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Abstract: With the rapid development of the photovoltaic industry, fault monitoring is becoming 
an important issue in maintaining the safe and stable operation of a solar power station. In order to 
diagnose the fault types of photovoltaic array, a fault diagnosis method that is based on the Least 
Squares Support Vector Machine (LSSVM) in the Bayesian framework is put forward. First, based 
on the elaborate analysis of the change rules of the output electrical parameters and the equivalent 
circuit internal parameters of photovoltaic array in different fault states, the input variables of the 
photovoltaic array fault diagnosis model are determined. Second, through the LSSVM algorithm in 
the Bayesian framework, the fault diagnosis model based on the output electrical parameters and 
the equivalent circuit internal parameters of the photovoltaic array is built, which can effectively 
detect the photovoltaic array faults of short circuit, open circuit, and abnormal aging. Then, the 
simulation model is built to verify the validity of the LSSVM algorithm in the Bayesian framework 
by comparing it with the model of LSSVM and the Support Vector Machine (SVM). Moreover, a 5 × 
3 photovoltaic array and a reference photovoltaic string are established and experimentally tested 
to validate the performance of the proposed method. 
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1. Introduction 

With the aggravation of the global energy crisis and regional environmental pollution, Chinese 
photovoltaic power generation still faces key problems of sustainable development [1], of which 
maintaining solar power station safety and maintaining stable operations are important issues. At 
present, research on solar power station fault monitoring is mainly focused on the photovoltaic 
strings, modules, and inverters, but rarely on the photovoltaic arrays. The diagnosis of the 
photovoltaic arrays is an important issue, because the performance of photovoltaic modules affects 
the output characteristics of photovoltaic arrays directly, thus further affecting the stability of the 
photovoltaic generation system, so the fault monitoring of the solar power station can diagnose the 
photovoltaic arrays, locate the faulty photovoltaic modules in a certain area first, and then further 
precisely position the faulty photovoltaic modules. This diagnostic method can greatly reduce the 
number of sensors, thus reducing costs while ensuring that the solar power station operates safely 
and stably. 

In recent years, many fault detection and diagnosis methods of photovoltaic systems were 
proposed. The algorithm of the artificial neural network was presented to diagnose the fault [2–5]. In 
[6], the identification of the fault type is carried out by analyzing and comparing the amount of error 
deviations of both simulated and measured current and voltage with respect to a set of error 
thresholds that are evaluated. In [7], a simple method to detect and diagnose short circuits and open 
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circuit faults in photovoltaic systems based on the evaluation of three coefficients is presented. By 
analyzing the light and dark current-voltage (I-V) characteristics of the photovoltaic module, a fault 
identification method was used to distinguish the faulty photovoltaic modules [8]. The 
above-mentioned methods are for the photovoltaic modules, of which each photovoltaic module 
needs to be monitored, leading to high costs. In [9–13], the fault diagnosis methods of the 
photovoltaic arrays were introduced. The fault detection is based on the comparison between the 
measured and model prediction results of the power production [9]. Hu, YH, et al., analyze the 
terminal characteristics of faulty photovoltaic arrays and reduce the number of sensors by 
optimizing its locations [10]. In [11], the authors diagnose the fault by detecting the change of PV 
internal resistance using the signals that are available in Extremum-Seeking Control (ESC)-based 
Maximum Power Point Tracking (MPPT). The methods in these works can only identify whether 
there is a fault or not, but the fault type is unknown. In other research [12], a method is proposed to 
detect faults and partial shading under all of the irradiation conditions using the measured values 
of array voltage, array current, and irradiance, but the diagnosis of fault type is not comprehensive 
enough. 

In order to diagnose whether there are faulty photovoltaic modules in a photovoltaic array or 
not and further judge its fault type, this paper presents a fault diagnosis method that is based on 
Least Squares Support Vector Machine (LSSVM) in the Bayesian framework. The algorithm of 
LSSVM in the Bayesian framework has been used in the field of fault diagnosis, in domains such as 
aeronautics, power transformation, biology, and so on [13–16]; in this work, we introduce the 
algorithm into the field of photovoltaic fault diagnosis. 

2. The Selection of the Fault Feature 

This paper mainly focuses on the fault types of photovoltaic array: short circuit, open circuit, 
and photovoltaic modules’ abnormal aging. By analyzing the different fault types of photovoltaic 
array, we can obtain the change laws of the output characteristics and equivalent circuit internal 
parameters of photovoltaic array in different fault conditions, providing a theoretical basis and fault 
feature information for the diagnosis and location of photovoltaic array. 

2.1. Analysis of Internal Parameters of Photovoltaic Array Equivalent Circuit in Fault State 

If the photovoltaic array malfunctions, the internal parameters of the photovoltaic array 
equivalent circuit will change, and these differences contain the most abundant fault feature 
information, directly reflecting the state that the photovoltaic array is in. 

Figure 1 presents the equivalent circuit model of photovoltaic module [17], Iρh is the 
photovoltaic current generated by the photovoltaic module, ID is the current through the diode, Ish is 
the current flowing through the shunt resistance Rsh, Rs is the series resistance, and I is the output 
current of the photovoltaic module. 

 
Figure 1. The equivalent circuit model of photovoltaic module. 

As the equivalent circuit model of photovoltaic module shows that the photovoltaic module 
output current is:  
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In the Formula, I0 is the reverse saturation current of the diode, U is the output voltage of the 
photovoltaic module, q is the electron charge ( −× 191.60218 10  Coulomb), n is the ideality factor of 

the diode, k is the Boltzmann’s constant ( −× 2311.38066 10  J/K), and T is the absolute temperature of 
photovoltaic module. 

In an actual solar power station, there are five major connection types of photovoltaic array: 
series structure, parallel structure, serial-parallel (SP) structure, total-cross-tied (TCT) structure, and 
bridge-linked (BL) structure, among which the SP structure is the most widely used; therefore, this 
paper studies the photovoltaic array of the SP structure. Figure 2 is an equivalent circuit model of 
photovoltaic array, of which the type of the photovoltaic array is M × N, M is the number of 
photovoltaic modules in a photovoltaic string, and N is the number of photovoltaic strings in a 
photovoltaic array. 

 
Figure 2. The equivalent circuit model of photovoltaic array. 

Furthermore, Figure 3 is the equivalent circuit model of Figure 2. 

 
Figure 3. The equivalent circuit model of photovoltaic array. 

I’, U’ are the output current and voltage of the photovoltaic array, respectively; Iρh’ is the 
photovoltaic current generated by the photovoltaic array; and, Rs’, Rsh’

 are the series resistance and 
shunt resistance of the photovoltaic array, respectively. 

In the literature [18], the output current of photovoltaic array is: 
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its internal equivalent parameters Iρh’, Rs’, and Rsh’ is proportion to Iρh, Rs, and Rsh of the photovoltaic 
module. 

From Figures 1–3 and the above analysis, it shows that under the same test condition, Iρh, Rs, 
and Rsh of the faulty photovoltaic module are zero when there is a short-circuit fault in the 
photovoltaic array; thus, the Iρh of its string keeps constant, Rs and Rsh decreases, and then the Iρh’ is 
basically unchanged, while Rs’ and Rsh’ decrease. 

When there is an open-circuits photovoltaic module in the photovoltaic array, the Iρh, Rs, and 
Rsh of its string are zero, and the internal parameters of photovoltaic array equivalent circuit are: 
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Of which, z  is the number of photovoltaic strings that has open-circuits. In this case, the Iρh’

 decreases, while Rs’
 
and Rsh’ increase. 

From the above analysis and the literature [19], we know that when a photovoltaic module in 
photovoltaic array is abnormally aging, so its Iρh, Rsh

 
decreases, Rs increases, the Iρh’, Rsh’ of 

photovoltaic array equivalent circuit decreases, and Rs’ increases. 
Therefore, the Iρh’, Rs’, and Rsh’ of photovoltaic array equivalent circuit can be used as the 

parameters of the photovoltaic array fault diagnosis model, which can effectively identify the faults 
of short circuit, open circuit, and abnormal aging. 

2.2. Analysis of the Output Characteristics of Photovoltaic Array in Fault State 

When the photovoltaic array fails, different fault types have different influences on the output 
of photovoltaic array. Figure 4 shows the I-V curves of the 3 × 2 photovoltaic array in normal and 
different fault conditions, of which the photovoltaic modules are in same test conditions (1000 
W/m2, 25 °C); the model of photovoltaic module is CHN310-72P. 

 
Figure 4. The V-I curves of the 3 × 2 photovoltaic array in different states. 

Figure 4 shows that when the fault of short-circuits occurs in the photovoltaic array, the 
short-circuit current ISC and maximum power current Im are basically unchanged, while the 
open-circuit voltage UOC and the maximum power voltage Um are significantly decreased. When the 
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fault of short-circuits occurs in the photovoltaic array, the current of faulty photovoltaic module is 
zero; then, the current and voltage of its string decreases, resulting in a decrease in the output 
voltage of the photovoltaic array. From the I-V characteristic curve of a photovoltaic cell, we can 
know that when the output voltage of normal string reduces, its output current will increase, 
resulting in little change in the total output current of photovoltaic array. 

When the fault of open-circuits occurs in the photovoltaic array, the open-circuit voltage UOC 
and maximum power voltage Um are basically unchanged, while the short-circuit current ISC and 
the maximum power current Im significantly decrease. When the fault of open-circuits occurs in the 
photovoltaic array, the current of its string is zero, which causes the output current of the 
photovoltaic array to decrease dramatically, and the output voltage of normal strings and the 
photovoltaic array are basically unchanged. 

When the photovoltaic modules in the photovoltaic array are abnormally aged, the 
open-circuit voltage UOC and short-circuit current ISC are basically unchanged, while the maximum 
power voltage Um and the maximum power current Im significantly decrease. The literature [20] 
points out that the open-circuit voltage UOC and the short-circuit current ISC contain the information 
of temperature and light intensity. The above analysis and the literature [20] show that the 
open-circuit voltage UOC, the short-circuit current ISC, the maximum power voltage Um, and the 
maximum power current Im can be regarded as the external characteristic parameters of the 
photovoltaic array fault diagnosis model. 

3. The Establishment of the Photovoltaic Array Fault Diagnosis Model 

The key of establishing the photovoltaic array fault diagnosis model is the optimal LSSVM 
multi-classifiers; the output electrical parameters and equivalent circuit internal parameters of 
photovoltaic array we attained are input into the optimal multiple classifiers model, thus obtaining 
the posteriori probabilities of the photovoltaic array and further detecting the fault types of the 
short circuit, open circuit, and abnormal aging. 

In the process of the optimal LSSVM multi-classifiers model being built, we established an 
initial model first, and then the Bayesian theory was used to optimize the parameters of the initial 
model. Empirical results obtained from 10 public domain data sets show that the LSSVM classifier 
designed within the Bayesian evidence framework consistently yields good generalization 
performances and prediction precision [21]. 

3.1. The Establishment of the Initial LSSVM Multi-Classifiers Model 

3.1.1. The Method of LSSVM Classifier 

In [22], J.A.K. Suykens and J. Vandewalle present the LSSVM, which uses the least squares 
linear system error square and loss function as the empirical loss of training sample set, changing 
the constraint condition from inequation to equation; then, the convex quadratic programming 
problem transforms and is able to solve the problem of linear equations, and calculation speed of 
the model is improved. 

The objective function and constraint condition of LSSVM are: 

2

1

1min   +C                          
2

.   ( ) 1 , 0, 1,....,

g

i
i

i i i is t y x b i g

ε

ε ε
=





  • + = − ≥ = 

ω

ω

 
(6) 

In the above linear equations, ω  is the weight vector, C is the penalty factor, g is the number 
of training samples, ε is slack variable, εi is the ith component of the slack variable ε, xi ∈  Rm is the 
training sample, and m is the dimension of the training sample’s feature vectors; in this paper, xi 
presents the output characteristics UOC, ISC, Um, Im and equivalent circuit internal parameters Iρh’, Rs’, 
Rsh’ of photovoltaic array; yi ∈  y = {1,−1} is the output; yi presents the states of short circuit, open 
circuit, abnormal aging, and normal; b is the classification threshold. 
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The above optimization problem is the convex quadratic programs of ω  and b, so we 
introduce the Lagrangian function, which can be constructed as follows: 

( )( )2 T

1 1

1( , , ) +  , 1
2

g g

i i i i j i
i i
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= =
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In the Formula (7), α is the Lagrangian multiplier, and K (xi, xj) is the kernel function. 
The Lagrangian function converts the primal problem (6) into the dual problem (8) 
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Through Equation (8), we can get: 
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The optimal hyperplane is constructed, then the decision function is obtained: 
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Through the above problem-solving procedure, the LSSVM multi-classifiers model is built. In 
order to obtain the optimal LSSVM multi-classifiers, we can optimize the parameters of C and K (xi, xj). 

3.1.2. The Initial LSSVM Multi-Classifiers Model 

The basic idea of the kernel function K (xi, xj)
 

is for mapping the random vectors in 
n-dimensional space to the high-dimensional feature space by nonlinear function, which can reduce 
the dimensionality. 

In practice, there are three most common kernel functions: the polynomial kernel function, the 
Radial Basis Function (RBF), and the Sigmoid kernel function. Keerthi et al., testified that the 
polynomial kernel function is the special form of the RBF kernel function [23]. In [24], the Sigmoid 
kernel function is similar to the RBF kernel function in some cases, so, in this work, the RBF kernel 
function is used as the kernel function of the photovoltaic array fault diagnosis model. 

( ) σ =  


−


−
2 2, expi j i jK x x x x  (10) 

where σ is the kernel parameter of K (xi, yi). 
For the sake of processing, the objective function of the LSSVM optimization problem is 

divided by C, and 1/C is replaced by θ, which is defined as regularization parameter. 
First, we set the initial values of θ and σ2 arbitrarily, and establish the initial model H0 to train 

the training set. 
The SVM and LSSVM were presented for secondary classification initially, but the photovoltaic 

array fault diagnosis model is a multi-classification problem; thus, the classification algorithm can 
be used to convert the multi-classifiers into several two-classifiers. The common classification 
algorithms are “One vs. One”, “One vs. Rest”, and “Divide-and-Conquer approach”; the algorithm 
of “One vs. One” is better than the “One vs. Rest” in diagnosis efficiency, and the algorithm of 
“Divide-and-Conquer approach” can lead to accumulations of errors—that is, if the classification of 
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root is wrong, then the error will accumulate [25], so we use the “One vs. One” classification 
algorithm in the LSSVM multi-classifiers. 

In this paper, the LSSVM multi-classifiers were converted into six two-classifiers by the 
classification algorithm of “One vs. One”, which are “the normal vs. the short-circuits”, “the normal 
vs. the open-circuits”, “the normal Vs the abnormal aging”, “the short-circuits Vs the open-circuits”, 
“the short-circuits vs. the abnormal aging”, and “the open-circuits vs. the abnormal aging”. 

3.2. The Posteriori Probability of the Optimal LSSVM Multi-Classifiers 

Based on the posteriori distribution, which synthesized the sample information and the a 
priori information, the Bayesian inference has good statistical inference results. In this paper, 
Bayesian theory is used to optimize the parameters of the LSSVM classifier, regularization 
parameter θ, and kernel parameter σ; it then obtains the optimal classifier. 

The LSSVM achieves pattern recognition by hard decision, that is, it classifies the sample by 
outputting 1 or −1 directly; however, pattern recognition is an uncertain problem, so this paper 
diagnoses the fault by the output probability of LSSVM. 

For a given sample set T = {(x1, y1), ..., (xg, yg)} ∈  (Rm × y)g, in this paper, xi presents the 
parameters UOC, ISC, Um, Im, Iρh’, Rs’, Rsh’ of photovoltaic array, yi presents its real states of short circuit, 
open circuit, abnormal aging, and normal. 

The posterior probability of the given sample set can be described as:  

( ) ( ) ( ) ( )| |P y x P y P x y P x =    (11) 

In the Formula (11), P(y) is the a priori probability of the given sample set, which analyzes the 
probability of a sample according to the a priori knowledge; P(y|x) is the posteriori probability of 
the given sample set according to the training set, and the posteriori probability reflects the 
influence of the training sample data on the test sample. 

In this paper, the posteriori probability of the given sample set is: 

( ) ( ) ( )
( )

1
1

1

| , , ,
| , , ,

| , ,
MP

MP
MP

P y P x y D H
P y x D H

P x D H
θ

θ
θ

=  (12) 

In the Formula (12), D1 is the given sample data space, and H is the fault diagnosis model 
space. 

A posteriori probability is derived from the two-classifiers. According to the above analysis, 
we can know that the photovoltaic array fault diagnosis model constructs six two-classifiers, so six 
posteriori probabilities can be generated from the sample data. Then, by combining the posteriori 
probabilities by the Formula (13), we can get four combination probabilities. 

The final posteriori probability of determining the test sample x belonging to the i-class is:  

( ) ( ) ( )
1,

2| , |
1

L

ij
j j i

P i x P i j x
L L = ≠−

=   (13) 

In Formula (13), Pij(i, j|x) is the posteriori probability of x that belongs to the i-class in 
two-classifiers that consist of class i and j class, and L is the sort of photovoltaic array it is in. In this 
paper, L is 4; they are the states of short circuit, open circuit, abnormal aging, and normal. 

When comparing the size of the four combination probabilities, we can judge the fault type of 
the testing set. 

4. Simulation and Results 

In this section, several data sets are constructed to study the performance of the fault diagnosis 
method. We first introduce the construction of a simulation system, then the test data under 
different states are simulated and briefly described. Finally, the simulation results are presented. 
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4.1. The Simulation of Photovoltaic System 

In order to verify the validity of LSSVM algorithm based on Bayesian framework in 
photovoltaic array fault diagnosis model, this paper sets up a general simulation model of 
photovoltaic array by Matlab/Simulink; the photovoltaic array consists of two photovoltaic strings 
in parallel, and each string has three modules in series. 

4.2. The Simulation Data in Different States 

In the photovoltaic array simulation model, the fault of abnormal aging is simulated by 
connecting a series resistor. The model of photovoltaic modules in the simulation model is 
CHN310-72P, and the main parameters of the photovoltaic module at standard test conditions (STC) 
are shown in Table 1. 

Table 1. The parameters of CHN310-72P. 

Parameters Values
Maximum power current Im (A) 8.36 
Maximum power voltage Um (V) 37.10 

Short-circuit current ISC (A) 8.86 
Open-circuit voltage UOC (V) 44.00 

The outputs of the simulation model are the operating voltage U and the output current I of 
the photovoltaic array; thus, we can obtain the V-I curve of the photovoltaic array under the STC, 
which further gets the external parameters Uoc, Isc, Um, Im, and the equivalent circuit internal 
parameters Iρh’, Rs’, Rsh’ [26]. From the simulation results, we can know that the external parameters 
of photovoltaic array in normal state are: Uoc = 121.00 V, Isc = 15.85 A, Um = 107.00 V, and Im = 15.90 A, 
and the equivalent circuit internal parameters are: Iρh’ = 16.68 A, Rs’ = 0.21 Ω, and Rsh’ = 8.12 KΩ. The 
comparison studies show that the parameters obtained by the simulation are basically consistent 
with the parameters that are provided by the manufacturer, which shows that the model can 
simulate the actual photovoltaic array well. 

The photovoltaic array runs in the states of normal, short circuit, open circuit, and abnormal 
aging; 40 sample groups in each state (160 sample groups altogether) were obtained, of which 30 
sample groups were used as the training set, and the remaining 10 groups were used as the testing 
set. 

4.3. The Standardization Analysis of the Data 

Firstly, we imported the fault features to the data editor and normalized the sample data. 
Saving the standardization scores as a variable, the results of sample data standardization analysis 
are shown in Table 2; it shows the standardization data of the fault features of 10 test sample 
groups in short-circuits state. 

Table 2. The standardization data of the fault features of 10 test sample groups in short-circuits state. 

The Fault Features Z1-UOC Z2-ISC Z3-Um Z4-Im Z5-Iρh Z6-RS Z7-Rsh

1# 0.2137 0.6974 0.3387 0.7831 0.6974 0.2084 0.7831
2# 0.2000 0.7227 0.2837 0.7214 0.7227 0.2376 0.7214
3# 0.2378 0.7139 0.3369 0.7524 0.7139 0.2641 0.7524
4# 0.2819 0.6996 0.2069 0.8000 0.6996 0.2726 0.8000
5# 0.2530 0.7964 0.3101 0.7426 0.7964 0.2758 0.7426
6# 0.2062 0.7618 0.2351 0.7930 0.7618 0.2000 0.7930
7# 0.2578 0.8000 0.2484 0.7643 0.8000 0.2083 0.7643
8# 0.2894 0.7282 0.2000 0.7325 0.7282 0.3166 0.7325
9# 0.2301 0.7970 0.3220 0.7533 0.7970 0.2378 0.7533
10# 0.2297 0.6690 0.2863 0.7868 0.6690 0.2947 0.7868
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4.4. Results Analysis 

This paper classifies the sample data by the Lssvmlab v 1–8 toolbox in Matlab R2014a 
environment, of which the Gaussian RBF is used as the kernel function and the “One vs. One” 
classification algorithm is used to build the LSSVM multi-classifiers model. 

This paper establishes the initial model H0 first; the regularization parameter θ is set to 10 and 
the kernel parameter σ2 is 0.2. Furthermore, the Bayesian inference is used to optimize the 
parameters of the model and to obtain the optimal parameters (θMP, σ2MP) = (175.214, 6.17); then, the 
optimal model is obtained by re-training the training set with the optimal parameters θMP and σ2MP. 
Finally, the testing set is input into the optimal classifier model and obtains the posteriori 
probability and classification. 

In this paper, the LSSVM multi-classifiers were converted into six two-classifiers by the 
classification algorithm of “One vs. One”, which consists of “1&2”, “1&3”, “1&4”,”2&3”, “2&4”, 
and ”3&4”. The output posteriori probability values of 10 test sample groups in short-circuits state 
are shown in Table 3, of which 1 represents the short-circuits state, 2 represents the open-circuits 
state, 3 represents the abnormal aging state, and 4 represents the normal state. 

Table 3. The posteriori probabilities of 10 test sample groups in short-circuit state. 

The Two-Classifiers 1&2 1&3 1&4 2&3 2&4 3&4
1# 0.9629 0.6045 0.5476 0.6753 0.6773 0.6572
2# 0.9134 0.5660 0.5407 0.6644 0.6328 0.6651
3# 0.9235 0.6057 0.5472 0.6734 0.6735 0.6689
4# 0.8862 0.7007 0.5651 0.6904 0.8952 0.7176
5# 0.9783 0.6160 0.5491 0.6786 0.7073 0.6645
6# 0.9724 0.6364 0.5530 0.6831 0.7266 0.7033
7# 0.9654 0.5867 0.5443 0.6715 0.6625 0.6423
8# 0.8526 0.7227 0.5512 0.6625 0.6534 0.6235
9# 0.9238 0.6808 0.5813 0.6912 0.7913 0.6518
10# 0.9595 0.5775 0.5426 0.6693 0.6505 0.6465

The posteriori probabilities in Table 3 were combined by the Formula (13) and get the final 
posteriori probabilities of the 10 test sample groups. The actual fault type was obtained by the size 
of the final posteriori probability, as shown in Table 4. The Table illustrates the actual fault type and 
the fault type of diagnosis of the 10 test sample groups. 

Table 4. The final posteriori probabilities of 10 test sample groups in short-circuits state.  

The Fault 
Types 

The Short 
Circuit 

The Open 
Circuit 

The Abnormal 
Aging  

The 
Normal 

The Actual Fault 
Type 

The Fault Type of 
Diagnose 

1# 0.4249 0.1282 0.1614 0.2855 1 1 
2# 0.3926 0.1028 0.1780 0.3266 1 1 
3# 0.3751 0.1315 0.1931 0.3003 1 1 
4# 0.3553 0.2988 0.2049 0.1410 1 1 
5# 0.4285 0.1271 0.1631 0.2813 1 1 
6# 0.4093 0.1497 0.1593 0.2817 1 1 
7# 0.4248 0.1251 0.1812 0.2689 1 1 
8# 0.3837 0.1518 0.1625 0.3020 1 1 
9# 0.4405 0.1216 0.1478 0.2901 1 1 
10# 0.4340 0.1202 0.1516 0.2942 1 1 

Figure 5 is the multi-classification diagram based on Bayesian theory, Figure 5a is the 
multi-classification diagram of the training set, and Figure 5b is the multi-classification diagram of 
the testing set. x1, x2 are the feature vectors whose dimension is reduced by the RBF kernel function. 
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(a) (b)

Figure 5. The multi-classification diagram. (a) the multi-classification diagram of the training set; 
(b)the multi-classification diagram of the testing set. 

Compared the LSSVM algorithm in Bayesian theory with the LSSVM algorithm and the 
standard SVM algorithm, the results are as shown, in Table 5. 

Table 5. The comparison of three models’ performance. LSSVM: Least Squares Support Vector 
Machine; SVM: Support Vector Machine. 

The Fault Diagnose Models
The LSSVM Algorithm in Bayesian Theory The LSSVM Algorithm The Standard SVM Algorithm 

O Percent O Percent O Percent 
40 97.5% 40 92.5% 40 90.0% 

Among the LSSVM algorithm and the standard SVM algorithm, the RBF is the kernel function, 
the classification algorithm is the “One vs. One”, the difference is that the optimization method of 
the regularization parameter θ , and the kernel parameter 2σ  is the 10 times cross-validation 
method. O is the total number of test samples, and Percent is the proportion of the well-judged test 
samples and the total test samples. The results show that the LSSVM in Bayesian theory has higher 
generalization ability and good modeling effect. 

5. Experimental Results 

In this section, the presented fault diagnosis model is tested with an experimental photovoltaic 
system, and the experimental platform, as well as the experimental results, are presented. 

5.1. Experimental Platform 

A 35 kW Experimental Substation is applied to validate the performances of the proposed fault 
diagnosis model. As Figure 6 shows, we take a photovoltaic string as experimental subject, which 
consists of sixteen modules in series. We took fifteen of them into a 5 × 3 photovoltaic array, which 
consists of three photovoltaic strings in parallel, and each string has five modules in series. A 
reference photovoltaic string behind experimental array is used for comparison, which consists of 
five modules. The solar irradiance (G) is collected by the illumination intensity detector TBQ-2 
(Beijing Huatron Technology Co., Ltd, Beijing, China), and the ambient temperature (T) is collected 
by the temperature sensor PT100 (Haodu Sensors Technology Co., Ltd, Shenzhen, China). The 
current is provided by the DC (Direct Current) resource DH1718-A (Dahua Technology Co., Ltd, 
Beijing, China). 
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Figure 6. The experimental platform. (a) The experimental photovoltaic system; (b) The 
experimental instrument. DC: Direct Current. 

In the fault diagnosis model, the fault of abnormal aging is simulated by connecting a series 
resistor, while the fault of short circuit is simulated by paralleling a photovoltaic module with a 
constructor, disconnecting the constructor between two photovoltaic modules that represent the 
fault of open circuit. Four instances are implemented and studied, including in the states of normal, 
short circuit, open circuit, and abnormal aging. 80 sample groups in each state (320 sample groups 
altogether) were obtained, of which 60 sample groups were used as the training set, and the 
remaining 20 groups were used as the testing set. 

5.2. Experimental Results 

In this section, Table 6 and Figure 7 illustrate the experimental results. 

Table 6. The output probabilities of photovoltaic samples in short-circuits state.  

The Fault 
Types 

The Short 
Circuit 

The Open 
Circuit 

The Abnormal 
Aging  

The 
Normal 

The Actual Fault 
Type 

The Fault Type of 
Diagnose 

11# 0.5163 0.1237 0.1895 0.1705 1 1 
12# 0.3024 0.1303 0.4596 0.1077 1 3 
13# 0.4926 0.2902 0.1239 0.0933 1 1 
14# 0.3954 0.2197 0.2124 0.1725 1 1 
15# 0.4697 0.2303 0.1176 0.1824 1 1 
16# 0.4213 0.1478 0.1355 0.2954 1 1 

 
Figure 7. The classification of test samples. 
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Table 6 demonstrates the final posteriori probabilities of six test samples in short-circuits state, 
while Figure 7 illustrates the experimental results of the aforementioned four instances, which 
demonstrate that the accuracy of the proposed method is 97.5%. 

It is obvious that the experimental data can be classified by the fault diagnosis model in 
Bayesian theory, which is similar to the simulated ones. 

6. Conclusions 

According to the change rules of the output electrical parameters and the equivalent circuit 
internal parameters of the photovoltaic array in different fault states, a LSSVM multi-classifiers 
model in Bayesian theory has been built to diagnose the fault types of the photovoltaic array. 

The proposed method has the ability to construct an optimal multiple-classifiers model and to 
obtain the posteriori probabilities of the samples, which can identify the states of the photovoltaic 
array. Four kinds of working conditions are simulated to validate the effectiveness of the 
approach—that is, the normal condition, the short-circuits condition, the open-circuits condition, 
and the abnormal aging condition. The simulated results indicate that the method can classify the 
fault types accurately, which have a higher generalization ability and a good modeling effect. 
Furthermore, an experimental platform is built to test the experimental performance of the 
developed approach, while the experimental results also demonstrate the effectiveness of the fault 
diagnosis model in a practical system. 

This paper deeply analyzes the change rules of the output electrical parameters and the 
equivalent circuit internal parameters of the photovoltaic array in different fault states. It also 
introduces the Bayesian Framework for LSSVM into the field of photovoltaic fault diagnosis so that 
we can locate the faulty photovoltaic modules into a certain photovoltaic array and further 
diagnose its fault types, thus greatly reducing the number of sensors and the costs, while ensuring 
that the solar power station operates safely and stably. 
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