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Featured Application: This paper presents a theoretical approach for lowering the outlet flow
ripple of a crescent pump by applying a tandem crescent pump consisting of two gear pairs with
an index angle between them.

Abstract: This paper presents a theoretical approach for lowering the outlet flow ripple of a crescent
pump by applying a tandem crescent pump consisting of two gear pairs with an index angle between
them. The outlet flow of the tandem pump is obtained by summing the flow produced by the two
gear pairs, and the flow ripple of the tandem pump can be attenuated by properly selecting the
design parameters in terms of the index angle and the displacement ratio between the two gear
pairs. A lumped parameter model is presented for evaluating the crescent pump’s flow ripples,
and experiments were performed on a single crescent pump to validate the model from the aspects of
the steady-state flow-pressure characteristics and the outlet pressure ripples. In this way, the main
causes of the flow ripple could be identified by comparing the kinematic flow with the actual flow
evaluated by the model. Additionally, simulation results suggested that a tandem pump with an index
angle of 13.85◦ and displacement ratio of 0.5 could lead to a more than 45% decrease in the outlet
flow ripple than a single pump with the same displacement in a wide range of operating conditions.
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1. Introduction

Crescent pumps are widely used in many fluid power applications such as injection molding
machines, automotive applications, and robotic systems due to their advantages in terms of
compactness, low flow ripple, and low noise level [1–3]. Today, with the increase in demand for
injection quality and control accuracy, it is hoped that the flow ripple of the crescent pump can be
reduced [4]. This paper focused on a theoretical approach for lowering the flow ripple by applying
a tandem crescent pump comprised of two sets of gear pairs with an index angle between them.

Figure 1 depicts a schematic of the tandem crescent pump with two sets of indexed gear pairs.
As suggested by the name, the tandem pump is composed of two gear pairs, namely the front gear
pair and the back gear pair, and each gear pair can fulfill the function of fluid delivery via meshing
as typical crescent pumps. Figure 1 also illustrates the basic working principle of the crescent pump
(displacement pump): sealing chambers are formed by the floating plates, the crescent fillers, and the
gear pair (the gear shaft and the ring gear), and by meshing the gears, fluid is sucked into the
suction chamber due to the increase of the suction chamber’s volume, delivered to the discharge
chamber, and then discharged from the discharge chamber due to the decrease of the discharge
chamber’s volume.

As shown in Figure 1, the back gear shaft is connected to the front gear shaft via a spline coupling,
which enables the same angular velocity and an index angle between the two gear shafts (view A-A
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and B-B). It should be noted that the flowrate by the two gear pairs can be varied by setting different
widths of the gear pairs (parameter ‘b’), and a design parameter, namely, the displacement ratio is
introduced, which is defined as the ratio of the displacement by the back gear pair to that by the front
gear pair. By sharing the same inlet and outlet, the outlet flow of the tandem pump is obtained by
superposing the flow produced by the two gear pairs, and it is expected that the outlet flow ripple of
the tandem pump can be attenuated by properly selecting the index angle and the displacement ratio.
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Mimmi et al. [5,6] addressed the theoretical flow characteristics from a kinematic aspect (based on 
the theory of gearing), focusing on the influence of the gears’ geometric parameters.  
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Usually, the internal gear pumps (IGPs) are classified into two types based on the existence
of the crescent fillers: the gerotor pumps without fillers and the crescent pumps with fillers,
and the flow characteristics has represented a main focus in previous studies. After a thorough
review of the literature, it was found that most publications concerning IGPs were related to
gerotor pumps, with only a small number focused on crescent pumps. With respect to the gerotor
pumps, Mimmi et al. [5,6] addressed the theoretical flow characteristics from a kinematic aspect
(based on the theory of gearing), focusing on the influence of the gears’ geometric parameters.
Gamez-Montero et al. [7,8] investigated the flow ripple characteristics via a mathematical model
by means of the bond graph technique, and experimentally validated the model by measuring the
instantaneous flow using the ‘secondary source’ method. Additionally, the same research group in
Reference [9] further studied the flow ripple via a 3D computational fluid dynamics (CFD) model by
means of ANSYS Fluent, allowing the analysis of the influence of the interteeth clearance and teeth
contact for a better estimation of the instantaneous flow. Hsieh [10,11] built a CFD model for the
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gerotor pump using Pumplinks, presenting a novel geometrical design that enabled variable clearance
between the inner and outer rotors for the purpose of lowering the flow ripples. Manco et al. [12] and
Schweiger et al. [13] studied the flow ripple and the pressure ripple via a lumped parameter model by
means of LMS Amesim, experimentally validating the model by measuring the steady-state flowrate
and the outlet pressure ripples. In the work of Manco et al. [12], they suggested that a bi-rotor pump
with indexed rotors had the potential to attenuate the flow ripple. Pellegri et al. [14,15] conducted
a comparison between the lumped parameter and the CFD approach for a unique insight into the
pump’s performance (volumetric efficiency, flow and pressure ripples, etc.), with a specific focus on
the rotors’ radial micro-motions.

With respect to the crescent pumps, Ichikawa [16] addressed the mathematical expressions
for the ideal delivery from a kinematic aspect, focusing on the variations of the trapped volume.
Zhou et al. [17] studied the theoretical flow characteristics based on the theory of gearing, and presented
a set of conjugated involute gears that enabled better fluid delivery capacity. Additionally, the same
research group in Reference [18] extended the study to the trapped volume performances via
a discretization approach, with a specific focus on the gears’ geometric parameters. Rundo [19]
investigated the theoretical flowrate of the crescent pumps with respect to different combinations of
the gear pair’s tooth numbers (the gear shaft and the ring gear), suggesting that the increase of the
gear shaft’s tooth number helped attenuate the flow ripple. Moreover, the same research group in
Reference [20] extended their research to cover the internal leakage and the outlet pressure ripple
via a lumped parameter model built in LMS Amesim, validating the model through a comparison
to experimental results on the steady-state flowrate and the outlet pressure ripples. Hence, it can be
seen that few attempts have been made to study the flow ripple with respect to the tandem crescent
pump design.

Concerning the tandem pump design, it has been previously applied in other hydraulic pumps,
particularly in axial piston pumps and in external gear pumps. Manring et al. [21,22] addressed the
theoretical torque ripple and flow ripple of a tandem axial piston pump with two identical rotating
groups under different index angles from a kinematic aspect, suggesting that an index angle of 10◦

resulted in the greatest reduction of the flow ripple (roughly 75%) with respect to a nine-piston rotating
group. Xu et al. [23] studied the tandem piston pump’s flow ripple via a lumped parameter model
using LMS Amesim, suggesting that an index angle of 20◦ resulted in the greatest reduction of the flow
ripple. In Xu et al.’s work, they suggest that the reason for the difference in index angle from that in
Manring et al.’s work was due to the flow through the triangular grooves on the valve plate, which has
been shown to have a great influence on the flow ripple (which was not considered in the work of
Manring et al.). Battarra et al. [24] presented a tandem external gear pump comprised of a set of spur
gears and a set of helical gears, sharing the same driving and driven shafts. However, the presented
tandem external gear pump did not share the same outlet, thus the flow produced by the two gear pairs
was delivered to two different hydraulic systems, which is different to the aforementioned tandem
axial piston pump and the tandem crescent pump presented in this work.

Hence, few published works can be found on tandem crescent pump design. This paper focused
on the flow ripple of the tandem crescent pump via a lumped parameter model built in Matlab. It was
expected that the tandem crescent pump could lead to a decrease in the flow ripple through the
proper selection of the design parameters in terms of the index angle and the displacement ratio.
The rest of the paper is organized as follows: the simulation model is proposed in Section 2 focusing
on the evaluations of the flow and pressure in the sealing chambers around the gear circumference;
the validation of the model is conducted in Section 3 from the aspects of the steady-state flowrate
and the outlet pressure ripples; the numerical results are presented in Section 4 regarding the pump’s
outlet flow and the related flow ripples; and discussions and conclusions are made in Section 5 based
on the numerical results.
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2. Simulation Model

Figure 2 depicts the sealing chambers around the gear circumference divided by the meshing
gears and the crescent fillers: the suction chamber, the transitional chamber, the discharge chamber and
the trapped chamber (if it exists), where the suction chamber is formed by the gear profiles between the
meshing point C2 and the intersections A1 and A2; the transitional chamber denotes the tooth space
(TS) located in the transitional stage from the suction chamber to the discharge chamber; the discharge
chamber is formed by the gear profiles between the meshing point C1 and the intersections B1 and
B2; and the trapped chamber is formed by the gear profiles between the two meshing points C1 and
C2. Flow exchange was observed between the adjacent sealing chambers via the clearances and the
grooves machined on the floating plate, namely the triangular grooves and the relief grooves, due to
the pressure difference, as shown in Figure 3. To account for the flow characteristics, an evaluation of
the pressure evolution around the gear circumference, where the pressure in suction chamber can be
treated as the inlet pressure (atmospheric pressure) was needed; the pressure with respect to time in
the other three chambers can be evaluated by applying the mass conservation equation.

dp
dt

=
β

V

(
∑ qin −∑ qout −

dV
dt

)
(1)

In Equation (1), β denotes the bulk modulus of the fluid. It should be noted that in this work,
the oil temperature was set as a constant value (40 ◦C); hence the oil bulk modulus β was dependent
on the pressure, as addressed by Xu et al. [25]. Regarding the other terms, V denotes the chamber’s
volume; qin and qout denote the flow into and out of the chamber, respectively; and dV/dt denotes the
time derivative of the chamber’s volume.

By applying Equation (1) to each chamber, the pressure can be estimated after evaluations of
the terms in the right hand side of Equation (1), and the related flow characteristics can be obtained.
Details are described in the following sub-sections on the evaluations of the related terms and their
implementation in Matlab.
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2.1. The Discharge Chamber

Figure 4 depicts a simple hydraulic system for the estimation of the crescent pump’s flow-pressure
characteristics, which is comprised of a throttle valve utilized as the pump’s load, and a delivery
line with a constant diameter utilized as the connection between the pump’s outlet and the throttle
valve. As observed, the pressure in the discharge chamber corresponds to the pump’s outlet pressure.
Regarding Equation (1), the term V denotes the volume of the discharge chamber and the delivery line,
the term qin denotes the flow into the discharge chamber from the trapped chamber (qtrap in Figure 2)
via the relief groove on the floating plate that connects the discharge chamber and the trapped chamber
(Figure 3). In this scenario, the term qin yields

qin = qtrap = Cd Arel

√
2
∣∣ptrap − p

∣∣/ρ · sign(ptrap − p) (2)

where qtrap is the trapped flow; Arel is the flow area of the relief groove; ptrap is the trapped pressure;
ρ is the oil density dependent on the pressure (the oil temperature was set as a constant and not
taken into account in this work), as addressed by Ivantysyn et al. [26]; Cd is the discharge coefficient
dependent on the flow velocity and is difficult to be determined. In this work, the value of Cd was set
as 0.7 according to the study by Ma et al. [27].
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Regarding the term qout, it denotes the flow out of the discharge chamber, which consists of
three terms: the valve flow through the throttle valve in the hydraulic system (qout,1 in Figure 4),
the triangular flow into the transitional chamber through the triangular grooves on the floating plate
(Figure 3), and the internal leakage of the pump. The first part can be given as

qout,1 = qval = Cd Aval
√

2p/ρ (3)

where qval is the flow through the throttle valve; and Aval is the flow area of the throttle valve.
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As Figure 3 shows, two triangular grooves are machined on the floating plate, therefore,
the triangular flow is further split into two terms accordingly: the flow (qtri,s) into the gear shaft’s tooth
space (TS) and the flow (qtri,r) into the ring gear’s TS. The term qtri,r is depicted in Figure 2, and can be
given as

qtri,r = Cd Atri

√
2(pi+1 − pi)/ρ (4)

where Atri is the flow area of the triangular groove; and pi + 1 and pi are the fluid pressures in the
adjacent tooth spaces.

Noting that the term qtri,s can be evaluated in the same way as Equation (4), the triangular
flow yields

qout,2 = qtri = qtri,s + qtri,r (5)

With respect to the internal leakage of the pump, it can be split into three terms according to different
types of clearances inside the pump: the lateral leakage through the lateral clearances between the
gears’ lateral sides and the floating plates, the radial leakage through the radial clearances between the
gears’ tooth tips and the fillers, and the ring-gear/case leakage through the clearance between the ring
gear and the case.

Figure 5 depicts the lateral leakage that goes through the gear shaft’s lateral side (ql,s) and the ring
gear’s lateral side (ql,r), thus the lateral leakage is further split into two terms accordingly. As observed,
due to the complexity of the gears’ profiles, the lateral leakage is evaluated utilizing the annular areas
bounded by the gears’ pitch circles and the floating plate’s borders. Using these quantities, the lateral
leakage through the ring gear’s side (ql,r) yields

ql,r =
ψd,r · δ3

l

12µ
· (p− pin)

ln
(

rfp2/rp2

) (6)

where ψd,r is the central angle of the discharge chamber; δl is the lateral clearance between the gears’
lateral sides and the floating plates; pin is the inlet pressure; and µ denotes the dynamic viscosity of oil
dependent on the pressure (the oil temperature was set as a constant and not taken into account in this
work), as addressed by Ivantysyn et al. [26].
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Noting that the term ql,s can be evaluated in the same way as Equation (6) and there exist two
lateral sides of the gears, the lateral leakage yields

ql = 2 · (ql,s + ql,r) (7)

Concerning the radial leakage, it can also be split into two terms like the lateral leakage: the flow
through the gear shaft’s tooth tip (qr,s), and the flow through the ring gear’s tooth tip (qr,r). The term
qr,r is depicted in Figure 2, and can be given as

qr,r =
bδ3

r (pi+1 − pi)

12µ · lr
− bδrωrra2

2
(8)

where b is the width of the gear; δr is the radial clearance between the gears’ tooth tips and the fillers;
lr is the length of the tooth tip; ωr is the angular velocity of the ring gear; and ra2 is the addendum
radius of the ring gear.

Noting that the term qr,s can be evaluated in the same way as Equation (8), the radial leakage yields

qr = qr,s + qr,r (9)

Figure 6a depicts the cross section of the case for the analysis of the ring-gear/case leakage. It can
be seen that rectangular sealing areas formed in the ring-gear/case interface surrounding the high
pressure outlets. Moreover, fluid film formed in the sealing areas for the purpose of sealing, bearing and
lubricating, and there was leakage flow in the film due to the pressure difference between the outlets
and the borders of the sealing areas. Noting the small ratio between the film height (micrometer level)
and the other two dimensions (millimeter level), the sealing area was unwrapped on a plane, as shown
in Figure 6b, and was treated as a rectangular hydrostatic bearing. In this scenario, the ring-gear/case
leakage (qrc) through the rectangular sealing area can be evaluated with Equation (10) according to the
study by Hamrock et al. [28].

qrc = 2 ·
(

L
6µbB

+
B

12µbL1
+

B
12µbL2

)
· δ3 · pout (10)

where bB, bL1, bL2, B and L are the geometric parameters of the sealing area depicted in Figure 6b; and δ

is the radial clearance between the ring gear and the case.
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δ is the radial clearance between the ring gear and the case. 
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Hence, the internal leakage of the pump yields by summing all the leakages is

qout,3 = qleak = ql + qr + qrc (11)

and the term qout in Equation (1) yields

qout = qout,1 + qout,2 + qout,3 (12)

Regarding the term dV/dt, it denotes the time derivative of the discharge chamber’s volume,
which can be interpreted as the kinematic flow of the crescent pump derived from the kinematic
relations according to the work by Zhou et al. [17].

− dV
dt

=
dVkin

dt
= Qkin =

bω

2

[(
r2

a1 − r2
f1

)
− z1

z2

(
r2

a2 − r2
f2

)]
(13)

where Vkin is the volume of the discharged fluid when the pump operates for a period of time t from
the kinematic aspect; Qkin is the kinematic outlet flow; ω is the angular velocity of the gear shaft;
ra1 and ra2 are the addendum radii of the gear shaft and the ring gear, respectively; rf1 and rf2 are the
distances between the contact point and the centers of the gear shaft and the ring gear, respectively;
and z1 and z2 are the tooth numbers of the gear shaft and the ring gear, respectively.

2.2. The Trapped Chamber

According to the theory of gearing, one or two meshing points are formed during the meshing
process. Under the circumstance of two meshing points, a trapped chamber is formed by the gears’
profiles between the two meshing points, as shown in Figure 2. Regarding the terms in Equation (1),
the term V denotes the trapped chamber’s volume, which is characterized first by a decrease,
then followed by an increase; the term dV/dt denotes the variations of the trapped chamber’s volume,
which can be evaluated as

dVtrap

dt
=

(
dVkin

dt

)
C2

−
(

dVkin
dt

)
C1

(14)

As shown in Figures 2 and 3, relief grooves are machined on the floating plate to connect the
trapped chamber to the discharge chamber during the volume decreasing stage, and to the suction
chamber during the volume increasing stage. Hence, the terms qin and qout are contributed by two
types of flow: the flow through the relief grooves, which can be evaluated by Equation (2) (p = pout

when connected to the discharge chamber, p = pin when connected to the suction chamber); and the
lateral leakage, which can be evaluated by Equations (6) and (7).

2.3. The Transitional Chamber

As stated above, the transitional chamber denotes the gears’ TS located in the transitional stage,
which can be divided into two categories: the gear shaft’s TS and the ring gear’s TS. As shown in
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Figures 2 and 3, triangular grooves are machined on the floating plate to connect the transitional
chamber to the discharge chamber, which enables flow into the transitional chamber due to the pressure
difference between the discharge chamber and the transitional chamber for the purpose of increasing
the fluid pressure in the transitional chamber from the inlet pressure to the outlet pressure smoothly.
Hence, regarding the terms in Equation (1), the term V denotes the volume of the TS, the term dV/dt
yields zero since the volume of the TS does not vary during the transitional stage, and the terms qin

and qout are contributed by three types of flow: the flow through the triangular grooves, which can be
evaluated by Equation (4); the lateral leakage, which can be evaluated by Equation (6); and the radial
leakage, which can be evaluated by Equation (8).

2.4. Simulation Procedure

Figure 7 depicts the solution algorithm for the analysis of the tandem crescent pump’s flow
characteristics implemented in Matlab. It starts with the input parameters of the pump’s geometric
parameters and the initial values including the initial pressures in the sealing chambers and the initial
oil properties, as shown in box 1. Concerning the tandem pump design, it was comprised of two sets of
gear pairs characterized by two design parameters, namely the index angle (γ) and the displacement
ratio (ζ), as shown in boxes 2 and 3 (in the blue dashed box).
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The key part of the algorithm is represented by the evaluation of the outlet flow of one gear pair
depicted in the red dashed box. With respect to a certain time step (the ith time step), the geometric
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features and the oil properties that vary over time need to be updated first, as shown in box 4: the key
points (points A, B, C in Figure 2) for dividing the sealing chambers, the trapped chamber’s volume and
its time derivative for the evaluation of the trapped pressure, the flow areas of the relief grooves and
the triangular grooves on the floating plate for the evaluations of the trapped flow and the triangular
flow, respectively, and the oil properties (ρ, β, µ), which are dependent on the pressure (boxes 4.1
to 4.4).

Under the circumstance of two meshing points (C1 and C2 in Figure 2, the trapped chamber
exists), noting that the lateral leakage of the trapped chamber can be evaluated by Equations (6) and (7)
(with different central angles), the trapped pressure in the next time step (the (i + 1)th time step) can be
evaluated by applying the mass conservation equation written as Equation (15), as shown in box 5.

p(i+1)
trap =

β
(i)
trap

V(i)
trap

(
−∑ q(i)trap −∑ q(i)leak,trap −

(
dVtrap

dt

)(i)
)
· ∆t + p(i)trap (15)

where ∆t is the time interval between time steps.
The pressure in the transitional chamber in the (i + 1)th time step can be evaluated by Equation (16),

the same way as that in the trapped chamber, noting that the term dV/dt yields zero and the leakage
of the transitional chamber consists of two parts, namely the lateral leakage and the radial leakage,
as shown in box 6.

p(i+1)
tran =

β
(i)
tran

VTS

(
∑ q(i)tri −∑ q(i)leak,tran

)
· ∆t + p(i)tran (16)

where VTS is the volume of the tooth space; and ptran is the transitional pressure.
As stated above, the internal leakage of the pump consists of three parts: the lateral leakage and

the radial leakage of the discharge chamber, and the ring-gear/case leakage, which can be evaluated
by Equations (6) to (10) by leveraging the updated points B and C and the ith outlet pressure as shown
in box 7. Noting that the time derivative of the discharge chamber’s volume is interpreted as the
kinematic flow in Equation (13) (as shown in box 8), the outlet flow of one gear pair yields (box 9)

Q(i)
out,x = Q(i)

kin + q(i)trap − q(i)tri − q(i)leak (17)

Hence, the outlet flow of the tandem pump yields by summing the flow produced by the two
gear pairs (box 10).

Q(i)
out = Q(i)

out,1 + Q(i)
out,2(γ, ζ) (18)

Noting that the valve flow can be evaluated by Equation (3), the outlet pressure (pressure in the
discharge chamber) in the (i + 1)th time step can be evaluated by Equation (19) as shown in box 12.

p(i+1)
out =

β
(i)
d

V(i)
d

(
Q(i)

out −Q(i)
val

)
· ∆t + p(i)out (19)

where Vd is the volume of the discharge chamber and the delivery line.
Hence, it can be seen that in the ith time step, the ith flow characteristics and the (i + 1)th pressures

in the sealing chambers are evaluated; then in the (i + 1)th time step, the (i + 1)th pressures are used to
evaluate the (i + 1)th flow characteristics and the (i + 2)th pressures until the end of a meshing period
(boxes 13 and 14, loop1). At the end of the meshing period, the flow characteristics, in terms of the
outlet flow, the triangular flow, the trapped flow, and the internal leakage, serve as the criteria to judge
the convergence of the simulation, which is characterized by the fact that the flow characteristics do
not differ from one meshing period to another defined by Equation (20); the simulation stops after the
convergence of the simulation (boxes 15 and 16, loop2).
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∑|qnew − qold|/∑|qnew| ≤ qerr (20)

In Equation (20), qnew denotes the flow in the present meshing period; qold denotes the flow in the
previous meshing period; and qerr denotes the error between the flow in the two successive meshing
periods (converged to 10−8).

It is worthwhile to note that the time interval between time steps (∆t) was to the order of 10−8 s
and the consuming time of the simulation process was roughly seven minutes with an Intel® Xeon®

CPU E3-1230 v3 and 16.0 GB RAM.

3. Experimental Validation

Figure 8 depicts the test rig for the experimental campaign on a 40 cc/rev single crescent pump.
It is worth noting that the layout of the test rig was in accordance with the hydraulic circuit displayed
in Figure 4. As observed, the crescent pump was driven by a servo motor (0–2000 rpm), and its outlet
pressure was built up by a throttle valve. The working medium of the pump was L-HM 46 mineral
oil, and the oil temperature was maintained within (40 ± 3) ◦C, consistent with the oil temperature
in the simulation model. The test rig enabled measurements of the steady-state outlet flowrate via
a gear type flowmeter and the outlet pressure ripples via a high frequency pressure sensor. Table 1
provides the main features of the flowmeter and the pressure sensor which have been calibrated before
experiments, and Table 2 provides the main geometric parameters of the crescent pump.
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Figure 8. Test rig for measuring the single crescent pump’s steady-state flowrate and outlet
pressure ripples.

Table 1. Main features of the flowmeter and the pressure sensor.

Sensor Type Main Feature

Flowmeter Kracht®, Germany, VC5F1PV scale: 1–250 L/min, 0.3% accuracy (from measured value)

Pressure sensor Shuangqiao®, China, CYG1401F
scale: 0–35 MPa, 0.5% FS accuracy, 0.5% nonlinearity,

100 KHz natural frequency

Table 2. Main geometric parameters of the crescent pump.

Parameter Notation Value Unit

Module of the gear m 3 mm
Tooth numbers of the gear shaft and the ring gear z1, z2 13, 19 –

Pressure angle of the gear α0 22 ◦

Operating pressure angle of the gear pair α 24.87 ◦

Width of the gear b 55 mm
Addendum and pitch radii of the gear shaft ra1, rp1 23.43, 19.5 mm
Addendum and pitch radii of the ring gear ra2, rp2 26.95, 28.5 mm

Radii of inner and outer borders of the floating plate rfp1, rfp2 15.5, 38.25 mm
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Figure 9 depicts the comparison between the simulated and experimental results concerning
the steady-state flow characteristics with respect to different operating conditions (500–2000 rpm,
5–20 MPa). As observed, there existed a linear relationship between the flowrate and the operating
speed, and the outlet flowrate yielded roughly 40 L/min at 1000 rpm, in accordance with the pump’s
displacement (40 cc/rev). Furthermore, it was also observed that the outlet flowrate and the volumetric
efficiency yielded a decrease as the outlet pressure increased (at a certain speed), which was expected
since higher outlet pressure leads to greater internal leakage. A clear example can be given by the case
of working at 500 rpm, where the volumetric efficiency drops from 0.98 at 5 MPa to 0.92 at 20 MPa.
Moreover, it can be seen that a good agreement was found between the simulated and experimental
results regarding the flowrate and the volumetric efficiency, noting that the accuracy of the flowmeter
was within 0.3% (from measured value).
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Figure 9. Steady-state flow characteristics regarding different operating speeds (500–2000 rpm) and
outlet pressures (5–20 MPa): (a) outlet flowrate; and (b) volumetric efficiency.

Figure 10 depicts the comparison between the simulated and experimental results on the outlet
pressure ripples for one shaft revolution with respect to different operating conditions (500 rpm,
5 MPa; 500 rpm, 20 MPa; 2000 rpm, 20 MPa). As observed, 13 outlet pressure ripples existed in a shaft
revolution, which is believed to be due to the tooth number of the gear shaft (driving gear) which
was 13. Apart from that, it was visible that the pressure ripples yielded greater amplitudes under the
circumstance of low operating speed and high outlet pressure (500 rpm, 20 MPa). Moreover, it can
be seen that that a good agreement was found between the simulated outlet pressure ripples and the
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experimental results regarding different operating conditions, noting that the accuracy of the pressure
sensor was within 0.5% (full scale) and the nonlinearity of the pressure sensor was within 0.5%.

Figure 11 depicts the comparison of the frequency spectra of the simulated and experimental
outlet pressure ripples at 500 rpm, 20 MPa. As observed, the primary frequency concerning the
simulated results yielded 108.33 Hz with an amplitude of 0.253 MPa, and the primary frequency
concerning the experimental results yielded 108.33 Hz with an amplitude of 0.250 MPa, suggesting
a good match of the frequency spectra. Aside from that, the primary frequency of the simulated and
experimental results was in accordance with the analytical value given by Equation (21).

f =
z1 · n

60
=

13× 500
60

= 108.33 Hz (21)

Judging from the analysis above, a good match was found between the simulated and
experimental results regarding the steady-state outlet flowrate and the outlet pressure ripples,
therefore justifying the capability of the proposed model regarding the analysis of the pump’s outlet
flow characteristics.
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4. Numerical Results

In this section, the numerical results from the simulation model will be presented in terms of the
outlet flow of the tandem crescent pump, and the related flow ripples with respect to different design
parameters and operating conditions.

4.1. Outlet Flow of the Crescent Pump

Figure 12 depicts the three types of outlet flow from one gear pair under 2000 rpm and 20 MPa:
the kinematic outlet flow (Qkin) defined by Equation (13), the with-trapped outlet flow (Qwt) by
taking the trapped flow into consideration defined by Equation (22), and the actual outlet flow (Qout)
evaluated by the proposed model defined by Equation (23).

Qwt = Qkin + qtrap (22)

Qout = Qkin + qtrap − qleak − qtri (23)

Referring to Figure 12, it can be seen that the three types of flow were subject to ripples with the
period of approximately 27.7◦, which was expected since the tooth number of the gear shaft (driving
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gear) was 13, as shown in Equation (24). The kinematic outlet flow (Qkin) yielded between 74.88 and
80.14 L/min; the with-trapped outlet flow (Qwt) yielded between 78 and 80.14 L/min; and the actual
outlet flow (Qout) yielded between 75.25 and 78.33 L/min.

λ = 360◦/z1 = 27.7◦ (24)
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Figure 12. Three types of outlet flow from one gear pair under 2000 rpm and 20 MPa.

Figure 13 depicts the outlet flow from two gear pairs with an index angle (γ) under 2000 rpm and
20 MPa (ζ = 1). It can be seen that within a period, the flow from one gear pair was characterized by
an ascending stage followed by a descending stage, and one could observe a peak value and a valley
value. The flow from the two gear pairs were in the same shape since the displacement was ζ = 1.
A phase difference was also observed between the flow from the two gear pairs due to the index angle.
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Figure 13. Outlet flow from two indexed gear pairs under 2000 rpm and 20 MPa (ζ = 1).

Figure 14 depicts the outlet flow from the tandem pump (ζ = 1) under 2000 rpm and 20 MPa
with respect to different index angles (0, λ/4, λ/2), noting that the index angle γ was bounded
between 0 and λ. It can be seen that the outlet flow of the tandem pump exhibited a periodic behavior
with the same period of 27.7◦ and roughly the same mean outlet flowrate though the index angle
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varied. However, the outlet flow exhibited different shapes and different ripples as the index angle
varied. The outlet flow yielded between 151.59 and 158.64 L/min when γ = 0, between 153.25 and
156.96 L/min when γ = λ/4, and between 154.01 and 156.34 L/min when γ = λ/2.
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Figure 15 depicts the outlet flow from the tandem pump (γ = λ/2) under 2000 rpm and 20 MPa
with respect to different displacement ratios (0, 0.5, 1), noting that the displacement ratio ζ was
bounded between 0 and 1. Expectedly, the outlet flow exhibits a periodic behavior with the period
of 27.7◦. It could also be seen that under the same operating conditions, the pump yielded different
mean outlet flowrate and different flow ripples as the displacement ratio varied. The outlet flow
yielded between 75.25 and 78.33 L/min when ζ = 0, between 115.02 and 116.88 L/min when ζ = 0.5,
and between 153.91 and 156.34 L/min when ζ = 1.

Appl. Sci. 2017, 7, 1148 16 of 23 

behavior with the same period of 27.7° and roughly the same mean outlet flowrate though the 
index angle varied. However, the outlet flow exhibited different shapes and different ripples as the 
index angle varied. The outlet flow yielded between 151.59 and 158.64 L/min when γ = 0, between 
153.25 and 156.96 L/min when γ = λ/4, and between 154.01 and 156.34 L/min when γ = λ/2. 

 
Figure 14. Outlet flow from the tandem pump (ζ = 1) under 2000 rpm and 20 MPa regarding 
different index angles. 

Figure 15 depicts the outlet flow from the tandem pump (γ = λ/2) under 2000 rpm and 20 MPa 
with respect to different displacement ratios (0, 0.5, 1), noting that the displacement ratio ζ was 
bounded between 0 and 1. Expectedly, the outlet flow exhibits a periodic behavior with the period 
of 27.7°. It could also be seen that under the same operating conditions, the pump yielded different 
mean outlet flowrate and different flow ripples as the displacement ratio varied. The outlet flow 
yielded between 75.25 and 78.33 L/min when ζ = 0, between 115.02 and 116.88 L/min when ζ = 0.5, 
and between 153.91 and 156.34 L/min when ζ = 1. 

 
Figure 15. Outlet flow from the tandem pump (γ = λ/2) under 2000 rpm and 20 MPa regarding 
different displacement ratios. 

  

Figure 15. Outlet flow from the tandem pump (γ = λ/2) under 2000 rpm and 20 MPa regarding
different displacement ratios.



Appl. Sci. 2017, 7, 1148 17 of 22

4.2. Flow Ripple under Different Design Parameters

Figure 16 depicts the flow ripple (δq) of the tandem pump (ζ = 1) under 2000 rpm and 20 MPa
regarding different index angles (from 0 to λ), noting that the flow ripple was defined by Equation (25),
following the work addressed by Ivantysyn et al. [26].

δq =
Qmax −Qmin

0.5 · (Qmax + Qmin)
(25)

where Qmax is the maximum flowrate; and Qmin is the minimum flowrate.
Referring to Figure 16, it was clear and consistent that with respect to a certain index angle,

the tandem pump’s kinematic flow (Qkin) yielded a greater ripple while the with-trapped flow (Qwt)
yielded a lower ripple than the actual flow (Qout). Additionally, as the index angle increased (from 0
to λ), one observed a decrease followed by an increase in the flow ripples of the three types of flow,
and the flow obtained the minimum flow ripple when γ = λ/2 (in red rectangles). Concerning the
actual flow (Qout), the maximum flow ripple was roughly 4.62% when γ = 0, and the minimum flow
ripple was roughly 1.57% when γ = λ/2.
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Referring to Figure 17, it can be seen that with respect to a certain index angle (γ), the flow 
ripple first exhibited a decrease, then followed by an increase as the displacement ratio (ζ) increased, 
and a minimum value of the flow ripple could be achieved by properly selecting the displacement 
ratio. With respect to a certain displacement ratio (ζ), the condition of γ = λ/2 yielded the minimum 
flow ripple when ζ was greater than 0.4. Hence, as observed, the condition of γ = λ/2 and ζ = 0.5 
yielded the minimum flow ripple under the same outlet pressure and mean outlet flowrate (in red 
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Figure 16. Flow ripple of the tandem pump (ζ = 1) under 2000 rpm and 20 MPa regarding different
index angles.

Figure 17 depicts the flow ripple of the tandem pump at 20 MPa regarding different displacement
ratios (from 0.1 to 1) under the same mean outlet flowrate. The operating speed for the tandem pump
with the displacement ratio ζ = 1 was 2000 rpm, and the operating speeds for other displacement ratios
were set as Equation (26) for the purpose of maintaining the same mean outlet flowrate.

nζ=ζ0 = nζ=1 ·
1 + 1
1 + ζ0

(26)

Referring to Figure 17, it can be seen that with respect to a certain index angle (γ), the flow
ripple first exhibited a decrease, then followed by an increase as the displacement ratio (ζ) increased,
and a minimum value of the flow ripple could be achieved by properly selecting the displacement
ratio. With respect to a certain displacement ratio (ζ), the condition of γ = λ/2 yielded the minimum
flow ripple when ζ was greater than 0.4. Hence, as observed, the condition of γ = λ/2 and ζ = 0.5
yielded the minimum flow ripple under the same outlet pressure and mean outlet flowrate (in red
squares), and the related flow ripple yielded 1.41%.
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4.3. Flow Ripple under Different Operating Conditions

Figure 18 depicts the outlet flow ripples of the tandem pump (γ = λ/2 and ζ = 0.5) and the single
pump under different operating conditions (500–3000 rpm, 0–30 MPa). It should be noted that the
displacement of the tandem pump was 60 mL/rev given that the displacements of the two gear pairs
were 40 mL/rev and 20 mL/rev, respectively; and the displacement of the single pump was 60 mL/rev
for the purpose of maintaining the same mean outlet flowrate as the tandem pump when working
under the same operating condition.

For these two types of pumps (tandem, single), it can be seen that with respect to a certain
operating speed, the flow ripple increased as the outlet pressure increased. Furthermore, there was
a clear and consistent trend that with respect to a certain outlet pressure, the flow ripple decreased
as the operating speed increased. Moreover, the decrease of the flow ripple was noticed by applying
the tandem pump with γ = λ/2 and ζ = 0.5. For instance, when working under 500 rpm and 30 MPa,
the flow ripple of the single pump was 8.52% and the tandem pump was 3.72%; when working under
3000 rpm and 30 MPa, the flow ripple of the single pump was 4.42% and the tandem pump was 1.89%.
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5. Discussion and Conclusions

In this section, we discuss the outlet flow of the pump to identify the main causes of the flow
ripple. Additionally, the influence of the design parameters is discussed for the purpose of selecting
the proper design parameters to enable a decrease of the crescent pump’s flow ripple.

5.1. Main Causes of the Flow Ripple

As observed in Figure 12, by applying Equation (25), the flow ripple of the kinematic flow
(Qkin) yielded 6.8%, which is believed to be caused by the kinematic relations between the meshing
gears. As stated above, the trapped flow (qtrap) was forced into the discharge chamber through
the relief groove on the floating plate, thus leading to an increase in the outlet flow. Consequently,
the with-trapped outlet flowrate (Qwt) yielded a greater mean outlet flowrate than that of Qkin. The flow
ripple of Qwt in Figure 12 yielded 2.7%, an approximately 60% decrease than that of Qkin, indicating
that the trapped flow plays an important role in decreasing the flow ripples. Regarding the internal
leakage (qleak) and the triangular flow (qtri), it was clear that they led to a decrease in the outlet flow
since they are the flow out of the discharge chamber. The flow ripple of Qout in Figure 12 yielded 4%,
an approximate decrease of 41% than that of Qkin, but a 60% increase than that of Qwt, indicating that
the internal leakage (qleak) and the triangular flow (qtri) led to an increase in the flow ripples.

Hence, it can be seen that the trapped flow led to a decrease in the flow ripple, while the triangular
flow and the internal leakage of the pump led to an increase in the flow ripple; which was also
consistent with the cases depicted in Figure 16.

5.2. Influence of Design Parameters

5.2.1. Influence of the Index Angle

As observed in Figure 14, the index angle (γ) had little influence on the mean outlet flowrate;
however, it had a great influence on the outlet flow ripples. Referring to Figure 13, it can be seen that
the index angle enabled a phase difference between the flow from the two gear pairs. Noting that the
flow of the tandem pump was obtained by summing the flow from the two gear pairs, it was workable
to attenuate the flow ripple of the tandem pump by properly selecting the index angle, therefore
allowing the peak value of the flowrate from one gear pair to coincide with the valley value of the
flowrate from the other gear pair. This is believed to be the reason why the index angle of 13.85◦ (λ/2)
led to the greatest decrease in the flow ripple. As shown in Figure 16, the flow ripple was reduced by
66% from the maximum value (γ = 0) by properly selecting the index angle (γ = 13.85◦).
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5.2.2. Influence of the Displacement Ratio

The displacement ratio (ζ) led to different displacements of the pump, thus resulting in a different
mean outlet flowrate in Figure 15 when working under the same operating condition. Under the
circumstance of the same mean outlet flowrate, there was a value of the displacement ratio which
enabled the greatest decrease in the flow ripple, and the value varied with respect to different index
angles, as shown in Figure 17.

Referring to Figure 17, it can be seen that the index angle of 13.85◦ (λ/2) and the displacement ratio
of 0.5 led to the greatest decrease in the outlet flow ripple, which was 10% lower than that of γ = 13.85◦

and ζ = 1 (flow ripple: 1.57%), and 70% lower than that of γ = 0 and ζ = 1 (flow ripple: 4.62%).

5.3. Influence of Operating Conditions

With respect to a certain operating speed, the internal leakage of the pump increased as the outlet
pressure increased, and this is believed to be the reason why the flow ripple increased (the internal
leakage leads to an increase in the flow ripple as discussed above). With respect to a certain outlet
pressure, the mean outlet flowrate increased as the operating speed increased, and this is believed to
be the reason why the flow ripple decreased (the denominator in Equation (25) became greater while
the numerator remained roughly the same).

Referring to Figure 18, the tandem pump led to a more than 45% decrease in the flow ripple
than the single pump with respect to the depicted operating conditions (500–3000 rpm, 0–30 MPa).
Hence, it can be seen that a tandem crescent pump with proper design parameters (γ = 13.85◦ and
ζ = 0.5) can result in a significant decrease in the outlet flow ripple (more than 45%) than a single pump
with the same displacement across a wide range of operating conditions (500–3000 rpm, 0–30 MPa).
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Notation

Aval, rel, tri flow area of the throttle valve, the relief groove, and the triangular groove (m2)
b width of the gear (m)
bB, L1, L2 parameters of the rectangular sealing area around the outlets (m)
Cd discharge coefficient (-)
f frequency (Hz)
l length of the sealing area in the ring-gear/case interface(m)
lr length of the tooth tip (m)
m module of the gear (m)
n operating speed (rpm)
Os,r centers of the gear shaft and the ring gear (-)
p pressure (Pa)
pin, out inlet or outlet pressure (Pa)
ptran transitional pressure (Pa)
ptrap trapped pressure (Pa)
qin, out flowrate into and out of a chamber (m3/s)
ql lateral leakage of the lateral interface of the gears’ lateral sides and the floating plates (m3/s)
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qleak total internal leakage (m3/s)
qval, rel, tri flowrate through the throttle valve, the relief groove and the triangular groove (m3/s)
qtri,s; tri,r triangular flow for the gear shaft and the ring gear (m3/s)
qr radial leakage of the radial interface of the tooth tips and the crescent fillers (m3/s)
qrc leakage of the ring-gear/case interface (m3/s)
qtrap trapped flow, flow out of the trapped chamber through the relief groove (m3/s)
Qmax, min maximum and minimum flowrate (m3/s)
Qkin kinematic outlet flow (m3/s)
Qwt with-trapped flow by adding the kinematic flow and the trapped flow (m3/s)
Qout actual outlet flow by adding the kinematic flow, the trapped flow, the leakage and the triangular

flow (m3/s)
ra1, a2 addendum radii of the gear shaft and the ring gear (m)
rf1, f2 distances between the contact point and the centers of the gear shaft and ring gear (m)
rfp1, fp2 radii of the inner and the outer border of the floating plate (m)
rp1, p2 pitch radii of the gear shaft and the ring gear (m)
t time (s)
V volume (m3)
Vd volume of the discharge chamber and the delivery line (m3)
Vkin volume of the discharged fluid when the pump operates for a period of time t from the kinematic

aspect (m3)
Vtrap volume of the trapped chamber (m3)
VTS volume of the tooth space (m3)
z1, 2 tooth number of the gear shaft and the ring gear (-)
Greek symbols
α0 pressure angle of the gear (◦)
α operating pressure angle of the gear pair (◦)
β fluid bulk modulus (Pa)
γ index angle (◦)
δ radial clearance between the ring gear and the case (m)
δl lateral clearance between the gears’ lateral sides and the floating plates (m)
δq flow ripple (-)
δr radial clearance between the gears’ tooth tips and the fillers (m)
∆t time interval (s)
ζ displacement ratio (-)
η volumetric efficiency (-)
θ rotation angle of the gear shaft (◦)
λ circumferential angle of one tooth in the gear shaft (λ = 360◦/z1)
µ fluid viscosity (Pa·s)
ρ fluid density (kg/ m3)
ϕ angle circumference the sealing area in the ring-gear/case interface (rad)
ψ sector angle of the annular sector for estimation of the lateral leakage (rad)
ω, ωr angular velocity of the gear shaft and the ring gear (rad/s)
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