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Abstract: Time-varying impulsive positive hybrid systems based on finite state machines (FSMs) are
considered in this paper, and the concept of input–output finite time stability (IO-FTS) is extended for
this type of hybrid system. The IO-FTS analysis of the single linear time-varying system is given first.
Then, the sufficient conditions of IO-FTS for hybrid systems are proposed via the mode-dependent
average dwell time (MDADT) technique. Moreover, the output feedback controller which can stabilize
the non-autonomous hybrid systems is derived, and the obtained results are presented in a linear
programming form. Finally, a numerical example is provided to show the theoretical results.
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1. Introduction

Hybrid systems play an important role in practical applications, such as intelligent transportation
systems and manufacturing systems. In fact, hybrid systems are formed by the discrete event
dynamical subsystem and the continuous variable dynamical subsystem that interact and intermix
with each other [1,2]. Generally, the former can be modeled as a Petri net [3,4], or a finite state machine
(FSM) [5,6]. Some basic research results on FSMs have been obtained [6–8], concerning its structure,
stability, observability, and liveliness.

If hybrid systems consist of a family of dynamical subsystems and a switching signal which
determines the switching manner between the subsystems, they are called switched systems [9–11].
A system is positive if for any nonnegative initial condition its state variables and outputs naturally
take non-negative values for all nonnegative times. Generally, positive systems have many special and
interesting properties [12–15]. Moreover, positive switched systems switch between several positive
subsystems [16]. The importance of positive switched systems has received much attention due to
their broad applications in communication systems [17], formation flying [18], systems theory [19],
and so on. Actually, the study of positive switched systems is more challenging than that of general
switched systems because the features of positive systems and the features of switched systems have
to be combined to obtain elegant results [20]. It should be pointed out that many previous results
on positive switched systems focus mainly on stability analysis and controller synthesis [21–29],
such as exponential stability [21–25], asymptotic stability [26], finite time stability (FTS) [27,28],
and input–output finite time stability (IO-FTS) [30].

If the state of a system does not exceed a prescribed threshold during a fixed finite-time interval,
then the system is said to have FTS [31]. This is different from Lyapunov asymptotic stability. Obviously,
a finite-time stable system may not have Lyapunov stability, and a Lyapunov stable system may not be
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finite-time stable. The study of FTS is useful for dealing with the behavior of a system within a finite
time interval. Much work on FTS has been done [27,28,31–33]. Furthermore, input-to-state FTS [34],
robust-FTS [35] and IO-FTS [29,30,36–38] have also been investigated. In particular, in [27,28], the FTS
is investigated with respect to positive switched linear systems by designing average dwell time (ADT)
as the switching strategy.

The ADT approach is proposed and used to investigate the stability and stabilization problems for
time-dependent hybrid systems [39,40]. Recently, a new switching strategy called the mode-dependent
average dwell time (MDADT) technique was proposed [41]. It allows each mode in the underlying
systems to have its own ADT, therefore, it is more applicable in practice than the ADT technique.
Based on the MDADT technique, the periodic switching law was designed for periodic switching
systems in order to achieve optimal switching control [42]. This technique is also used to deal with the
stability and stabilization problems of positive switched systems [23].

The concept of IO-FTS was proposed for a linear time-varying system in [37]. Roughly speaking,
a system is said to have IO-FTS if, given a class of norm bounded input signals over a specified
time interval [t0, T], the outputs of the system do not exceed an assigned threshold during [t0, T].
The author of [37] points out that IO-FTS is dependent on IO stability, because it involves signals
defined over a finite-time interval, does not require the inputs and outputs to belong to the same class,
and quantitative bounds on both inputs and outputs must be specified. Based on [37], some research
results were derived. In [38], the IO-FTS was studied for a class of impulsive dynamical linear systems,
and both static output and state feedback controllers were designed to stabilize the impulsive systems.
In [43], using coupled differential linear matrix inequality, a pair of necessary and sufficient conditions
for the IO-FTS of impulsive linear systems were proposed. By applying the MDADT technique,
the IO-FTS was considered for a class of discrete-time positive switched systems with delays [30] and
a class of continuous-time positive switched systems with delays [29] respectively, and the sufficient
conditions were presented to guarantee the systems had IO-FTS. However, the IO-FTS of positive
hybrid systems based on FSM was not mentioned.

Compared with some positive hybrid systems, time-varying impulsive positive hybrid systems
are more general, and the existence of impulse makes it more practical. In addition, the concept of
IO-FTS is defined with the finite-time interval, and the transient performance of the system can be
obtained with this interval. In practical systems, the system performance is usually only concerned with
the finite-time, for example, multiple guided missiles transmission, and so on. Therefore, the research
on the IO-FTS of the time-varying impulsive positive hybrid systems has certain practical value and
theoretical significance.

Motivated by the above backgrounds, we consider a class of hybrid systems whose discrete
event subsystem is modeled as an FSM, and the continuous variable subsystem consists of several
continuous time-varying impulsive positive systems. Such systems are called hybrid systems based
on FSM. In fact, they are event-driven systems. The main contributions of this paper are given as
follows: firstly, the concept of IO-FTS is extended for such hybrid systems. Secondly, under two
different classes of exogenous input signals, the sufficient conditions of IO-FTS of a single linear
system are deduced by co-positive Lyapunov function. Furthermore, by combining the multiple
co-positive Lyapunov functions and MDADT technique, the sufficient conditions of IO-FTS of hybrid
systems are derived, and they have good flexibility and weak conservatism. Next, the output feedback
controller for stabilization problem is also deduced, and the obtained results are presented under linear
programming form. Finally, a numerical example is given to ensure the accuracy of the results.

Our work is organized as follows: in Section 2, some definitions and FSM are introduced, and the
problems which will be dealt with are stated. In Section 3, four theorems of IO-FTS for time-varying
positive linear systems are derived and the corresponding proofs are given. In Section 4, four theorems
of IO-FTS for time-varying positive hybrid systems are derived and the corresponding proofs are
given. In Section 5, an example is given to show the effectiveness of the theorem. Some conclusions
are given in Section 6.
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Notation: Throughout our paper, R+ denotes the set of nonnegative real numbers, Rn represents
the vector of n-tuples of real numbers, Rn×m is the space of matrices with real entries, and In denotes
an identity matrix. For a given matrix A ∈ Rn×m, aij stands for the element in ith row and jth
column of A, and A ≺ 0 (� 0) means all elements of A are positive (nonnegative), i.e., aij < 0 (≤ 0).
A � 0 (� 0) means all elements of A are negative (non-positive), i.e., aij > 0 (≥ 0). A matrix A is called
a Metzler matrix if its off-diagonal elements are all nonnegative real numbers. The symbol Lp denotes
the space of vector-valued signals whose p-th power is absolutely integrable over [0, ∞]. The restriction
of Lp to Ω ⊂ [0, ∞] is denoted by Lp,Ω. Given a set Ω ⊆ R, a vector-valued function ξ(·) � 0 and
a vector-valued signal υ(·) � 0, the weighted norm

∫
Ω ξT(τ)υ(τ)dτ is denoted by |υ|Ω,ξ(·).

2. Problem Formulation and Preliminaries

2.1. FSM

In this section, the FSM and the related definitions will be introduced.
Consider the FSM G = (Ξ, Σ, ζ) described by

q(tk+1) ∈ ϕ(q(tk), σ(tk+1))

σ(tk+1) ∈ φ(q(tk), x(tk+1))

ψ(tk+1) = ζ(q(tk), σ(tk+1))

(1)

where q(tk) ∈ Ξ, σ(tk) ∈ Σ, and ψ(tk) ∈ Ψ are, respectively, the discrete state, the input event and the
output of FSM at time tk, and tk is the k− th jumping instant. Ξ = {q1, . . . , qm}, Σ = {σ1, . . . , σm̄} and
Ψ ⊆ Ξ are the finite sets of states, input events and outputs, respectively. ϕ : Ξ× Σ→ 2Ξ is the FSM
transition function, φ : Ξ× X → 2Σ is the function specifying the possible events, and ζ : Ξ× Σ→ Ψ
is the output function. x(·) ∈ X is the continuous system state, X ∈ Rn, and q(t) is the current node
of FSM.

Remark 1. Note that the state transitions of the hybrid systems depend on the current node evolution of FSM,
and the current node q(t) ∈ Ξ specifies the corresponding subsystem of continuous dynamics being active.
q(t) = q(t+) means there is no jumping, and q(t) 6= q(t+) means the object will jump from the current node
to another.

Remark 2. From (1), it can be seen that the state transition may be not unique when a deterministic input
event occurs. This type of FSM is the non-deterministic FSM, which can be described by a state transition graph.
For example, Figure 1 shows an FSM with five nodes, where the set of node is Ξ = {q1, q2, q3, q4, q5}, and the
set of the input event is Σ = {σ1, σ2, σ3, σ4}. The jumping rule of FSM is that the current node jumps from
one node to another when a particular input event occurs. However, there may be more than one node that
the current node could jump to, thus, except the jump which is needed, all other jumps should be limited via
controlling. After the jump, the limitation should be released to maintain the liveliness of FSM. For the FSM
shown in Figure 1, the current node is q5, and when the input event σ4 occurs, the current node jumps from
node q5 to q4, then the current node is q4. At this time, if the input event σ1 occurs, the current node can jump
from q4 to q3 or to q2. The jump from q4 to q3 can be limited, and then the current node jumps from q4 to q2.
After that, the limitation will be released.
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Figure 1. A simple example of the finite state machine (FSM).

Definition 1. Given FSM (1) and any qi, qj ∈ Ξ, if there is an input event sequence {σ1, · · · , σ`} ∈ Σ
resulting in the current node jumping along the node sequence {q0, q1, · · · , q`}, where ` ∈ N, q0 = qi and
q` = qj, then the node sequence {q0, · · · , q`} is called the path from qi to qj. The jumping number ` is
the length of the path from qi to qj. Let h̄(qi, qj) denote the set of all paths from node qi to qj. If the path
{q0, q1, · · · , q`} ∈ h̄(qi, qj) has the least number of nodes, then it is called the shortest path from qi to qj.
Furthermore, the length of the shortest path from qi to qj is called the distance from qi to qj, and it can be
denoted by d(qi, qj) = `. In the case that there is no path from qi to qj, the distance is denoted by d(qi, qj) = ∞,
i, j, ` ∈ N.

Remark 3. Since the directionality property of FSM is considered in the distance from qi to qj, generally,
d(qi, qj) 6= d(qj, qi).

Next, let us introduce the distance from one node to a subset E = {qp1 , · · · , qps} which denotes
a specified subset of Ξ. We call subset E the desired set of FSM.

Definition 2. Given FSM (1) and a desired set E, the value d(qi, E) ∆
= min

qpj∈E
d(qi, qpj) is called the distance from

qi to E, and the corresponding path is called the shortest path from qi to E, qi ∈ Ξ. If qi ∈ E, then d(qi, E) = 0.
If there is no path from qi to E, then d(qi, E) = ∞.

Definition 3. Given FSM (1), a desired set E, and node qi ∈ Ξ, if

(1) there is a shortest path from qi to E, and the current node jumps along this path; and
(2) there is a positive integer K, for any k ≥ K, q(tk) ∈ E;

then the FSM is stable with regard to (w.r.t.) (qi, E,K).

2.2. IO-FTS

Consider the following impulsive hybrid systems:
ẋ(t) = Aq(t)(t)x(t) + Hq(t)(t)υ(t), q(t) = q(t+)
x(t+) = Dq(t)(t)x(t), q(t) 6= q(t+)
y(t) = Cq(t)(t)x(t),
G = (Ξ, Σ, ζ),

(2)

where x(t) ∈ Rn is the system state, υ(t) ∈ Rr is the particular exogenous input, and y(t) ∈ Rh is
the system output. Aq(t)(·) : R+ → Rn×n, Hq(t)(·) : R+ → Rn×r, Dq(t)(·) : R+ → Rn×n, and Cq(t)(·) :
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R+ → Rh×n are continuous matrix-valued functions. G = (Ξ, Σ, ζ) is an FSM which is introduced in
Section 2.1, and q(t) ∈ Ξ is the current node.

Definition 4 ([12]). The hybrid systems (2) are said to be positive if, for any initial state x(t0) � 0, all υ(t) � 0
and any jumping signal q(t) ∈ Ξ, the corresponding trajectory x(t) � 0 and y(t) � 0 hold for all t ≥ 0.

Lemma 1 ([12]). The hybrid systems (2) are positive if and only if Aq(t)(t) is a Metzler matrix, Hq(t)(t) � 0,
Dq(t)(t) � 0, and Cq(t)(t) � 0 for each q(t) ∈ Ξ.

Lemma 2 ([23]). A matrix A ∈ Rn×n is a Metzler matrix if and only if there exists a positive constant δ such
that A + δIn � 0.

Let us extend the definition of IO-FTS given in [37] to the impulsive hybrid systems
previously introduced.

Definition 5. Given a positive scalar T, a positive integer K, the initial node q(t0) ∈ Ξ, the desired set
E, and a vector-valued function η(·) � 0, the positive hybrid systems (2) are said to be IO-FTS w.r.t.
(E, ω, η(·), T) if

(1) the FSM is stable w.r.t. (q(t0), E,K), tK ≤ T, and
(2) υ(·) ∈ ω ⇒ ηT(t)y(t) < 1,

where ω are a class of particular exogenous input signals defined over [t0, T], and t ∈ [t0, T].

In this paper, two different classes of exogenous input signals are considered (as has been done
in [37]), and the vector-valued function ξ(·) always satisfies ξ(t) � 0 for t ∈ [t0, T].

(1) The set ω coincides with the set of norm-bounded integrable signals over [t0, T],
defined as follows:

ω1(t0, T, ξ(·)) := {υ(·) ∈ L1,[t0,T] : |υ|[t0,T],ξ(·) ≤ 1}.

(2) The set ω coincides with the set of uniformly bounded signals over [t0, T], defined as follows:
ω∞(t0, T, ξ(·)) := {υ(·) ∈ L∞,[t0,T] : ξT(t)υ(t) ≤ 1, t ∈ [t0, T]}.

The definitions of ω1(t0, T, ξ(·)) and ω∞(t0, T, ξ(·)) depend on the choice of t0, T, and ξ(·),
but these arguments will be omitted for brevity in the rest of the paper.

Consider a class of impulsive hybrid systems:
ẋ(t) = Aq(t)(t)x(t) + Bq(t)(t)u(t) + Hq(t)(t)υ(t), q(t) = q(t+)
x(t+) = Dq(t)(t)x(t), q(t) 6= q(t+)
y(t) = Cq(t)(t)x(t)
G = (Ξ, Σ, ζ),

(3)

where u(·) ∈ Rκ is the control input, and Bq(·)(·) : R+ → Rn×κ is continuous matrix-valued function.
Given a positive scalar T and a class of particular exogenous input signals ω defined over [t0, T],

the objective of the paper is to find a output feedback control law u(t) = Kq(t)(t)y(t), where Kq(t)(t) :
R+ → Rκ×h is the control gain, such that the closed-loop system

ẋ(t) = Ãq(t)(t)x(t) + Hq(t)(t)υ(t) q(t) = q(t+)
x(t+) = Dq(t)(t)x(t), q(t) 6= q(t+)
y(t) = Cq(t)(t)x(t)
G = (Ξ, Σ, ζ),

(4)
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is positive and there is IO-FTS w.r.t. (E, ω, η(·), T), where Ãq(t)(t) = Aq(t)(t) + Bq(t)(t)Kq(t)(t)Cq(t)(t),
E is a desired set of FSM (1), q(t) ∈ Ξ, and t ∈ [t0, T].

Definition 6 ([44]). For an FSM and any t2 ≥ t1 ≥ 0, let Nqi(t1, t2) denote the number of node qi in the
switched sequence over the interval [t1, t2], and let Tqi(t1, t2) denote the total activated time of node qi over the
interval [t1, t2], q(t) ∈ Ξ. We say that FSM has an MDADT τqi , if there exist positive numbers N0

qi
(we call N0

qi

is the mode-dependent chatter bounds) and τqi such that

Nqi(t1, t2) ≤ N0
qi
+

Tqi(t1, t2)

τqi

, t2 ≥ t1 ≥ 0 (5)

3. Single Linear System

Before dealing with the IO-FTS of hybrid systems, let us first consider a single linear time-varying
system which is described as follows:{

ẋ(t) = A(t)x(t) + B(t)u(t) + H(t)υ(t)
y(t) = C(t)x(t)

(6)

where x(t) ∈ Rn is the system state, υ(t) ∈ Rr is the particular exogenous input, u(·) ∈ Rκ is the
control input, and y(t) ∈ Rh is the output. A(·) : R+ → Rn×n, B(·) : R+ → Rn×κ, H(·) : R+ → Rn×r,
and C(·) : R+ → Rh×n are continuous matrix-valued functions.

The problem which will be solved is the design a state feedback control law u(t) = K(t)x(t) for
system (6), such that the closed-loop system{

ẋ(t) = Ã(t)x(t) + H(t)υ(t)
y(t) = C(t)x(t)

(7)

is positive and there is IO-FTS w.r.t. (ω, η(·), T), where Ã(t) = A(t) + B(t)K(t), K(t) : R+ → Rκ×n is
the control gain, and T is a positive scalar.

3.1. Stability of Autonomous System

When B(·) is a zero matrix, and the system (6) is autonomous, Ã(t) = A(t), then the following
theorems are obtained.

Theorem 1. The constants are T, ρ, λ, α > 0 with ρα < 1, and vector-value function η(t) � 0. If there exist
vector-valued functions v(t), ϑ(t), π(t) : R+ → Rn

+ and θ(t) : R+ → Rn such that

(1) v̇T(t) + vT(t)A(t) + πT(t) + θT(t) ≺ 0,
(2) vT(t)H(t) + ϑT(t)− ρξT(t) � 0,
(3) λπT(t) + θ̇T(t) + θT(t)A(t) + λθT(t) � 0,
(4) λϑT(t) + θT(t)H(t) � 0, and
(5) ηT(t)C(t)− αvT(t) � 0,

hold, then the system (6) is positive and there is IO-FTS w.r.t. (ω1, η(·), T), where A(t) is a Metzler
matrix-valued function, H(t) � 0, C(t) � 0, x(t0) = 0, υ(·) ∈ ω1, and t ∈ [t0, T].

Proof. When A(t) is a Metzler matrix-valued function, H(t) � 0 and C(t) � 0, system (6) is positive
by Lemma 1. Choosing co-positive Lyapunov function

V(t, x(t)) = vT(t)x(t) +
∫ t

t0

e−λ(t−s)πT(s)x(s)ds +
∫ t

t0

e−λ(t−s)ϑT(s)υ(s)ds,
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according to conditions (1) and (2) of Theorem 1, we get

V̇(t, x(t)) = (v̇T(t) + vT(t)A(t))x(t) + vT(t)H(t)υ(t) + πT(t)x(t)−
λ
∫ t

t0
e−λ(t−s)πT(s)x(s)ds + ϑT(t)υ(t)− λ

∫ t
t0

e−λ(t−s)ϑT(s)υ(s)ds

= (v̇T(t) + vT(t)A(t) + πT(t))x(t) + (vT(t)H(t) + ϑT(t)− ρξT(t))υ(t) + ρξT(t)υ(t)−
λ
∫ t

t0
e−λ(t−s)πT(s)x(s)ds− λ

∫ t
t0

e−λ(t−s)ϑT(s)υ(s)ds.

(8)

Due to
∫ t

t0
e−λ(t−s)d(θT(s)x(s)) = θT(t)x(t)− λ

∫ t
t0

e−λ(t−s)θT(s)x(s)ds, ẋ(t) = A(t)x(t) + H(t)υ(t),

∫ t
t0

e−λ(t−s)d(θT(s)x(s)) =
∫ t

t0
e−λ(t−s)(θ̇T(s)x(s) + θT(s)ẋ(s))ds

=
∫ t

t0
e−λ(t−s)(θ̇T(s)x(s) + θT(s)A(s)x(s) + θT(s)H(s)υ(s))ds, (9)

therefore,

θT(t)x(t)−
∫ t

t0

e−λ(t−s)(θ̇T(s) + θT(s)A(s) + λθT(s))x(s)ds−
∫ t

t0

e−λ(t−s)θT(s)H(s)υ(s)ds = 0. (10)

Taking (10) into (8), we can obtain

V̇(t, x(t)) = (v̇T(t) + vT(t)A(t) + πT(t) + θT(t))x(t) + (vT(t)H(t) + ϑT(t)− ρξT(t))υ(t)+
ρξT(t)υ(t)−

∫ t
t0

e−λ(t−s)(λπT(s) + θ̇T(s) + θT(s)A(s) + λθT(s))x(s)ds−∫ t
t0

e−λ(t−s)(λϑT(s) + θT(s)H(s))υ(s)ds,
(11)

According to conditions (1)–(4) of Theorem 1, we find

V̇(t, x(t) < ρξT(t)υ(t). (12)

Integrating (12) between t0 and t, and taking into account that υ(·) ∈ ω1 and x(t0) = 0, we obtain

V(t, x(t)) < ρ
∫ t

t0

ξT(τ)υ(τ)dt ≤ ρ.

From condition (5) of Theorem 1,

ηT(t)y(t) = ηT(t)C(t)x(t) ≤ αvTx ≤ αV(t, x(t)) < 1.

Then the system (6) is positive and there is IO-FTS w.r.t. (ω1, η(·), T) in the sense of Definition 4
and Definition 5.

Remark 4. Compared with Lemma 2 in [42], there are more adjustable parameters in the conditions of Theorem 1,
and therefore, the conditions of Theorem 1 are more flexible.

When the parameter in Theorem 1 ϑ(t) = π(t) = θ(t) = 0, the following corollary can be
easily obtained.

Corollary 1. The constants are T, ρ, α > 0 with ρα < 1, and vector-value function η(t) � 0. If there exists
a vector-valued function v(t) � 0 such that

(1) v̇T(t) + vT(t)A(t) ≺ 0,
(2) vT(t)H(t)− ρξT(t) � 0, and
(3) ηT(t)C(t)− αvT(t) � 0,

hold, then system (6) is positive and there is IO-FTS w.r.t. (ω1, η(·), T), where A(t) is a Metzler matrix-valued
function, H(t) � 0, C(t) � 0, x(t0) = 0, υ(·) ∈ ω1, and t ∈ [t0, T].
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Theorem 2. The constants are T, ρ, λ, α > 0 with ρα < 1, and vector-value function η(t) � 0. If there exist
vector-valued functions v(t), ϑ(t), π(t) : R+ → Rn

+ and θ(t) : R+ → Rn, such that

(1) v̇T(t) + vT(t)A(t) + πT(t) + θT(t) ≺ 0,
(2) vT(t)H(t) + ϑT(t)− ρξT(t) � 0,
(3) λπT(t) + θ̇T(t) + θT(t)A(t) + λθT(t) � 0,
(4) λϑT(t) + θT(t)H(t) � 0, and
(5) η̃T(t)C(t)− αvT(t) � 0,

hold, then system (6) is positive and there is IO-FTS w.r.t. (ω∞, η(·), T), where A(t) is a Metzler matrix-valued
function, H(t) � 0, C(t) � 0, η̃(t) = (t− t0)η(t), x(t0) = 0, υ(·) ∈ ω∞, and t ∈ [t0, T].

Proof. When A(t) is a Metzler matrix-valued function and H(t) � 0, system (6) is positive by
Lemma 1. Choose

V(t, x(t)) = vT(t)x(t) +
∫ t

t0

e−λ(t−s)πT(s)x(s)ds +
∫ t

t0

e−λ(t−s)ϑT(s)υ(s)ds.

According to the proof process of Theorem 1, for any t ∈ [t0, T], x(t0) = 0, and υ(·) ∈ ω∞, we can obtain

V(t, x(t)) ≤
∫ t

t0

ξT(τ)υ(τ)dt < ρ(t− t0).

From condition (5) of Theorem 2,

η̃Ty(t) = η̃TC(t)x(t) ≤ αvTx ≤ αV(t, x(t)) < t− t0,

then
ηT(t)y(t) =

1
t− t0

η̃Ty(t) < 1.

Thus system (6) is positive and there is IO-FTS w.r.t. (ω∞, η(·), T) in the sense of
Definitions 4 and 5.

3.2. Stabilization of Non-Autonomous Systems

When B(·) is a non-zero matrix, and system (6) is non-autonomous, the following theorems
are obtained.

Theorem 3. The constants are T, ρ, λ, α > 0 with ρα < 1, and vector-value function η(t) � 0. If there exist
vector-valued functions v(t), ϑ(t), π(t) : R+ → Rn

+ and θ(t) : R+ → Rnsuch that

(1) Ã(t) + δIn � 0,
(2) v̇T(t) + vT(t)Ã(t) + πT(t) + θT(t) ≺ 0,
(3) vT(t)H(t) + ϑT(t)− ρξT(t) � 0,
(4) λπT(t) + θ̇T(t) + θT(t)Ã(t) + λθT(t) � 0,
(5) λϑT(t) + θT(t)H(t) � 0, and
(6) ηT(t)C(t)− αvT(t) � 0,

hold, then under control law u(t) = K(t)x(t), the closed-loop system (7) is positive and there is IO-FTS w.r.t.
(ω1, η(·), T). Therefore, the system (6) is positive and stabilizable, where Ã(t) = A(t) + B(t)K(t), H(t) � 0,
C(t) � 0, δ > 0, x(t0) = 0, υ(·) ∈ ω1, and t ∈ [t0, T].

Proof. From Lemma 2 and condition (1) of Theorem 3, we know Ã(t) is a Metzler matrix, H(t) � 0,
C(t) � 0, and υ(t) � 0, which means system (7) is positive. Then, under the control law u(t) = K(t)x(t),
replacing A(t) in Theorem 1 with Ã(t), we can get condition (2) of Theorem 3. Therefore, system (7) is
positive, there is IO-FTS w.r.t. (ω1, η(·), T), and system (6) is positive and stabilizable.
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Theorem 4. The constants are T, ρ, λ, α > 0 with ρα < 1, and the vector-value function η(t) � 0. If there
exist vector-valued functions v(t), ϑ(t), π(t) : R+ → Rn

+ and θ(t) : R+ → Rnsuch that

(1) Ã(t) + δIn � 0,
(2) v̇T(t) + vT(t)Ã(t) + πT(t) + θT(t) ≺ 0,
(3) vT(t)H(t) + ϑT(t)− ρξT(t) � 0,
(4) λπT(t) + θ̇T(t) + θT(t)Ã(t) + λθT(t) � 0,
(5) λϑT(t) + θT(t)H(t) � 0, and
(6) η̃T(t)C(t)− αvT(t) � 0,

hold, then under the control law u(t) = K(t)x(t), the closed-loop system (7) is positive and there is IO-FTS w.r.t.
(ω∞, η(·), T). Therefore, system (6) is positive and stabilizable, where Ã(t) = A(t) + B(t)K(t), H(t) � 0,
C(t) � 0, η̃(t) = (t− t0)η(t), δ > 0, x(t0) = 0, υ(·) ∈ ω∞, and t ∈ [t0, T].

By similar analysis of Theorem 3, we can obtain the desired results.

4. Hybrid Systems

The results of IO-FTS for single linear system are obtained in Section 3. However, if the system is
not a single linear system, but is an impulsive positive hybrid system based on FSM, the research on
IO-FTS of such systems is as follows in this section.

Assume that the following assumption is always satisfied in the subsequent discussion.

Assumption 1. Given an FSM and the desired set E, for initial node q(t0) ∈ Ξ, the path from q(t0) to E always
exists, i.e., d(q(t0), E) 6= ∞.

For an FSM, define xT
d (tk) =

(
d(q(tk), E) 1

1+Ek
0[q(ti)]

)
, xd,1(tk) = d(q(tk), E),

and xd,2(tk) =
1

1+Ek
0[q(ti)]

, where Ek
0 is the number of the node jumping in desired set

E over [t0, tk]. For example, desired set E = {2, 3}, if the node jumping sequence is
{q(t0), q(t1), q(t2), q(t3), q(t4)} = {1, 2, 4, 3, 2}, then E0

k[q(ti)] = 3.

4.1. Stability of Autonomous Hybrid Systems

Firstly, consider the case where the impulsive positive hybrid systems (2) based on FSM
are autonomous.

Theorem 5. The constants are µ ≥ 1, T, α, λ > 0 with λα < 1, and suppose E is the desired set. If there exists
a vector-valued function vq(t)(t) � 0 such that

(1) ‖xd(tk)‖1 is strictly monotonically decreasing w.r.t. k,
(2) v̇T

q(t)(t) + vT
q(t)(t)Aq(t)(t) ≺ 0, q(t−) = q(t)

(3) vT
q(t)(t)Hq(t)(t)− λξT(t) � 0, q(t−) = q(t)

(4) vT
q(t)(t)Dq(t−)(t) � µq(t)vT

q(t−)(t), q(t−) 6= q(t) and
(5) ηT(t)Cq(t)(t) � αvT

q(t)(t),

hold, then system (2) is positive and there is IO-FTS w.r.t. (E, ω1, η(·), T) under MDADT

τqi ≥ τ∗qi
=

(T− t0) ln µqi

− ln λα
, (13)

where Aq(t)(t) is a Metzler matrix-valued function, Hq(t)(t) � 0, Dq(t)(t) � 0, Cq(t)(t) � 0, x(t0) = 0,
υ(·) ∈ ω1, q(t) ∈ Ξ, and t ∈ [t0, T].
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Proof. Firstly, we shall prove the stability of FSM. From Assumption 1, we know that the shortest path
from q(t0) to E exists. Meanwhile, q(t0) ∈ E, xd,1(t0) = 0 and xd,2(t0) < 1. According to condition (1)
of Theorem 5, xd,2(tk) is strictly monotonically decreasing w.r.t. k, i.e., Ek

0[q(ti)] is strictly monotonically
increasing w.r.t. k. Therefore, the condition (2) of Definition 3 is satisfied. Meanwhile, q(t0) ∈ Ξ/E,
xd,1(t0) ≥ 1 and xd,2(t0) = 1. Because xd,1(tk) is an integer, the integer K > 0 must exist, and xd,1(tK) =
0. When the k < K, condition (1) of Theorem 5 implies that xd,1(tk) is strictly monotonically decreasing
w.r.t. k, so condition (1) of Definition 3 is satisfied. When k ≥ K, the condition (1) of Theorem 5 implies
that xd,2(tk) is strictly monotonically decreasing w.r.t. k, i.e., Ek

0[q(ti)] is strictly monotonically increasing
w.r.t. k, so the condition (2) of Definition 3 is satisfied. Thus, the FSM is stable w.r.t. (q(t0), E,K), and
condition (1) of Definition 5 is satisfied.

Now, we shall prove the stability of continuous dynamics. Since Aq(t)(t) is a Metzler matrix-valued
function, Hq(t)(t) � 0, Dq(t)(t) � 0, and Cq(t)(t) � 0. System (2) is positive by Lemma 1. Choose a
co-positive type Lyapunov function Vq(tk)

(t, x(t)) = vT
q(tk)

(t)x(t). According to conditions (2) and (3) of

Theorem 5, for any t ∈ [tk, tk+1), we have q(t) = q(tk) = q(t−k+1), and

V̇q(tk)
(t, x(t)) =

(
vT

q(t)(t)Aq(t)(t) + v̇T
q(t)(t)

)
x +

(
vT

q(t)(t)Hq(t)(t)− λξT(t)
)

υ(t)

+λξT(t)υ(t) < λξT(t)υ(t)
(14)

Noticing that condition (4) of Theorem 5 and integrating (14) between tk and t, we obtain

Vq(tk)
(t, x(t)) < λ

∫ t
tk

ξT(τ)υ(τ)dτ + vT
q(tk)

(tk)x(tk) = λ
∫ t

tk
ξT(τ)υ(τ)dτ + vT

q(tk)
(tk)Dq(t−k )(tk)x(t−k )

≤ λ
∫ t

tk
ξT(τ)υ(τ)dτ + µq(tk)

vT
q(t−k )

(t−k )x(t
−
k ) = λ

∫ t
tk

ξT(τ)υ(τ)dτ + µq(tk)
Vq(tk−1)

(t−k , x(t−k ))

≤ λ
∫ t

tk
ξT(τ)υ(τ)dτ + µq(tk)

λ
∫ tk

tk−1
ξT(τ)υ(τ)dτ + µq(tk)

Vq(tk−1)
(tk−1, x(tk−1))

≤ λµq(tk)

∫ t
tk−1

ξT(τ)υ(τ)dτ + µq(tk)
Vq(tk−1)

(tk−1, x(tk−1))

≤ · · · ≤ λ ∏k
i=1 µq(ti)

∫ t
t0

ξT(τ)υ(τ)dτ + ∏k
i=1 µq(ti)

Vq(t0)
(t0, x(t0))

= λ ∏k
i=1 µq(ti)

∫ t
t0

ξT(τ)υ(τ)dτ.

(15)

According to the MDADT (13), Definition 6, and υ(·) ∈ ω1,

Vq(tk)
(t, x(t)) < λ ∏k

i=1 µq(ti)
= λ ∏m

i=1 µ
Ni(t0,t)
qi = λe

m
∑

i=1

Tqi (t0,t)
τqi

ln µqi

≤ λe

m
∑

i=1

Tqi (t0,t) ln λα

−(T−t0) ln µqi
ln µqi

≤ λe

m
∑

i=1

Tqi (t0,t) ln λα

−(T−t0) ln µqi
ln µqi

= λe
(t−t0) ln λα

−(T−t0) ≤ 1
α

(16)

From condition (5) of Theorem 5, we know

ηT(t)y(t) = ηT(t)Cq(t)(t)x(t) ≤ αvT
q(t)(t)x(t) < 1,

and then the condition (2) of Definition 5 is satisfied.
Thus, the system (2) is positive and there is IO-FTS (E, ω1, η(·), T) in the sense of

Definitions 4 and 5.

Remark 5. We note that the MDADT (13) depends on the parameter µqi . When µqi > 1, obviously, τqi > 0.
This can prevent the hybrid systems from exhibiting Zeno behavior ([41]). If µqi = 1, then τ∗qi

= 0, that is to say,
the jump can be arbitrary.

Theorem 6. The constants are µ ≥ 1, T, α, λ > 0 with λα(T − t0) < 1, and suppose E is the desired set.
If there exists a vector-valued function vq(t)(t) � 0 such that

(1) ‖xd(tk)‖1 is strictly monotonically decreasing w.r.t. k,
(2) v̇T

q(t)(t) + vT
q(t)(t)Aq(t)(t) ≺ 0, q(t−) = q(t)
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(3) vT
q(t)(t)Hq(t)(t)− λξT(t) � 0, q(t−) = q(t)

(4) vT
q(t)(t)Dq(t−)(t) � µq(t)vT

q(t−)(t), q(t−) 6= q(t) and
(5) ηT(t)Cq(t)(t) � αvT

q(t)(t),

hold, then system (2) is positive and there is IO-FTS w.r.t. (E, ω∞, η(·), T) under MDADT

τqi ≥ τ∗qi
=

(T− t0) ln µqi

− ln(λα(T− t0))
, (17)

where Aq(t)(t) is a Metzler matrix-valued function, Hq(t)(t) � 0, Dq(t)(t) � 0, Cq(t)(t) � 0, x(t0) = 0,
υ(·) ∈ ω∞, q(t) ∈ Ξ, and t ∈ [t0, T].

Proof. The proof of the stability for FSM is the same as that of Theorem 5, thus, condition (1) of the
Definition 5 is satisfied.

Now, let us discuss the stability of the continuous dynamics. From the proof process of Theorem 5,
we know the system (2) is positive, and

Vq(tk)
(t, x(t)) < λ

k

∏
i=1

µq(ti)

∫ t

t0

ξT(τ)υ(τ)dτ. (18)

Because of υ(·) ∈ ω∞ and MDADT (17), we can get

Vq(tk)
(t, x(t)) < λ ∏k

i=1 µq(ti)
(t− t0) = λ ∏m

i=1 µ
Ni(t0,t)
qi (t− t0) = λ(t− t0)e

m
∑

i=1

Tqi (t0,t)
τqi

ln µqi

≤ λ(t− t0)e

m
∑

i=1

Tqi (t0,t) ln(λα(T−t0))
−(T−t0) ln µqi

ln µqi

≤ λ(t− t0)e

m
∑

i=1

Tqi (t0,t) ln(λα(T−t0))
−(T−t0) ln µqi

ln µqi
= λ(t− t0)e

(t−t0) ln(λα(T−t0))
−(T−t0) ≤ 1

α .

(19)

From condition (5) of Theorem 6, we know

ηT(t)y(t) = ηT(t)Cq(t)(t)x(t) ≤ αvT
q(t)(t)x(t) < 1,

and then the condition (2) of Definition 5 is satisfied.
Thus, the system (2) is positive and there is IO-FTS (E, ω∞, η(·), T) in the sense of the

Definitions 4 and 5.

4.2. Stabilization of Non-Autonomous Hybrid Systems

Next, consider the case where impulsive positive hybrid systems (3) based on FSM are
non-autonomous. Designing the output feedback controller u(t) = Kq(t)(t)y(t) and taking it into
systems (3), then the closed-loop systems (4) can be obtained.

Theorem 7. The constants are µ ≥ 1, T, α, λ > 0 with λα < 1, and suppose E is the desired set. If there exists
a vector-valued function vq(t)(t) � 0 such that

(1) ‖xd(tk)‖1 is strictly monotonically decreasing w.r.t. k,
(2) Ãq(t)(t) + δIn � 0,
(3) v̇T

q(t)(t) + vT
q(t)(t)Ãq(t)(t) ≺ 0, q(t−) = q(t)

(4) vT
q(t)(t)Hq(t)(t)− λξT(t) � 0, q(t−) = q(t)

(5) vT
q(t)(t)Dq(t−)(t) � µq(t)vT

q(t−)(t), q(t−) 6= q(t) and
(6) ηT(t)Cq(t)(t) � αvT

q(t)(t),

hold, then system (4) is positive and there is IO-FTS w.r.t. (E, ω1, η(·), T) under MDADT (13); that is to
say, system (3) is positive and stabilizable, where Ãq(t)(t) = Aq(t)(t) + Bq(t)(t)Kq(t)(t)Cq(t)(t), Hq(t)(t) � 0,
Dq(t)(t) � 0, Cq(t)(t) � 0, δ > 0, x(t0) = 0, υ(·) ∈ ω1, q(t) ∈ Ξ, and t ∈ [t0, T].
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Proof. From Lemma 2 and condition (2) of Theorem 7, we know Ãq(t)(t) is a Metzler matrix,
Hq(t)(t) � 0, Dq(t)(t) � 0, Cq(t)(t) � 0, and υq(t)(t) � 0 for each q(t) ∈ Ξ. According to
Lemma 1, system (4) is positive. Then, under the output feedback controller u(t) = Kq(t)(t)y(t),
replacing Aq(t)(t) in Theorem 5 with Ãq(t)(t), condition (3) of Theorem 7 can be obtained. By Theorem 5,
we can easily find that system (4) is positive and there is IO-FTS w.r.t. (E, ω1, η(·), T) under MDADT
(13). Therefore, system (3) is positive and stabilizable.

Theorem 8. The constants are µ ≥ 1, T, α, λ > 0 with λα(T − t0) < 1, and suppose E is the desired set.
If there exists a vector-valued function vq(t)(t) � 0 such that

(1) ‖xd(tk)‖1 is strictly monotonically decreasing w.r.t. k,
(2) Ãq(t)(t) + δIn � 0,
(3) v̇T

q(t)(t) + vT
q(t)(t)Ãq(t)(t) ≺ 0, q(t−) = q(t)

(4) vT
q(t)(t)Hq(t)(t)− λξT(t) � 0, q(t−) = q(t)

(5) vT
q(t)(t)Dq(t−)(t) � µq(t)vT

q(t−)(t), q(t−) 6= q(t) and
(6) ηT(t)Cq(t)(t) � αvT

q(t)(t),

hold, then system (4) is positive and there is IO-FTS w.r.t. (E, ω∞, η(·), T) under MDADT (17). That is to
say, system (3) is positive and stabilizable, where Ãq(t)(t) = Aq(t)(t) + Bq(t)(t)Kq(t)(t)Cq(t)(t), Hq(t)(t) � 0,
Dq(t)(t) � 0, Cq(t)(t) � 0, δ > 0, x(t0) = 0, υ(·) ∈ ω∞, q(t) ∈ Ξ, and t ∈ [t0, T].

By similar analysis of Theorem 7, Theorem 8 can be easily proved.

Remark 6. Compared with the literature [28], the MDADT technique is used for Theorems 5–8 in this paper.
It allows every node of FSM to have its own ADT, therefore, the sufficient conditions of IO-FTS have good
flexibility and weak conservatism.

5. Numerical Example

In this section, a numerical example is presented via MATLAB to verify the effectiveness of the
theoretical results in Section 4.

Consider the time-varying impulsive positive hybrid systems based on FSM in form (3),
where FSM G = (Ξ, Σ, ζ) is reported in Figure 1, Ξ = {q1, q2, q3, q4, q5}, and Σ = {σ1, σ2, σ3, σ4}.

The system matrices are Aq1 =

(
−1 1.8+ t
0.5 −1.9− t

)
, Aq2 =

(
−1.2− t 0.8− 0.2t

0.3 −2.2− 1.2t

)
, Aq4 =(

−1 1.5
2+ t −t

)
, Bq1 =

(
1
0

)
, Bq2 = Bq4 =

(
1
1

)
, Hq1 =

(
0.1
0.1

)
, Hq2 =

(
0.3
0.1

)
, Hq4 =(

0.1
0.4

)
, Dq1 =

(
0.4t 0.4
0.6 0.8

)
, Dq2 =

(
0 0.5
0 0.6

)
, Dq4 =

(
0.2t 1

1 0

)
, Cq1 =

(
0.9t 1+ t

)
,

Cq2 =
(

1 0.8+ sin(t)
)

, Cq4 =
(

0.8+ t 0.8
)

.

The desired set is E = {q1, q2} and particular exogenous input υ(t) = 16.3
1+150t ∈ ω1. Let T = 3,

ξ(t) = 1.5, η(t) = 0.6, α = λ = 0.6, µ1 = 1.1, µ2 = 1.2, µ4 = 1.14, x(0) =

(
0
0

)
, and q(0) = q4.

From condition (1) of Theorem 7, the evolution path of current node of FSM can be obtained as
q4

σ1−→ q2
σ2−→ q1

σ4−→ q2
σ2−→ · · · . According to the conditions of Theorem 7 and MDADT (13), applying

the linear matrix inequality (LMI) Control Toolbox and the linear programming toolbox in MATLAB,
the following results can be obtained: τ1 = 0.2799, τ2 = 0.5435, τ4 = 0.3848, K1 = K4 = −1, K2 = 0.2,

vq1 =

(
1+ t
1+ t

)
, vq2 =

(
1

1+ t

)
, and vq4 =

(
1+ t

1

)
.

The node q3 and node q5 are not in the evolution path. That is to say, the continuous subsystems
at node q3 and node q5 are not activated, so they are not mentioned.
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The simulation results are obtained by MATLAB. The current node evolution of FSM is shown
in Figure 2, where 1, 2, 3, 4, 5 of the y-axis represent the nodes q1, q2, q3, q4, q5, respectively. Obviously,
the average dwell time of every node is different and satisfies MDADT (13), and the FSM is stable w.r.t.
(q4, {q1, q2}, 2). The trajectory of output ηT(t)y(t) and the trajectory of the system state x(t) are shown
in Figures 3 and 4. Because the systems are impulsive positive hybrid systems, these trajectories are
positive and have impulses. Moreover, the trajectory of output ηT(t)y(t) < 1 and υ(t) = 16.3

1+150t ∈ ω1,
therefore, the given hybrid systems are positive and there is IO-FTS w.r.t. ({q1, q2}, ω1, 0.6, 3) in the
sense of Definition 5. In Figure 5, the evolution of the control input is shown, and it is not always
positive. Thus, the Theorem 7 is effective.

0 0.5 1 1.5 2 2.5 3
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Figure 2. The current node evolution.
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Figure 3. The output ηT(t)y(t).
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Figure 4. The trajectory of the system state.
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Figure 5. The control input.

6. Conclusions

In this paper, the stability and stabilization of time-varying impulsive positive hybrid systems
based on FSM have been studied. First we consider the case where there is only one time-varying
positive linear system, and the stability and the state feedback controller are easily obtained. Then,
we extend it to the case with time-varying impulsive positive hybrid systems based on FSM, and the
stability is also obtained and proved. Furthermore, the output feedback controller is derived to stabilize
the systems. The simulation results show the feasibility and effectiveness of the proposed results.

As Cyber-Social-Physical Spaces (CSPS) [45] is essentially a hybrid system, the proposed method
in the paper may be applied in the CSPS or the Cyber Physical System (CPS). This will be an interesting
direction in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

FSM finite state machine
FTS finite time stability
IO-FTS input-output finite time stability
MDADT mode-dependent average dwell time
LMI linear matrix inequality
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