analysis 

5.2.1. Settling Time 

The following simulations are based on the HSPICE level 62 model for oxide TFT. As we have 

stated above, the speed of calculation basically depends on the settling time of the Gaussian 

convolution unit. We simulate the settling time for several units with different scales and different 

step-input current sources. The normalized settling time curves are shown in Figure 9a. The settling 

time of Gaussian convolution circuit is about 300 ns. It is equivalent to perform the convolution 

operation at a frequency of 3.3 MOPS/s, which is much faster than the conventional digital circuit 

driven by kHz-level clock on TFT [9]. As to the feature processing, the settling time of flexible MLP 

is about 100 μs, which means that the classification speed is up to 10 k frames/s, and is totally 

enough for real-time image processing with the speed of 30~100 fps. This result is really significant 

because it proves that, by exploiting the physical characteristic, the slow devices could exceed its 

limitation to reach a settling-time-equivalent calculation speed. These, in fact, demonstrate our 

thoughts of analog-to-information processing. 

  
(a) (b) 

Figure 9. (a) Settling time of Gaussian convolution units; (b) Settling time of MLP. 

5.2.2. Energy Efficiency 

The energy consumption of the pre-processing circuit is related to the scale and number of 

Gaussian convolution unit. Here, we take MNIST (28 × 28) images as the example, which means that 

the number of convolution operation is Ncon  =  28 ×  28 =  784. Assuming the convolution mask is 

5 × 5 in size, every Gaussian unit contains Nmulti  =  25 multipliers, which consume P0  =  25 ×

 1.8 V ×  1 μA =  45 μW in total. One unit works at speed of V0  =  3.3 MOPS/s should take T0  =

 Npixel  ÷  V0  =  237.58 μs to finish the convolution. Thus, the total energy consumption is Etotal  =

 P0  ×  T0  =  10.69 nJ per image and the energy efficiency is Ncon  ×  Nmulti  ÷  Etotal  =  1.83 TOPS/J. 

Table 2. Energy consumption of each part in MLP. 

Unit Cell Number Energy Consumption (μJ) 

Multipliers 39,760 9.23 

Non-linear activation 50 1.65 × 10−3 

Current mirror 3950 5.93 

Total - 15.16 

As concluded in Table 2, image classification circuit mainly contains multiplication, non-linear 

activation and current mirror units that respectively consume the energy of 9.23 μJ, 1.65 nJ and 5.93 
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μJ. Total energy consumption is 15.16 μJ, with the operation number of 7.96 × 104 that including 

multiplications, additions, etc. Thus, the energy efficiency of the flexible MLP circuit is 5.25G OPS/J. 

5.3. Fault Tolerance Analysis 

To evaluate the effect of the computational error of the circuit, DoG keypoints matching the 

experiment is performed between the analog circuit output and software results. As described in the 

Section 2.2.1, DoG is an approximation of Laplace of Gaussian (LoG) operator, which is usually used 

to detect the edge of objects in image with the advantages of high efficiency and low complexity. In 

these experiments, the two filtered images that are obtained by either circuit or the software are 

subtracted to get the DoG image, see Formula (11): 

𝐷(𝑥, 𝑦)  =  𝐼σ2(𝑥, 𝑦) − 𝐼σ1(𝑥, 𝑦) (11) 

where D is the DoG image, and I is the filtered image in the corresponding scale coordinate. The 

local extremums are detected in 3 × 3 window. If two extremums appear in the same position in the 

circuit result and the software result, we say they are matched. The matching result is shown in 

Figure 10 and Table 3.  

 

Figure 10. Matching of circuit and software output. The red plus signs are the local maximum points 

and green ones are the minimum points. The lines connect the matched points in the circuit and 

software output images. 

We can see that the fault caused by analog circuit indeed has the impact on the image feature, 

especially on the minimum distribution. The interesting thing is that the mismatch mainly happens 

on the edge of image, according to Figure 10, which is because the large error appears on edge pixels 

due to the edge information missing we stated in the previous section. But, in some applications, the 

76.2% overall matching rate is quite enough to detect the object in the vision. This, in fact, utilizes the 

inherent fault-tolerance characteristic of the image processing applications. We believe that with the 

development of Oxide TFT technology, and more elaborate circuit design in future, the 

computational accuracy could be improved. 

Table 3. Matching experiment result. 

Key Point Circuit Software Matching Matching Rate 

Maximum 70 60 50 83.3% 

Minimum 82 62 43 69.4% 

Avg. Rate - - - 76.2% 

Mismatch of transistors in the differential pair that introduced by unstable Oxide TFT would 

result in the nonlinearity of multiplying units and the biasing of the sigmoid function. In order to 

verify the fault-tolerance of proposed neural network that is based on the flexible device, 

classification accuracies with different degrees of mismatch are simulated and shown in Figure 11, 

where the mismatch is set to a uniform distribution of different thresholds. It is worth noting that 
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the mismatch verification is sufficient to simulate the system function in real applications. Because 

the system error is mainly introduced by the variations of multipliers and non-linear activation 

units, of which the differential pair structure makes the variations could be equaled to the mismatch 

of the transistor pair. That is, the non-ideal factors, such as process variation, temperature, bending, 

etc., which introduces the error of computation units, can be equivalent to the mismatch of pair 

transistor to simulate the real applications. 

As the maximum threshold of mismatch increases from 1% to 10%, initial error increases as 

well. Nevertheless, error rates of the mismatch under 5% eventually converge to close to 9%, which 

is only 2% lower than the software implementation at the same network size. The system still has 

fast convergent trend within the mismatch of 10%. Therefore, the training of neural network has 

enough capability to correct the error introduced in the calculation process. 

 

Figure 11. Error rates under different mismatch. 

6. Conclusions 

In this paper, the problem that flexible electronics are not suitable for computation has been 

solved. We have explored the computable circuit based on the relatively slower flexible Oxide TFT 

devices by analog accelerators, which include image filtering and features processing. It is generally 

considered that analog design is not suitable for flexible devices due to its poor carrier mobility and 

stability, but not necessarily for some inherently fault-tolerance applications, such as DoG and MLP. 

In this work, we construct analog circuit unit to realize real-time and power-efficient pre-processing 

and image classification. Simulation experiments based on Oxide TFT model have demonstrated 

that the flexible system could perform 5 × 5 Gaussian convolution operation at a speed of 3.3 MOPS/s 

with the energy efficiency of 1.83 TOPS/J and realize image classification at a speed of 10 k fps, with 

the energy efficiency of 5.25 GOPS/J. The simulation results show the robustness of the system to 

imprecise analog domain processing. This work would lead to a new application era of flexible 

devices to make low power and low cost full flexible systems with sensors, drivers, data converters, 

and more importantly, the flexible real-time computing parts. 
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