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Abstract: Damage models, particularly the Gurson–Tvergaard–Needleman (GTN) model, are 
widely used in numerical simulation of material deformations. Each damage model has some 
constants which must be identified for each material. The direct identification methods are costly 
and time consuming. In the current work, a combination of experimental, numerical simulation 
and optimization were used to determine the constants. Quasi-static and dynamic tests were 
carried out on notched specimens. The experimental profiles of the specimens were used to 
determine the constants. The constants of GTN damage model were identified through the 
proposed method and using the results of quasi-static tests. Numerical simulation of the dynamic 
test was performed utilizing the constants obtained from quasi-static experiments. The results 
showed a high precision in predicting the specimen’s profile in the dynamic testing. The sensitivity 
analysis was performed on the constants of GTN model to validate the proposed method. Finally, 
the experiments were simulated using the Johnson–Cook (J–C) damage model and the results were 
compared to those obtained from GTN damage model. 
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1. Introduction 

Today, the finite element codes have substituted expensive and tedious experiments for 
mechanical characterization of materials. The accuracy of material damage and material models 
plays an important role in the performance of the codes. All models involve a number of constants 
which must normally be determined by experiment. The accuracy of the models obviously depends 
on the accuracy of the constants. 

1.1. Damage Models 

Various damage models can be found in the literature. Some of the most important models are 
briefly described in this section. 
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1.1.1. Gurson–Tvergaard–Needleman Model 

Gurson, Tvergaard and Needleman’s damage model (GTN model) [1] is an analytical model 
that predicts ductile fracture on the basis of nucleation, growth and coalescence of voids in materials. 
The model is defined as: 
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In which 1q  is the material constant, trσ  is the sum of principal stresses, Mσ  is the 
equivalent flow stress and f* is the ratio of voids effective volume to the material volume ratio 
defined as follows:  
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where f is the voids’ volume ratio, fc is the voids’ volume ratio at the beginning of nucleation and ff is 
the voids’ volume ratio when fracture occurs. The equivalent flow stress ( Mσ ) is obtained from the 
following work hardening relation: 
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In which n is the strain-hardening exponent and pl
Mε  is the equivalent plastic strain. The voids’ 

growth rate is the sum of existing voids growth gf
  and the new voids’ nucleation nf

 . 
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where the components are further formulated as follows: 

( )1 pl
gf f trε= −  , (6) 

pl
n Mf Aε=  , (7) 

1exp
22

pl
M Nn

Nn

f
A

sS

ε ε
π

  −
= −  

   
, (8) 

In which ( )pl
x y ztrε ε ε ε= + +     is the volume plastic strain rate, Ns  is the voids’ nucleation 

mean quantity, fn is volume ratio of the second phase particles (responsible for the voids’ nucleation) 
and Nε  is mean strain at the time of voids’ nucleation. So, GTN model involves ten parameters 
which can be defined in a vector form by:  

( )1 0y y c f n N Nn q f f f f Sφ φ σ ε ε=   

In this model, the effect of hydrostatic pressure on the voids’ growth is considered and the 
shear stress effect is ignored which in general cases makes the results questionable. Thus, although, 
this model can perfectly predict damage in tensile stress, it is not as accurate in shear stress tests. To 
overcome this shortcoming, an extension of the Gurson model was proposed by Nahshon and 
Hutchinson [2] that incorporates damage growth under low triaxial straining for shear-dominated 
states. Var et al. [3] identified material parameters for Gurson-type and Lemaitre-type constitutive 
models for low alloy steel based on a hybrid global–local optimization technique. Chang-Kyun et al. 
[4] used experiment and FE simulations for smooth and notched tensile bars, to calibrate the 



Appl. Sci. 2017, 7, 1179 3 of 20 

parameters in the GTN model. Malcher et al. [5] undertook a numerical comparative study based on 
GTN original model and two recent enhancements that included shear mechanisms, employing 
mathematical and numerical strategies to calibrate the material parameters. 

1.1.2. Johnson–Cook Damage Model 

Johnson and Cook [6] developed the following relation for failure strain: 
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In which fε  is the strain failure, ௣ఙ೤ is the stress triaxiality parameter,	ߝሶ is strain rate and *T  

is the dimensionless temperature calculated by Equation (10). D1 to D5 are material constants. 
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where Troom is the room temperature and Tmelt is the material melting point. In the Johnson–Cook 
model, parameter D defined by Equation (11), represents the voids’ growth and is used as the  
fracture criterion.  

ε
ε
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f
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This parameter is generally a function of strain rate and the stress triaxiality parameter. In this 
relation D is the damage coefficient and ∆ε is the plastic strain increment in each iteration. In the 
finite element numerical simulation the value D is calculated in every loading increment for each 
element. When the value of D reaches unity in an element, D = 1, fracture occurs in that element and 
the element is eliminated from the computations. 

1.1.3. Rice and Tracey Model 

Rice and Tracey [7] developed a mathematical model that relates to the voids’ growth to stress 
triaxiality parameter. In this model, voids’ growth rate is defined as follows: 
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In which α  is the material constant and m
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considering the work hardening in Rice and Tracey model, Bermin [7] suggested the use of flow 
stress instead of yield stress in Equation (12). By integrating Equation (12) we can obtain: 

0

3exp
2

plm

eq

R
Ln d
R

σα ε
σ

 
=   

 
 , (13) 

1.1.4. Gunawardana Model 

Gunawardena [8] developed a damage model on the basis of Rice and Tracey model. Assuming 
spherical growth of voids and rigid-plastic behavior of materials, the fracture reference strain fε  is 
calculated for different states of stress triaxiality as follows:  

0
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In which hσ  is the hydrostatic stress component. For this model D is the damage parameter for 
which the growth rate is defined as follows: 
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Integrating Equation (15) and using Equation (14) we obtain:  
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Note that ߝ௣௖ is the plastic strain in each increment of loading in which D is calculated. Damage 
occurs when the D parameter reaches unity. The most important advantage of this model is that it 
requires only constant (ε0) to be determined. 

1.2. The Constants Identification Methods 

There are two methods which are generally used to determine the constants of damage model. 

1.2.1. Metallography Method 

Since damage models describe micromechanical processes, some of their constants can be 
obtained by metallographic methods. In this method, quantitative photography process is used for 
analyzing fractured surface metallography. Quantitative photography is a method for acquiring 
quantitative data from photos using special software designed for such purposes. 

1.2.2. Numerical Methods 

In this method, the computations continue until some geometrical parameters such as the final 
profile of the specimen predicted by numerical simulation converges to that obtained from an 
experiment such as tensile test. Plain or notched specimens can be used in the experiments. 

Determination of the constants of Gurson damage model through direct measurement and 
experimental testing is very difficult. On the other hand, the response of materials in numerical 
simulation definitely depends on these constants. Consequently, the constants can be determined by 
comparing material response in different loading states in numerical simulation with that of 
experimental measurements.  

Various researchers utilized this idea to find the damage models constants. Majzoobi et al. 
[9,10] obtained the variation of fracture strain versus stress triaxiality coefficient for notched steel 
and copper specimens of different notch radii. The results were used for determining the constants 
D1 to D3 in Johnson–Cook damage model. They also obtained the variation of fracture strain versus 
Ln ߝሶ under dynamic test conditions. The results were employed for determining the constant D4 in 
Johnson–Cook damage model. 

Ochewit et al. [11] performed plain specimen tensile test and measured the fracture 
displacement of the specimen. Then, they simulated the same tests using a finite element code. The 
constants q1, Sn, εn, f0 and fn were obtained from the literature. For determining fc and ff, simulation 
was performed for different sets of fc and ff and for each simulation the fracture displacement was 
recorded. The next step was to define the difference between fracture displacement of the specimens 
obtained from experiment and that of simulation as an objective function. By minimizing this 
objective function, fc and ff were identified. They used the computed constants for numerical 
simulation of automobile component under crash loading and found a good compatibility with 
experimental results.  

In another study, Markus Feucht et al. [12] predicted the fc and ff constants of Gurson model for 
aluminum die cast alloy and high strength steel, using minimization of the difference between 
component displacement parameter obtained from numerical simulation and the one measured in 
tensile test of the plain sample. They applied the same constants in a numerical simulation of the 
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tensile test of notched samples. Moreover, they used these constants for automobile components in 
crash tests. The results obtained were found to agree well with the experimental results.  

Springmann and Kuna [13] determined the constants of Gurson damage model using the 
displacement-load curves obtained from experiment and a nonlinear optimization method. They 
defined the difference between the load measured in experiment and predicted by simulation at 
some points of displacement-load diagram as objective function for optimization. This objective 
function is defined as: 
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where, ni is the number of points on displacement-load diagram, ϕ(p) is the objective function, ௜݂(݌) 
is the force obtained from simulation and ݂௜̅(݌)  is the force measured from experiment. The 
optimization of this objective function was accomplished by an iterative nonlinear method.  

Broggiato et al. [14] used digital photography method for obtaining the specimen’s profile  
in each loading increment. By collecting the profiles for each loading increment, they acquired the 
data to determine the damage and material models constants. Kuna and Springmann [15] employed 
local deformation measurements to determine GTN damage model constants. At the beginning,  
they performed a simple tensile test on a notched specimen and obtained displacement for some 
specified points in each loading increment via displacement filed optical measurement technique.  
For the next step, they simulated their experiment numerically and obtained the displacement of a 
specified point for different values of damage model constants. Then, by defining the objective 
function Equation (18) and minimizing it with respect to damage model constants p, the optimized 
values of the constants were determined. 

( ) ( )( ) ( )
23

1 1 1

1
2

l mn n

k k ijij
i j k

p u p uφ
= = =

 = −  , (18) 

where, ϕ(p) is the objective function, nl is the number of loading steps, nm is the number of points 
specified, uk (p) is the displacement calculated by simulation and uk is the displacement obtained  
from experiment.  

2. Materials and Methods 

2.1. Experiments 

The geometries of plain and notched specimens are illustrated in Figure 1. The specimens were 
fabricated according to ASTM standard from structural steel ST37. The quasi-static tests were carried 
out using Instron tensile testing machine. 

 

Figure 1. The schematic pictures of plain and notched specimens. 

The engineering and true stress-strain curves obtained from plain specimen test are illustrated 
in Figure 2. From the figure, the yield and ultimate stresses were obtained as:  

400 Mpa 600 Mpay uσ σ= =   
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Figure 2. The true and engineering stress-strain curves. 

Dynamic tests were performed using Flying Wage testing apparatus (a high rate testing device) 
[16,17]. A general view of the device is shown in Figure 3. 

 

Figure 3. Flying Wage testing apparatus 

Figure 4 illustrates the sketch of the specimens used for dynamic tests. 

 

Figure 4. Dynamic test specimens. 
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The geometry of the notched specimen was measured precisely by the method of optical 
measurement before and after the test. The optical precise measurement machine utilizes a projector 
to project the magnified picture of the specimen on a white screen and measurements are made on 
this screen. Figure 5 illustrates the specimen picture projected on the measurement machine screen.  

 

Figure 5. Projected picture of the specimen on the projector screen. 

From the projected picture of the specimen, the change in the gauge length, ( (mm)LΔ ) and the 
notch root diameter, ( (mm)dΔ ), of the specimen are measured. The results are given in Table 1 for 
quasi and dynamic tests.  

Table 1. Quasi-static and dynamic measurements. 

Test Type Δd (mm) ΔL (mm)
Quasi-static 1.675 1.95 

Dynamic 1.36 1.57 

2.2. Numerical Simulations 

2.2.1. Simulation of Quasi-Static Tests 

As the plastic deformation accumulates only in the notch area, only this area is considered in 
numerical simulation of quasi-static test. Due to axisymmetric conditions of the specimens, only 1/4 
of the specimen is simulated. Figure 6 illustrates the finite element model of the specimen.  

 
Figure 6. Finite element model of the specimen in notch area. 

2.2.2. Simulation of Dynamic Tests 

As stated above, the dynamic tests were conducted on the “Flying wedge” testing apparatus. 
Therefore, the major parts of the Flying Wedge involved in pulling the specimen were considered in 
the finite element model of the dynamic test simulations. The simulations were performed using the 
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hydrocode, Ls-dyna. Figures 7 and 8 illustrate views of the 3-D and the finite element model of the 
wedge respectively. The model consists of the notched specimen, two sliders in which the specimen 
is mounted and the wedge plate. The plate impacts on the sliders and makes them move away from 
each other resulting in tension in the specimen. The strain rate can be varied by changing the impact 
velocity of the wedge plate. The dimensions and the boundary conditions of the model are exactly 
the same as those in the testing apparatus. 

 
Figure 7. A view of 3-D model of the Flying Wedge  

 
Figure 8. A view of finite element model of the Flying Wedge. 

Figures 9 and 10 illustrate the 3-D model and the finite element model of the dynamic testing 
specimen. As noted before, the damage phenomenon is highly dependent on plastic deformation. 
Again, as plastic deformation occurs only in notch area, a GTN model was used only for the 
simulation of this area. Therefore, a higher mesh density was considered in the notch area. The other 
parts of the specimen were modeled using a coarser mesh and were analyzed using elastic behavior 
for the material.  

 

Figure 9. The 3-D model of the specimen for dynamic test highlighting the notch area. 
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Figure 10. The finite element model of the specimen for dynamic test highlighting the notch area. 

2.3. Identification of the Constants of GTN Model 

2.3.1. Definition of the Objective Function 

For determining the constants of GTN damage model a combination of experimental, 
numerical, and optimization methods were employed. This approach has already been used by 
Majzoobi et al. [18,19] for determining the constants of few material models. Of course, the 
optimization methods used by Majzoobi et al. are different from those used in this study. The 
elongation and fracture strain of the specimen were the most important design parameters used in 
this study. The fracture strain was computed as follows:  

02f
f

d
Ln
d

ε =  (19) 

In which d0 is the initial diameter and df is the diameter after fracture. The constants of the 
damage model were determined in a way that the results of the numerical simulation for elongation 
and diameter reduction of the specimen after fracture have minimum deviation from the 
measurements of the experiment. 

Thus, the difference between the numerical predictions and the experimental measurements for 
these two parameters was defined as the objective function. It is worth noting that if more 
parameters from tensile and shear tests are simultaneously considered in defining the optimization 
objective function, the optimized constants will be more accurate.  

For defining the objective function in optimization the following parameters were used.  

exp exp,     erimental f i erimental f il L L d d dΔ = − Δ = − , (20a) 

( ) ( ),      numerical f i numerical f il L p L d d p dΔ = − Δ = − , (20b) 

1
experimental numericalOBJ l l= Δ − Δ , (20c) 

2
experimental numericalOBJ d d= Δ − Δ , (20d) 

1 2

2
OBJ OBJ

OBJ
+= , (20e) 

where, iL  and id  are the initial length and diameter of the specimen before loading. 

fL  and fd  are the experimental length and diameter of the specimen after failure.  

( )fL p  and ( )fd p  are the numerical length and diameter of the specimen after failure. 
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experimentallΔ  is the experimental notch length change.  

numericallΔ  is the numerical notch length change. 

experimentaldΔ  is the measured notch root diameter of the specimen  

numericaldΔ  is the numerical notch root diameter of the specimen  
OBJ is the Objective function. 

2.3.2. Surrogate-Based Optimization Method 

An effective and efficient method to have cheap approximations of expensive black-box 
functions is the surrogate-based algorithm [20,21]. It is simply a numerical approximation of how an 
entity varies when the entities that affect it are varied. This method has also been widely employed 
to evaluate the numerical predictions which are calculated by expensive codes such as 
computational fluid dynamics (CFD) and nonlinear finite element method (NFEM) to speed up the 
analyzing process [22–24]. For implementing the surrogate-based optimization technique in a 
numerical simulation, the following steps should be taken [24,25]:  

1. Selecting the initial sampling points with a design of experiments (DoE) technique 
2. Performing the computationally expensive FE simulation for the selected points 
3. Fitting the surrogate model 
4. Optimizing the surrogate model and finding the new set of samples and  
5. Repeating steps 2–4 to reach convergence.  

Figure 11 illustrates the flow chart of the surrogate-based optimization process. 

 

Figure 11. The flow chart of the surrogate-based optimization method. 

In surrogate-based optimization there are different methods for generation of the surrogate 
function. This paper employs two methods of polynomial regression and Kriging. Each method is 
described briefly and the results obtained from the two methods applied for optimization  
are compared.  

2.3.3. Design of Experiments (DOE) 

The design of experiment defines how initial points in the variable space are selected. The 
evaluation process of the satisfactory coverage in the domain space and also the number of samples 
limitations due to computational expenses are two important elements for this step. There is a 
variety of DoE methods which can be found in the literature [24–26]. In this investigation Latin 



Appl. Sci. 2017, 7, 1179 11 of 20 

hypercube sampling (LHS) method [26,27] was adopted as the DoE method due to its good ability of 
filling domain space. A schematic of six sample points selection using LHS method for two variables 
is shown in Figure 12. 

For the generation of a polynomial regression function having four constants, 15 initial samples 
were needed for which LHS design function of MATLAB (Vesion: 2017a, Company: MathWorks, 
City: Torino 10122, Country: Italy)code was applied. The same initial samples were also used for 
generation of Kriging function. In addition, five different trial sets of samples with 6, 7, 8, 9 and 10 
samples were used for generation of Kriging function using LHS design function.  

 

Figure 12. A schematic of six sample points selection using LHS method. 

2.3.4. Polynomial Regression Method 

In this method, the objective function is approximated by a polynomial of second order  
as below [28]:  

( ) 0
1 , 1

n n

i i ij i j
i i j

OBJ x a a x b x x
= =

≅ + +  , (21) 

In which, n is the number of constants of GTN damage model, and a0, ai and bij are the 
polynomial coefficients. The GTN model has 10 constants ( )1 0y y c f N N Nn q f f f f Sσ ε ε . σy, εy and 

n are obtained from stress-strain curve of plain specimen obtained from quasi-static tensile test. The 
optimum quantities of q1 = 1.5, SN = 0.1 and εN = 0.3 are taken from literature [29–32]. Therefore, four 
constants remain to be determined for structural steel ST37. The polynomial of second order for four 
variables has 15 coefficients as follows: ܱܬܤ = ܽ଴ + ܽଵݔଵ + ܽଶݔଶ + ܽଷݔଷ + ܽସݔସ + ܽହݔଵଶ + ܽ଺ݔଶଶ + ܽ଻ݔଷଶ + ସଶݔ଼ܽ + ܽଽݔଵݔଶ +ܽଵ଴ݔଵݔଷ + ܽଵଵݔଵݔସ + ܽଵଶݔଶݔଷ + ܽଵଷݔଶݔସ + ܽଵସݔଷݔସ, (22) 

In relation to Equation (22), we have: x1 = fc, x2 = f0, x3 = fn, x4 = ff. To optimize this relation, the 15 
coefficients should be identified. Therefore, a system of 15 equations was needed to be solved 
simultaneously to obtain the coefficients.  

To do this, 15 numerical simulations of tensile test using GTN damage model with 15 different 
sets of constants sets (which have been obtained using LHS design) were performed and the 
quantities explained in Equation (20) were measured. The system of equations can be written in 
matrices as shown below. 
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Having obtained the coefficients of Equation (23), and having optimized the equation using 
genetic algorithm, the constants of GTN model which are the variables of the optimization problem, 
were determined. The results are given in Table 2. 

Table 2. The constants of GTN damage model obtained using polynomial regression method. 

fc f0 fn ff Error %
0.148 0.013 0.046 0.246 0.72 

2.3.5. Kriging Method 

In this model the prediction function y(x) is a linear combination of the main function f(x) and 
random function Z(x) [24]: (ݔ)ݕ = (ݔ)݂ +  (23) ,(ݔ)ܼ

The function f(x) is usually determined by a polynomial or root base function. Z(x) is a Gaussian 
random function with zero average, non-zero variance ߪଶ and also covariance defined as: ܿݒ݋ሾܼ(ݔ), ሿ(ݔ́)ܼ = ,ݔ)ଶܴߪ  (24) ,(ݔ́

where, ܴ(ݔ, ,ݔ)ܴ .ݔ́ and ݔ is a correlation function which is just dependent to two vectors (ݔ́ (ݔ́ = exp(−∑ ௞ݔ|௞ߠ − ௞|௖ೖ௠௞ୀଵݔ́ ), (25) 

In which ߠ௞  and ܿ௞  are the Kriging unknown coefficients in the range of 0 < ௞ߠ < ∞ and 	1 < ܿ௞ ≤ 2. The number of these coefficients are equal to the number of design parameters. The 
values of these parameters determine the effect of each design parameter on the objective function. 
The relation Equation (24) can be rewritten in matrix form as: (ݔ)ݕ = ଴ߚ + ௦ݕ)ଵିܴ(ݔ)்ݎ −  (26) ,(ܫ଴ߚ

where, ߚ଴ is the least square estimation defined as follows: ߚ଴ =  ௦, (27)ݕଵି்ܴܫ(ܫଵି்ܴܫ)

I is the unit vector and ys is the function output in initial sample points. r and R are correlation 
vector and correlation matrix, respectively, 

ܴ = ێێێۏ
,(ଵ)ݔ൫ܴۍ ,(ଵ)ݔܴ൫	൯(ଵ)ݔ ൯(ଶ)ݔ … ܴ൫ݔ(ଵ), ,(ଶ)ݔ൯ܴ൫(௡)ݔ ,(ଶ)ݔܴ൫	൯(ଵ)ݔ …	൯(ଶ)ݔ 	ܴ൫ݔ(ଶ), ,(௡)ݔ൯…ܴ൫(௡)ݔ ,(௡)ݔܴ൫	൯(ଵ)ݔ ൯(ଶ)ݔ … ܴ൫ݔ(௡), ۑۑۑے൯(௡)ݔ

ې , ݎ = ێێێۏ
,(ଵ)ݔ൫ܴۍ ,(ଶ)ݔ൯ܴ൫ݔ ,(௡)ݔ൯…ܴ൫ݔ ۑۑۑے൯ݔ

ې
, (28) 

where, x and x(i) are design parameters vectors for which objective functions are unknown and 
known respectively. The variance can be calculated as, ߪଶ(ߚ଴, ,ߠ ܿ) = ൬ଵ௡ ௦ݕ) − ௦ݕ)଴1)்ܴିଵߚ −  ଴1)൰, (29)ߚ

Assuming the Gaussian distribution of the samples the likelihood function would be: ߚ)ܮ଴, ,ଶߪ ,ߠ ܿ) = ଵඥଶగ(ఙమ)೙|ோ| ݌ݔ݁ ቄ− ଵଶ (௬ೞିఉబଵ)೅ோషభ(௬ೞିఉబଵ)ఙమ ቅ, (30) 
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The later equation can be written as: ߠ)ܧܮܯ, ܿ) = (ߠ)ଶߪ݈݊݊− −  (31) ,(ߠ)ܴ݈݊

This is the equation that should be optimized in order to obtain the Kriging Unknown 
parameters. For simplicity, we considered ܿ௞ = 2. Equation (32) is optimized by genetic algorithm.  

In the polynomial regression method, the number of initial samples is determined according to 
the number of optimization problem parameters. For example, in this investigation there are four 
parameters for which the linear polynomial function has 15 constants. Therefore, 15 simulation 
samples are required to determine the polynomial constants. Oppositely, Kriging function does not 
require specific number of initial samples.  

At the beginning, the same 15 samples used for polynomial regression method formation were 
used for constructing the Kriging function. Therefore, Kriging parameters were obtained by 
optimizing the relation Equation (32) using genetic algorithm. Then by optimizing the Kriging 
function again with genetic algorithm, the constants of GTN damage were obtained. The identified 
constants were then used in accomplishing the simulation. If the result of simulation fails to meet the 
desired precision, it would be considered as a new sample and the Kriging function would be 
constructed again using the old 15 samples plus the new sample. This iteration would continue until 
reaching the desired precision. In this study, the constants obtained by optimizing the Kriging 
function with the 15 initial samples met the prescribed precision and there was no need to have  
more iteration.  

In order to make a comparison between the two models, polynomial regression and Kriging, 
the Kriging function was constructed with 10, 9, 8 and 7 initial sample points. In all cases, the first 
optimization iteration provided the desired precision and the errors were less than 1%. However, 
the first iteration of the Kriging function constructed with six samples was not accurate enough and 
needed one more iteration to satisfy the criteria of having less than 1% error. Table 3 lists the results 
of GTN constants and the corresponding errors obtained from optimizing the Kriging function with 
different numbers of initial samples. 

Table 3. The results of Kriging method with different numbers of initial samples. 

Number of Initial Samples 
Constants of GTN Damage Model 

Error % 
fc f0 fn ff 

15 0.150 0.012 0.047 0.246 0.11 
10 0.154 0.012 0.048 0.246 0 
9 0.155 0.012 0.049 0.245 0.60 
8 0.151 0.011 0.048 0.250 0.95 
7 0.154 0.012 0.048 0.251 0.59 
6 0.145 0.013 0.048 0.254 2.38 

It is found that although the resulting error for all cases is negligible, there are cases for which 
the constants obtained by optimizing the Kriging function with more initial samples have less 
precision compared to the ones with fewer initial samples. The reason may be due to random nature 
of sample generation by Latin hyper cube method. Indeed, in some cases the initial samples are 
located in the optimum area by accident and lead to more precise results. Since, the constants 
obtained using 10 initial samples were quite satisfactory, they are used in the GTN model (Table 4).  

Table 4. The final constants of GTN damage model obtained using the Kriging method. 

fc f0 fn ff Error % 
0.154 0.012 0.048 0.246 0 

2.3.6. A Comparison between Kriging and Polynomial Regression Methods 

Mathematical relations applied in polynomial regression method are definitely easier 
compared to that of Kriging method, so, the calculations are faster in polynomial regression method. 
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Although, in the current simulation the polynomial regression method is reasonably accurate, the 
Kriging method provides higher precision with fewer initial samples. In addition, the Kriging 
method has more flexibility for the number of initial samples. Oppositely, the polynomial regression 
method requires a certain number of initial sampling points beyond which the accuracy will not 
increase. Therefore, for the cases where initial samples are costly and time consuming using the 
Kriging method may lead to more accurate results with fewer initial samples.  

3. Results 

Now, the numerical simulation of the tensile test is performed for the constants given  
in Table 4. The profiles of specimen measured from the numerical simulation and the quasi-static 
test are compared in Figure 13. The GTN model does not apparently take account of the effect of 
strain rate. However, the model, depending on the loading rate and the predefined solution time, 
calculates the strain rate and consider its effect on the voids growth.  

In this work, the constants of GTN model are determined using the results of quasi-static tensile 
test. The constants are then used for simulation of dynamic test. The profile of the specimen after 
fracture is compared with that obtained from the experiment in Figure 14. The error in predicting the 
reduction of diameter of the specimen after failure is worked out to be only (1.5%) which is 
reasonable. 

 

Figure 13. A comparison between the profiles of specimen measured from numerical simulation and 
quasi-static test. 

 

Figure 14. A comparison between the profiles of specimen measured from numerical simulation and 
dynamic test. 
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Some damage models such as Rice and Tracey suggest that there is a direct relation between 
voids’ growth rate and magnitude of stress triaxiality. Moreover, according to Bridgeman theory,  
the stress triaxiality parameter is maximum in the center of the sample notch. Hence, considering 
these two principals, it can be assumed that the voids’ coalescence and consequently the rupture of 
the sample initiates from the center of samples. This is consistent with the results obtained from 
Gurson model in the current study. According to Bridgeman theory [33], the stress triaxiality 
component is maximum in center of the necked section of specimen. Thus, it may be assumed that 
voids’ initiate and coalesce from the center of notches. In numerical simulation using GTN model 
this phenomenon was well predicted. Figure 15 illustrates estimated positions for coalescence of 
voids in numerical simulation.  

 

 
Figure 15. The location of voids’ initiation and coalescence predicted by GTN Model. 

4. Sensitivity Analysis 

In order to study the GNT model to variation of its constants, the sensitivity of reduction in 
diameter of specimen with respect to each constant of GTN damage model was studied in this 
investigation. To do this, the reduction in diameter of the specimen due to the change of one 
parameter was evaluated by performing the simulation keeping the other parameters unchanged. 
The results of this evaluation for all four parameters are illustrated in Figures 16–19. 
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Figure 16. Sensitivity of diameter reduction vs. f0. 

 

Figure 17. Sensitivity of diameter reduction vs. fn. 

 

Figure 18. Sensitivity of diameter reduction vs. fc. 
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Figure 19. Sensitivity of diameter reduction vs. ff. 

For better understanding the sensitivity of reduction in diameter of specimen, ∆d, with respect 
to the constants of Gurson damage model, the absolute valve of Variation of the ∆d% due to 20% 
change in any of the four constant is presented in Figure 20. As it is seen, a small variation in each 
constant, gives rise to significant change in ∆d. Therefore, from the sensitivity analysis it may be 
concluded that the values of the constants obtained for GTN model in this work are reliable.  
The reason is that for false constants, the change in ∆d would not be sensitive to small variations in 
the constants. 

As Figure 20 indicates, fn and ff show the highest and the lowest sensitivity of ∆d to 20% 
variation in the constants, respectively. 

 

Figure 20. Variation of the ∆d for 20% change in each constants of GNT model. 

5. Discussion 

The numerical simulations of quasi-static and dynamic tests were also performed using 
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that predicted for GTN model. The reason was that both J–C and GTN models are coupled with 
material models which are normally constructed on the basis of experimental stress-strain curve. 
More clearly, material models are required for implementing the damage model. Johnson–Cook 
damage model makes use of Johnson–Cook material model that involves five constants and 
considers the effects of strain rate and temperature [35]. This is while GTN damage model employs 
the material model defined by Equation (4) which involves only three constants and is simpler than 
the J–C material model and does not take any account of the effects of strain rate and temperature. 
Therefore, although GTN model is an analytical approach and involves more constants in damage 
analysis compared to Johnson–Cook damage model which is purely an empirical relation, it may be 
less accurate than Johnson–Cook damage model as the latter takes account of the effect of strain rate 
and temperature indirectly through the material model.  

Although, Kriging method is mathematically more complicated and more expensive than 
polynomial regression method, it may be more accurate as it requires a smaller number of initial 
samples. As a matter of fact, Kriging method is advantageous over the polynomial regression 
method, especially in cases where generation of samples is costly. In addition, the Kriging method is 
quite flexible in the required number of initial samples which makes it superior the polynomial 
regression method for which there is a requirement of having a specific number of samples.  

6. Conclusions 

1 GTN damage model involves 10 constants which are normally determined by costly and time 
consuming experiments. It was shown in this work that the constants can be identified using a 
combined experimental/numerical/optimization technique which requires only two quasi-static 
and dynamic tensile tests to be carried out. The profiles of the specimen after fracture are 
obtained using a projector. The quasi-static and dynamic tests are simulated using a finite 
element code and the profiles of the specimen are predicted for some sets of the constants of the 
damage model. The difference between the numerical and the experimental specimen profiles 
is defined as the objective function and is optimized using the polynomial regression and 
Kriging methods. The constants corresponding to the optimized objective function are the 
answer. 

2 The constants σy, εy and n of GTN model can be easily computed from the stress-strain curve 
obtained simply from a quasi-static tensile test.  

3 Kriging surrogate method is more efficient than the polynomial regression surrogate method in 
the sense that it provides more precise results with a smaller number of initial samples.  

4 It was shown that except for the constant fn the reduction in diameter of the specimen predicted 
by numerical simulation was significantly sensitive to the constants f0, fc and ff.  

5 Despite the fact that GTN model is an analytical method and Johnson–Cook model is an 
empirical method, they both provided the same accuracy in this work. 
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