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Abstract: This paper presents a compositional hierarchical model for pattern discovery in symbolic
music. The model can be regarded as a deep architecture with a transparent structure. It can learn
a set of repeated patterns within individual works or larger corpora in an unsupervised manner,
relying on statistics of pattern occurrences, and robustly infer the learned patterns in new, unknown
works. A learned model contains representations of patterns on different layers, from the simple
short structures on lower layers to the longer and more complex music structures on higher layers.
A pattern selection procedure can be used to extract the most frequent patterns from the model.
We evaluate the model on the publicly available JKU Patterns Datasetsand compare the results to
other approaches.

Keywords: music information retrieval; compositional modelling; pattern discovery; symbolic
music representations

1. Introduction

In music, hierarchical representations are intuitive when one considers its spectral and temporal
structures. In an analytical sense, the Generative Theory of Tonal Music (GTTM) by Lerdahl and
Jackendoff [1] offers an approach of explicit hierarchical music modelling in musicology, well known
in contemporary music theory. Although GTTM mostly relies on expert rules, the concept of
hierarchical structuring seems reasonable, derived from the humans’ search for structure in consciously
perceived surroundings. There are several attempts to build a system capable of automatic analysis
supported by the GTTM and Schenkerian analysis [2–4]. Several other rule-based models were also
researched in Music Information Retrieval (MIR) and related fields [5,6]. Furthermore, the hierarchical
models abound in analysis of music perception from the point of view of computational biology and
neuroscience [7,8].

In parallel to explicit hierarchical representations, a variety of new approaches emerged under a
common name of deep learning [9]. Several neural-network-based approaches have been proposed for
melody transcription (e.g., [10]), genre classification (e.g., [11]), onset detection (e.g., [12]), drum pattern
analysis (e.g., [13]) and chord estimation (e.g., [14]). The idea behind a deep learning algorithm is to
construct multiple levels of data abstraction: a hierarchy of features. The high-level representations in
the training data are reflected in the hierarchy. However, the encoded knowledge is implicit and is
difficult to explain in a transparent (non black-box) way. Therefore, although deep learning enables
unsupervised learning of features and achieves good results on a variety of tasks, it is not very
appropriate for pattern discovery in music where explicit explanations of input are desired.
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The discovery of repeated patterns is a known problem in different domains, including computer
vision (e.g., [15]), bioinformatics (e.g., [16]) and music information retrieval (MIR). Although a common
problem, its definition, as well as pattern discovery algorithms, significantly differs across these fields.
In music, the importance of repetition has been addressed and discussed by a number of music theorists
(e.g., [17]) and, more recently, also by researchers who develop algorithms for semi-automatic music
analysis, such as one described by Marsden [4]. In the MIR field, an initiative for a common definition
of different tasks was formalized into the Music Information Retrieval Evaluation eXchange (MIREX),
in an attempt to compare different approaches. MIREX is a community-based framework for formal
evaluation of algorithms and techniques related to MIR [18]. The MIREX community established
several tasks dealing with patterns and structures in music, including structural segmentation,
symbolic melodic similarity and pattern matching, and pattern discovery.

The aim of the discovery of repeated themes and sections task is to find repetitions which
represent one of the more significant aspects of a music piece [19]. The MIREX task definition states
“the algorithms take a piece of music as input, and output a list of patterns repeated within that
piece” [20]. The task may also seem similar to the well-known pattern matching task [21], However,
while a pattern matching algorithm aims to find the place of a searched pattern within a dataset and
usually has a clear quantitative relation between a query and a match, a discovery of repeated patterns
finds locations of multiple similar sequences of data in the dataset, without any information about
the searched pattern. The definition of a pattern has been troubling researchers since the beginning;
while a pattern may come as an intuitive representation with a repetitive substance, patterns in music
are more difficult to define and are usually formalized using theoretical rules, specific to the music
era and genre. In the discovery of repeated themes and sections task, a pattern is defined as “a set of
on-time-pitch pairs that occurs at least twice (i.e., is repeated at least once) in a piece of music. The
second, third, etc. occurrences of the pattern will likely be shifted in time and perhaps also transposed,
relative to the first occurrence.” [20]. As noted by Wang et al. [22], the pattern discovery task differs
from the structural segmentation task, where segments cover the whole music piece and represent
disjoint sets of events. In the pattern discovery task, patterns may partially overlap or be subsets of
another pattern. However, some of the approaches mentioned in this section (e.g., [23,24]) perform
pattern discovery by calculating a set of non-overlapping patterns.

A variety of approaches has been proposed for pattern discovery in music in the past years.
Conklin and Anagnostopoulou [25] proposed a multiple viewpoint pattern discovery algorithm based
on a suffix-tree. For a selected viewpoint (a transformation of a musical event into an abstract feature)
the algorithm builds a suffix tree of viewpoint sequences (transformed music pieces). After selecting
patterns which meet specified frequency and significance thresholds, the leafs of the suffix tree are
reported as longest significant patterns in the corpus. Conklin and Bergeron [24] apply two algorithms,
using viewpoints which represent abstract properties of musical notes for statistical modelling of
melody [26]. A viewpoint is thus a function that computes values for events in a sequence; a pattern is
a sequence of such feature sets, where the latter represent a logical conjunction of multiple viewpoints.
The authors present a complete algorithm which can find all ‘maximal frequent patterns’ and an
optimization algorithm using a faster heuristic approach, where the found patterns may not always be
the maximal frequent patterns. The maximal frequent pattern represents a pattern whose component
feature set cannot be further specialized without the pattern becoming infrequent. Rolland [27]
presents the FlExPat (Flexible Extraction of Patterns) algorithm for extracting sequential patterns from
sequences of data. The algorithm first identifies equipollent passage pairs and produces a similarity
graph, representing the relations between each two passages; patterns are extracted from the similarity
graph. The author evaluated the approach on a set of ten Charlie Parker solos from the subset of
Owens’ corpus [28] and reported a satisfactory pattern extraction of a large number of the annotated
patterns. Cambouropoulos et al. [23] introduced an approach for extraction of patterns from abstract
strings of symbols, allowing for a partial overlap of various abstract symbolic classes. They also
focused on time complexity of their solution and addressed the problem of approximate pattern
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matching. Based on their previous work [29], they presented the PAT algorithm for segmentation
based on maximal repeated patterns. Besides discovering the patterns, and subject and counter-subject
entries in fugues, Meredith [30] described multiple point-set compression algorithms, including several
COSIATEC and COSIATECCompress approaches and Forth’s algorithm. The author evaluated these
approaches on three music analysis tasks: the classification of folk song melodies into tune families,
discovering entries of subjects and counter-subjects in fugues, and the discovery of repeated themes
and sections in polyphonic works task. Meredith [31] also evaluated his SIATECCompressSegment
algorithm for the task, which is a greedy compression algorithm based on the previously introduced
SIATEC approach [19]. The algorithm evaluates patterns based on assumption that perceptually
interesting patterns correspond to Maximal Translatable Patterns (MTP). The approach produces
a compact encoding of a musical piece, defined by a point-set representation, in form of a set of
Translational Equivalence Classes (TEC) of MTPs. The MTP with a defined particular vector is a set
of points, which can be translated by that vector to give other points in the point-set representation.
The authors observed that the MTPs often correspond to perceptually significant repeated patterns in
music. The TEC defines a set of all patterns which are translationally equivalent to a pattern defining
the specific TEC. The SIATECCompressSegment approach generates an ordered list of TECs which
may overlap (in contrast to other related versions such as COSIATEC).

Recently, Velarde and Meredith [32] extended a previously introduced approach to melodic
segmentation [33] for melodic classification and segmentation, where the symbolic input is first
segmented, then compared and hierarchically clustered. Finally, the clusters are ranked, taking into
account the cumulative length of all occurrences within each cluster. Based on their results, it can be
assumed that the output is additionally filtered by a threshold defining the number of output patterns.
Lartillot [34] introduced the PatMinr algorithm [35] which uses an incremental one-pass approach to
identify pattern occurrences. To avoid redundancy, the author addresses two issues: closed pattern
mining, which filters out the patterns that have more occurrences than their more specific patterns,
thus providing more robust patterns, and pattern cyclicity, which removes redundant matches for
successive occurrences of a single underlying pattern. The most recent approach submitted to the
MIREX task by Ren [36] also employs a closed pattern approach commonly used in data mining.
Nieto and FarBood [37] proposed the MotivesExtractor which obtains a harmonic representation of
the audio or symbolic input and extracts patterns based on a produced self-similarity matrix. Using a
score-based greedy algorithm ([38]) the approach extracts repeated segments, allowing the patterns
to overlap. Finally, the segments are grouped into clusters and provided in the algorithm’s output
as patterns.

In contrast to the existing hierarchical and deep approaches, the Compositional Hierarchical
Model (CHM) presented in this paper is a transparent deep architecture. The model provides an
explicit (transparent) encoding of concepts, learned in an unsupervised manner, thus merging the
benefits of explicit and deep hierarchical models in MIR. The CHM is built around the premise that the
repetitive nature of patterns can be captured by observing statistics of occurrences of their sub-patterns,
thus providing a hierarchy of the analysed symbolic music representation(s) [39]. Similar to other
approaches that build a tree of patterns based on their subsumption (e.g., [25]), the CHM first
extracts small atomic patterns and builds complex patterns as compositions of these atomic patterns.
Its ability to concurrently provide multiple pattern hypotheses on several levels of complexity and
their transparent descriptions makes it very suitable for pattern extraction, as patterns may overlap or
be mutually included.

The compositional hierarchical model was first introduced by Pesek et al. [40] and was evaluated
for several MIR tasks, including automated chord estimation and multiple fundamental frequency
estimation [41]. In the paper, we present an adaptation of the model for analysis of Symbolic
music (SymCHM) applied to the task of finding repeated patterns and sections. Instead of finding
compositions in a frequency-magnitude audio representation, the adjusted model searches for
compositions of symbolic events in the time-pitch-onset domain. The model learns a hierarchy
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of patterns; the transparent nature of the model allows the user to explore and analyse a music piece
by observing the hierarchy of pattern occurrences. For the automatic discovery of repeated patterns,
the patterns represented in the hierarchy are extracted. We analyse the model output and propose an
extension of the model named SymCHMMerge, which refines the extracted patterns.

The contributions of this paper are as follows: the compositional hierarchical model for symbolic
music analysis that can learn hierarchical melodic structures in an unsupervised manner is presented.
An application of the model to the task of finding repeated patterns and sections is evaluated.
The improved pattern extraction and merging approach from knowledge encoded in the model
(SymCHMMerge) is proposed and analysed.

The paper is structured as follows: we present the SymCHM in Section 2, describe its application
and extension to pattern extraction in Section 3 and present its evaluation and error analysis in Section 4.
We conclude the paper with an overview of other possible applications of the presented model and
outline future work in Section 5.

2. The Symbolic Compositional Hierarchical Model

The Symbolic Compositional Hierarchical Model (SymCHM) is derived from the CHM [40,41],
which in turn was inspired by an approach for object categorization in computer vision, named the
learned Hierarchy of Parts (lHoP) [42]. The SymCHM provides a hierarchical representation of a
symbolic music piece, from individual notes on the lowest layer, up to complex musical patterns on
higher layers. It is based on a hierarchical decomposition of music into atomic blocks, denoted as parts
(not to be confused with ‘voice’ or ‘vocal/instrumental part’. This denomination is used to retain the
consistency in relation to the lHoP). According to their musical complexity, parts are structured across
several layers, whereby parts on higher layers form compositions of parts on lower layers. A part can
therefore describe a simple individual event as well as a complex composition of events. While events
in the original compositional hierarchical model represent spectral audio features (frequencies, pitch
partials and pitches), the SymCHM models notes and their compositions into melodic patterns.

2.1. Model Description

2.1.1. Compositional Layers

The SymCHM consists of an input layer L0 and several compositional layers {L1, . . . ,LN}.
Each compositional layer Ln contains a set of parts {Pn

1 , . . . , Pn
Mn
}, which are formed as compositions of

parts from the previous layer Ln−1. The parts on the layer Ln−1 may form any number of compositions
on the layer Ln, which enables their effective reuse and thus learning of compact models, as shown
later in this paper. A hierarchy of parts is illustrated in Figure 1.

The SymCHM retains part definitions of the original CHM model. The i-th composition on the
layer Ln, denoted Pn

i , is defined as:

Pn
i = {Pn−1

k0
, {Pn−1

kj
, (µj, σj)}K−1

j=1 }. (1)

Pn
i is a composition of K parts from the layer Ln−1, called subparts. The composition is governed

by parameters µ1,...,K−1 and σ1,...,K−1, which model relationships between the subparts. In contrast to
most existing hierarchical and deep approaches, the CHM encodes compositions in a relative rather
than absolute manner. This is achieved by encoding the relative distance (offset) between each subpart
Pn−1

kj
, from the first subpart Pn−1

k0
, called the central part. The offset is encoded as a Gaussian with

parameters µj and σj. In SymCHM, offsets are modelled in semitones in the pitch domain (a semitone
is the smallest musical interval commonly used in Western tonal music), thus a composition encodes
the semitone distance between patterns represented by various subparts. Currently, the standard
deviation σj is set to a small fixed value, which does not allow for deviations from the offset encoded by
µj. In future work we may relax this condition to potentially achieve similar robustness as in chromatic
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to morphetic pitch translation [43]. As an example, the part P3
2 in Figure 1 represents a composition of

two subparts with offset 2 (µ = 2), meaning its pattern is a concatenation of two sub-patterns spaced
two semitones apart. All compositions and their parameters (µ, σ) are learned in an unsupervised
manner as explained in Section 2.2.

Such relative encoding of knowledge enables the model to learn position-independent concepts,
which in turn enables learning of compact models from small datasets, which still generalize well [41].
This is an advantage over most neural network deep approaches, which encode concepts in an absolute
manner and therefore need very large datasets to train properly.

Figure 1. The symbolic compositional hierarchical model. The input layer corresponds to a symbolic
music representation (a sequence of pitches). Parts on higher layers are compositions of lower-layer
parts (depicted as connections between parts, the parameter µ is given in semitones). The structure of a
part is displayed above each part in the figure, represented by a sequence of pitch values relative to the
first subpart (e.g., [0,0,1] for the part P2

1 ). A part may be contained in several compositions, e.g., P1
M1

is
a part of compositions P2

2 and P2
3 . The entire structure is transparent, thus we can observe the entire

sub-tree of the part P4
1 . A part activates, when (a part of) the pattern it represents is found in the input.

As an example, P4
1 activates twice (Inputs A and B), however there are differences in the found patterns.

Pattern A is positioned five semitones higher than B; Pattern B is missing one event (dotted green
rectangle); and the pitch of one event (blue rectangle) differs between the two patterns.

2.1.2. Activations: Occurrences of Patterns

An activation of a part corresponds to the presence of the concept it encodes (melodic pattern in
SymCHM) in the model input. An activation has three components: location and onset time, which map
the relative pattern representation onto a specific MIDI (Musical Instrument Digital Interface technical
standard) pitch and a time position within the input sequence of events (thus making it absolute) and
magnitude, representing its strength.

A part will activate at a given location if all of its subparts are activated with magnitude greater
than zero (this condition is relaxed with hallucination, which we introduce later in this section). A part
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can concurrently activate at different locations and times, which indicates multiple occurrences of its
concept in the input representation. In terms of the repeated pattern discovery task, each activation of
a part can be observed as a pattern occurrence: a repetition of the pattern encoded by the observed
part.

More formally, the activation A is defined as a triplet 〈AL, AT , AM〉 of location, time and
magnitude. The activation location AL and the time AT of the part Pn

i are defined as:

AL(Pn
i ) = AL(Pn−1

k0
)

AT(Pn
i ) = AT(Pn−1

k0
).

(2)

The compositions therefore propagate their locations and onset times upwards through the
hierarchy. Such propagation can be usefully employed as an indexing mechanism and allows for a
top-down analysis of activations.

The activation magnitude represents the strength of the composition’s match with the input and
is defined as a weighted sum of subpart magnitudes:

AM(Pn
i ) = tanh

(
1
K ∑K−1

j=0 wj AM(Pn−1
kj

)
)

, (3)

where the weights wj are defined by the match between the learned and the observed relative subpart
pitch locations and bounded by the difference in their activation times:

wj =


1 : j = 0

N (δLj, µj, σj) : j > 0∧ δTj < τW

0 : δTj ≥ τW

δLj = AL(Pn−1
kj

)− AL(Pn−1
k0

)

δTj = AT(Pn−1
kj

)− AT(Pn−1
k0

)

. (4)

The motivation behind the usage of tanh function introduced in Equation (3) is retained from
neural-network-based architectures: it provides a saturated output with the maximum limited to one.
Any other function could be used to calculate the magnitude of the activation, but the hyperbolic
tangent function possesses several interesting properties: it is a monotonically increasing function
with a smooth gradient and has a value close to one as it approaches infinity. Since the activation
magnitudes are directly used to calculate activations on a higher layer, the output of the function needs
to be normalized.

The parameter τW represents the maximal difference between activation times of two subparts
(time distance of two patterns) which still produces an activation. Such a limit must be imposed in
order to avoid a combinatorial explosion of possible compositions. If subpart activations fall within this
time window, their activation magnitude is calculated according to the match between their observed
(δLj) and their learned (µj, σj) relative pitch distances. A part will activate with maximal magnitude
when its subparts activate at pitch distances according to the learned representation encoded by µj
and σj. Note that onset times do not directly influence the activation magnitude. Thus, the activation
strength of a pattern is not dependent on the temporal distance between its sub-patterns (within τW)
and remains the same whether they are adjacent or separated by other events, allowing for gaps
between sub-patterns.

2.1.3. The Input Representation and Input Layer

A symbolic music representation encoding note pitches and onset times represents input to the
SymCHM. Any symbolic encoding that includes these values can be used, such as MusicXML, MIDI
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or text-based representations; the latter two are also available for the MIREX pattern discovery task.
We can thus define the input representation as a set of note onset (e.g., in seconds) and note pitch
(e.g., MIDI pitch) tuples S = {(No, Np)}.

The input layer of SymCHM L0 models such a symbolic music representation. It consists of a
single atomic part P0

1 , which activates for all note events as:

A = 〈AL(P0
1 ), AT(P0

1 ), AM(P0
1 )〉 ← 〈Np, No, 1〉 (5)

Thus, the activation locations AL are equal to note pitches, the onset times AT to note onsets,
while the magnitude AM is assumed to be 1 for all events (it can also represent note dynamics, if greater
importance is to be put on accented notes).

An example of a learned hierarchy is shown in Figure 1. The part P0
1 is activated for each

input note event. The parts on the first layer represent intervals, e.g., P1
4 represents a minor second

(offset one semitone) and is activated for all such intervals in the input regardless of gaps, with notes
spaced maximally τW apart. P4

1 represents a sequence of note events defined by a series of offsets
[0,0,1,2,−7,−12,4,4,5,−3,−12,7] and is activated at MIDI locations 65 and 70.

2.2. Constructing a Hierarchy of Parts

The model is built layer-by-layer with unsupervised learning on a single or multiple musical
pieces. In the ‘intra-opus’ pattern discovery task experiment described in this paper, we build a model
for each musical piece separately.

The learning process is an optimization problem, where for each layer a set of all possible part
compositions of the layer is searched for a minimal subset of compositions that covers a maximal
amount of events in the training set. The learning process is driven by statistics of part activations
that capture regularities in the input data. It consists of two main steps: (1) finding a set of all possible
compositions, denoted candidate compositions, and (2) selecting compositions that explain a maximal
amount of events in the training set.

To construct a new layer Ln, a set of new candidate compositions C, which will be considered
for inclusion in the new layer, is first formed (Step 1). This set of candidate compositions is obtained
by inferring the hierarchy with the training data and generating activations of parts layer-by-layer
from L0 to Ln−1, as explained in Section 2.3. The candidate compositions for layer Ln are generated
from histograms of co-occurrences of Ln−1 part activations within the time window τW (see also
Equation (4)). Frequent co-occurrences indicate the presence of underlying patterns. New compositions
are formed from combinations of Ln−1 parts where the number of co-occurrences exceeds the learning
threshold τC. The composition parameter µ is estimated from the corresponding histogram.

The L1 candidate compositions are thus constructed as a relative structure of two co-occurring
L0 part activations, both occurring within the time window τW . This procedure is repeated on all
consecutive layers, where activations of parts co-occurring within the time window on a previous
layer Ln−1 compose new part candidates on the next layer Ln. Since the model allows for partial
overlapping of the covered structure (e.g., P2

1 in Figure 1), the structures on these layers represent
3–4 music events. Consequently, the LN candidate compositions include all combinations of LN−1

part pairs representing structures of 2N−1–2N music events.
In the second step, a subset of compositions from C that covers a maximum number of events in

the input data is selected. As the problem of selecting a set of compositions from C which optimally
cover the input data is NP (nondeterministic polynomial time) complete, a greedy approach, which
selects a subset of compositions and leaves a minimal amount of events in the input uncovered, was
introduced in [41].

The composition selection uses part coverage as a measure of the part’s suitability for selection.
The coverage of the part Pn

i can be obtained by projecting its activations to the input layer and
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observing the covered events. For a single activation of the part Pn
i at the time T and the location L,

coverage is defined as the union of coverages of its subparts:

C(A(Pn
i )) =

K−1⋃
j=0

C(A(Pn−1
kj

)). (6)

When the input layer is reached, the coverage is defined by the presence of an event at the given
location and time as:

C(A(P0
1 )) =

AL(P0
1 ) : AM(P0

1 ) > 0

∅ : otherwise
. (7)

Based on coverage, the greedy composition selection approach is defined as follows:

• the coverage of each part from C is calculated as a union of events in the training data covered by
all activations of the part,

• parts are iteratively added to the new layer Ln by choosing the part that adds most to the coverage
of the entire training set in each iteration. This ensures that only compositions that provide
enough coverage of new data with regard to the currently selected set of parts will be added,

• the algorithm stops when the additional coverage falls below the learning threshold τL.

The learning procedure is repeated for each layer until a desired number of layers is reached.
The reader should note that the number of layers governs the maximal length of encoded patterns,
as discussed in the evaluation.

2.3. Inferring Patterns

A learned model captures the repetitive patterns in the training data, which are relatively encoded
and may be observed through an inspection of the model’s parts on its various layers. When a trained
model is presented with new input data, the learned patterns may be located in the input through
the process of inference. Inference calculates part activations on the input data (and thus absolute
pattern positions) according to Equations (2) and (3). They are calculated bottom-up layer-by-layer,
whereby the input data activates the layer L0. As already mentioned, the activation of a part represents
a specific occurrence of the pattern it represents in the input. An activation has three components:
location and onset time, which map the relative pattern onto a specific set of pitches within the input
sequence of events (thus making it absolute), and magnitude, representing its strength. A part can
concurrently activate at different locations, which indicates multiple occurrences of the represented
pattern in the input representation.

Inference may be exact or approximate, where in the latter case two additional mechanisms,
hallucination and inhibition, enable the model to find patterns with deletions, changes or insertions,
thus increasing its predictive power and robustness.

2.3.1. Hallucination

As described in Section 2.1, a part activation is produced only if all subparts activate with
magnitude greater than zero at locations which approximately correspond to the structure encoded
by the part. This conservative behaviour may be relaxed by hallucination. It enables a part to
produce activations even when the structure it represents is incomplete or modified in the input
(e.g., missing notes, added notes, changed pitch, changed note order). Hallucination is important,
as it enables the model to find variations of patterns represented by individual parts. The missing
information is obtained from knowledge acquired during learning and encoded in the model structure.
Using hallucination, the model generates activations of parts most fittingly covering the input
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representation, where notes which are not present, but are encoded in the model, are hallucinated.
It is implemented by changing the conditions under which a part may activate. With hallucination,
a part may activate even if all of its subparts are activated, when the percentage of events it represents,
covered in the input, exceeds a hallucination threshold τH . Thus, if we set τH to one, the default
behaviour is obtained, while lowering its value leads to increased hallucination and tolerance to
changes in patterns.

The hallucination threshold τH influences the number of discovered patterns and identified
pattern occurrences. When lowered, the amount of activations increases, as parts may activate on
incomplete matches, thus producing activations which would otherwise not be generated. Additionally,
if used during learning, the number of parts on lower layers will decrease, as parts added to a layer
will have higher coverage due to more activations.

2.3.2. Inhibition

Inhibition in our model is a hypothesis refinement mechanism, which reduces the amount of
redundant activations. An activation of a part Pn

i is inhibited (removed) when one or multiple
parts Pn

j1
, . . . , Pn

jK
cover a large part of the same events in the input, but with stronger magnitude.

More formally, activation of the part Pn
i is inhibited when the following conditions are met:

∃{Pn
j1 . . . Pn

jK} :
|C(A(Pn

i ))\
⋃K

k=1 C(A(Pn
jk
))|

|C(A(Pn
i ))|

< τI (8)

and
∀Pn

jk ∈ {P
n
j1 . . . Pn

jK} : AM(Pn
jk ) > AM(Pn

i ). (9)

The C(A) represents activation coverage (Equation (6)), AM activation magnitude (Equation (3))
and τI controls the strength of inhibition. If τI is set to zero, no inhibition occurs; the larger its value,
the more activations are inhibited and propagated less between model layers. Notably, only activations
with magnitude larger than that of the part Pn

i are considered in the inhibition process.
Besides reducing the number of activations and output patterns, the inhibition mechanism can

also be used for producing alternative explanations of the input. If activations of the strongest pattern
which inhibits other competing hypotheses are removed from the model, the next best hypothesis is
selected during inference, thus providing an alternative explanation with different pattern occurrences
to appear in the model’s output.

3. Pattern Selection with SymCHM

The SymCHM model can be trained on a single or multiple symbolic music representations.
It learns a hierarchical representation of patterns occurring in the input, where patterns encoded by
parts on higher layers are compositions of patterns on lower layers. The inference produces part
activations which expose the learned patterns (and their variations) in the input data. Shorter and
more trivial patterns naturally occur more frequently, longer patterns less frequently. On the other
hand, longer patterns may entirely subsume shorter patterns. Occurrences of melodic patterns in a
given piece are discovered by observing activations of the learned model’s parts, where each activation
of a part is interpreted as an occurrence of the pattern encoded by the part.

To use the model for the discovery of repeated patterns and sections task, we need to select
which of the found patterns will be provided in the model’s output. In this Section, we present two
approaches for a pattern selection.

3.1. Basic Selection

In a basic pattern selection, we output all patterns of sufficient complexity, as encoded by parts
starting from the layer L up to the highest layer N. First, we select all parts from the layers LL . . .LN .
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Since parts on higher layers are compositions of parts on lower layers, we exclude all parts which are
subparts of a composition on a higher layer to avoid redundancy. The final selection of parts can be
formulated as:

N⋃
l=L

{Pl
i ∈ Ll : (¬∃Pl+1

j )[Pl+1
j ∈ Ll+1 ∧ Pl

i ∈ Pl+1
j ]} (10)

Inference is then performed on a music piece and activations of the selected parts represent
the found patterns and their locations in the piece. Hallucination and inhibition are applied
during inference to provide balance between producing hypotheses which partially match the input
representation (hallucination) and the amount of competitive hypotheses produced (inhibition).

3.2. SymCHMMerge: Improved Pattern Selection

An analysis of the basic pattern selection algorithm showed lack of diversity in the found patterns,
as the patterns were often very similar and overlapping. We improved the algorithm by merging
redundant patterns and adjusting the learning and inference parameters, and named the resulting
model SymCHMMerge.

3.2.1. Merging Redundant Patterns

Since parts in our model are learned in an unsupervised manner, several parts may represent
similar and overlapping patterns (e.g., patterns shifted by a few notes). Inhibition reduces redundant
activations of such parts, however it is usually not enforced strongly, as it could overly reduce the
number of activations and found patterns. To reduce the number of such overlapping patterns,
we merge them into single, longer patterns.

Let π(A(Pn
i )) represent a pattern occurrence defined by the projection π of the activation A of

the part Pn
i onto the layer L0. Ψn

i represents the set of all such pattern occurrences discovered by
activations of the part:

Ψn
i =

⋃
k

{π(Ak(Pn
i ))}. (11)

Two pattern occurrences ai and aj, produced by the parts Pn
i and Pm

j , are taken to be redundant,
if they overlap significantly. We express this by calculating the Jaccard similarity coefficient and
compare it to a threshold τR:

ai = π(A(Pn
i )), aj = π(A(Pm

j ))

J(ai, aj) =
|ai ∩ aj|
|ai ∪ aj|

> τR.
(12)

We aim to merge redundant pattern occurrences of two parts if they frequently produce
overlapping patterns. Therefore, we calculate the proportion of such patterns produced by the two
parts as:

1
|Ψn

i |+ |Ψm
j |

∑
ai∈Ψn

i

∑
aj∈Ψm

j

|J(ai, aj) > τR|. (13)

If the proportion exceeds a threshold τM, all redundant pattern occurrences of the two parts
are merged.

For evaluation, the thresholds τR and τM were both set to 0.5, meaning that pattern occurrences
produced by two parts had to share at least 50% of events in the input layer and appear together in at
least 50% of cases, to be merged.
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3.2.2. Increasing Diversity

To address the problem of pattern diversity, we needed to increase the number of patterns found by
the model. This was achieved with three simple adjustments. First, we lowered the candidate selection
thresholds in the greedy phase of the learning process to add more parts to each layer (evaluation
showed that on average 16% more parts were added). Second, more layers were considered when
searching for pattern occurrences, and third, hallucination was increased during inference. All these
modifications could also be made with the basic pattern selection approach; however, they would
result in an even higher number of redundant patterns. With SymCHMMerge, redundant occurrences
are merged and thus the diversity of the found patterns increases.

4. Evaluation

We evaluated the proposed model for the discovery of repeated themes and sections task in
symbolic monophonic music pieces. Since we are searching for patterns within a given piece (and not
across the entire corpus) the model was built independently for each piece and inferred on the same
piece. All model parameters were kept constant during all evaluations and were not tuned to each
specific case. The parameters were set to the values defined in Table 1. The τW parameter limiting the
time span of activations was set to τW = 2n+2 events. The values and short descriptions of parameters
are also listed in Table 1. The values for the τH and τI parameters are based on the stable performance
achieved in the range around 0.5 for (see the Sensitivity to parameter values subsection. The τR and
τM values were set to the majority thresholds of 50% and were not tuned. The τL parameter value was
retained from the original spectral CHM where it was evaluated empirically.

Table 1. Model’s parameter settings for the experiment.

Parameter Description Value

τH
Hallucination parameter retaining the activation of a part in an

incomplete presence of the events in the input signal 0.5

τI Inhibition parameter reducing the number of competing activations 0.4

τR
Redundancy parameter determining the the necessary amount of

overlapping pattern occurrences in order for the occurrences to be merged 0.5

τM
Merging parameter determining the amount of redundant pattern

occurrences needed for two patterns to be merged into one 0.5

τL
Learning threshold for added coverage which needs to be exceeded

in order for a candidate composition to be retained while learning the model 0.005

τW Window limiting the time span of activations, defined per layer Ln 2n+2

Table 2 shows the performance of SymCHM on the MIREX 2015 discovery of repeated themes
and sections task. To compare SymCHM to SymCHMMerge, the Table 2 also includes the results of
their evaluation on the publicly available JKU Patterns Development Dataset (PDD) [44]. Detailed
results of SymCHMMerge on this dataset are shown in Table 3.

The JKU PDD dataset (the dataset is publicly available on this link: https://dl.dropbox.com/u/
11997856/JKU/JKUPDD-Aug2013.zip) consists of five pieces:

• Bach’s Prelude and Fugue in A minor (BWV(Bach-Werke-Verzeichnis) 889): 731 note events, 3
patterns, 21 pattern occurrences,

• Beethoven’s Piano Sonata in F minor (Opus 2, No. 1), third movement: 638 note events, 7 patterns,
22 pattern occurrences,

• Chopin’s Mazurka in B flat minor (Opus 24, No. 4): 747 note events, 4 patterns, 94 pattern occurrences,
• Gibbons’ “The Silver Swan”: 347 note events, 8 patterns, 33 pattern occurrences,

https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip
https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip
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• Mozart’s Piano Sonata in E flat major, K. 282-2nd movement: 923 note events, 9 patterns, 38 pattern
occurrences.

Table 2. Evaluation of SymCHM, SymCHMMerge and Music Information Retrieval Evaluation
eXchange (MIREX) results of other proposed approaches for the discovery of repeated themes and
sections task on the JKU Patterns Development Dataset (PDD) and JKU Patterns Testing Dataset (PTD),
denoted as MIREX 2015.

Algorithm Pest Rest F1est Pocc(c=0.75) Rocc(0.75) F1occ(c=0.75)

SymCHM MIREX 2015 53.36 41.40 42.32 81.34 59.84 67.92
NF1 MIREX 2014 50.06 54.42 50.22 59.72 32.88 40.86
DM1 MIREX 2013 52.28 60.86 54.80 56.70 75.14 62.42
OL1 MIREX 2015 61.66 56.10 49.76 87.90 75.98 80.66
VM2 MIREX 2015 65.14 63.14 62.74 60.06 58.44 57.00

SymCHM JKU PDD 67.92 45.36 51.01 93.90 82.72 86.85
SymCHMMerge JKU PDD 67.96 50.67 56.97 88.61 75.66 80.02

TLF1 Pocc(c=0.5) Rocc(c=0.5) F1occ(c=0.5) P R F1

SymCHM MIREX 2015 37.78 73.34 62.48 67.24 10.64 6.50 5.12
NF1 MIREX 2014 33.28 54.98 33.40 40.80 1.54 5.00 2.36
DM1 MIREX 2013 43.28 47.20 74.46 56.94 2.66 4.50 3.24
OL1 MIREX 2015 42.72 78.78 71.08 74.50 16.0 23.74 12.36
VM2 MIREX 2015 42.20 46.14 60.98 51.52 6.20 6.50 6.2

SymCHM JKU PDD 51.75 78.53 72.99 75.41 25.00 13.89 17.18
SymCHMMerge JKU PDD 52.89 83.23 68.86 73.88 35.83 20.56 25.63

4.1. Evaluation Metrics

Evaluation metrics from the MIREX discovery of repeated themes and sections task were used for
evaluation. This subsection provides a short description and formalization of the definitions found in
the MIREX task definition [20]. The establishment measure (precision Pest, recall Rest and F score F1est)
evaluates the algorithm’s ability to find at least one occurrence of each pattern shifted in time and pitch.
Two occurrence measures F1occ evaluate the extent of the model’s ability to find all pattern occurrences,
where the c = {0.5, 0.75} factor represents the inexactness tolerance threshold. Meredith [30] proposed
an additional three-layer metric (P3, R3, TLF1) that provides balance between the establishment and the
occurrence measures. The exact precision, recall and F score measures (P, R, F1) show the algorithm’s
performance in matching the found patterns with the reference annotations in an exact manner.

The metrics are formally defined using the following set of symbols:

• nP : the number of patterns in a ground truth
• Π = {P1,P2, . . . ,PnP }: a set of ground truth patterns
• P = {P1, P2, . . . , PmP}—occurrences of pattern P
• nQ: the number of patterns in the algorithm’s output
• Ξ = {Q1,Q2, . . . ,QnQ}: a set of patterns returned by the algorithm
• Q = {Q1, Q2, . . . , QmQ}—occurrences of pattern Q.
• k: the number of ground truth patterns identified by the algorithm

The standard precision is defined as P = k/nQ, the recall as R = k/nP , and the F1 score as
F1 = 2× P× R/(P + R). Due to the extreme difficulty of discovering strictly exact patterns, more
robust versions of the metrics are provided: the occurrence and the establishment scores. First, the
cardinality score is used to determine the music similarity between the annotated and the discovered
patterns:

sc(Pi, Qj) : |Pi ∩Qj|/ max{|Pi|, |Qj|} (14)
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A score matrix is calculated based on the similarity as follows:

s(P ,Q) =


s(P1, Q1) s(P1, Q2) . . . s(P1, QmQ)

s(P2, Q1) s(P2, Q2) . . . s(P2, QmQ)
...

...
. . .

...
s(PmP , Q1) s(PmP , Q2) . . . s(PmP , QmQ)

 (15)

Based on the score matrix, the establishment matrix is calculated from the set of annotated patterns
Π and the set of algorithm’s output patterns Ξ:

S(Π, Ξ) =


S(P1,Q1) S(P1,Q2) . . . S(P1,QnQ)

S(P2,Q1) S(P2,Q2) . . . S(P2,QnQ)
...

...
. . .

...
S(PnP ,Q1) S(PnP ,Q2) . . . S(PnP ,QnQ)

 (16)

The establishment precision is thus defined as:

Pest =
1

nQ

nQ

∑
j=1

max{S(Pi,Qj)|i = 1 . . . nP} (17)

The establishment recall is defined as:

Rest =
1

nP

nP

∑
j=1

max{S(Pi,Qj)|i = 1 . . . nQ} (18)

Additionally, the establishment F1 score is calculated as:

F1est = 2× Pest × Rest/(Pest + Rest) (19)

The establishment metrics reward a single match between the annotated and algorithm’s patterns.
To counterbalance this bias, the occurrence metrics are used. The occurrence metrics reward the
algorithm’s ability to find all occurrences of a single pattern. To loosen the exactness, the found
patterns may be inexact. This inexactness is implemented using a threshold c (default values used
in the 0.5 and 0.75), The indices I of the establishment matrix with values greater than or equal this
threshold c are considered discovered. The occurrence matrix O(Π, Ξ) is calculated using the following
approach, starting with an empty nP × nQ matrix and the establishment indices I :

∀(i, j) ∈ I : O(Π, Ξ)[i, j] = s(Pi,Qj). (20)

The occurrence precision score is consequently calculated using the occurrence matrix as follows:

Pocc =
1

ncol

nQ

∑
j=1

O(i, j)|i = 1 . . . nP , (21)

where ncol represents the number of non-zero columns in occurrence matrix O. The occurrence recall
score is analogously calculated as:

Rocc =
1

nrow

nP

∑
j=1

S(i, j)|i = 1 . . . nQ, (22)

where nrow represents the number of non-zero rows in the occurrence matrix O.
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4.2. Performance

The SymCHM with the basic pattern selection algorithm was submitted to the MIREX 2015
discovery of repeated themes and sections task. The results are shown in Table 2. The submitted model
learned a six layer hierarchy, where activations of parts on Layers 4–6 were output as the found pattern
occurrences.

In the MIREX 2015 evaluation [20], the two state-of-the art approaches by Velarde and Meredith
(VM2) [32] and Lartillot (OL1 ) [34] achieved better overall results. However, the SymCHM
outperformed other algorithms on the first piece in the MIREX evaluation dataset and achieved
better results than VM2 in pattern occurrence measures, which indicated the model’s ability to robustly
identify the occurrences of the identified patterns. Compared to other approaches proposed in previous
MIREX evaluations, such as NF1’14 [37] and DM1’13 [45], SymCHM found more pattern occurrences,
as well a higher number of exact matches. The SymCHM also achieved a higher TLF1 score when
compared to NF1’14 submission.

Table 3. A detailed list of JKU Patterns Development Dataset results for the SymCHMMerge approach.
The nP and nQ columns represent the number of annotated patterns and the number of discovered
patterns respectively. Song names are shortened, using a four letter abbreviation of the composer’s
name.

Piece nP nQ Pest Rest F1est Pocc(c=0.75) Rocc(c=0.75) F1occ(c=0.75)

bach 3 2 100.00 66.67 80.00 100.00 45.65 62.68
beet 7 7 65.81 60.02 62.78 80.71 80.71 80.71
chop 4 5 47.95 49.81 48.86 62.36 51.96 56.69
gbns 8 3 78.16 35.49 48.81 100.00 100.00 100.00
mzrt 9 8 47.88 41.39 44.40 100.00 100.00 100.00

Average 6.2 5 67.96 50.67 56.97 88.61 75.66 80.02

Piece P3 R3 TLF1 Pocc(c=0.5) Rocc(c=0.5) F1occ(c=0.5) P R F1

bach 62.96 41.97 50.37 100.00 45.65 62.68 100.00 66.67 80.00
beet 77.38 64.95 70.62 79.24 72.44 75.69 0.00 0.00 0.00
chop 46.96 39.92 43.15 57.00 46.29 51.09 0.00 0.00 0.00
gbns 81.82 34.33 48.37 100.00 100.00 100.00 66.67 25.00 36.36
mzrt 57.21 47.54 51.93 79.92 79.92 79.92 12.50 11.11 11.77

Average 65.27 45.74 52.89 83.23 68.86 73.88 35.83 20.56 25.63

To increase diversity and decrease redundancy, we introduced the SymCHMMerge with an
improved pattern selection algorithm. Activations of parts on Layers 2–6 were considered for finding
pattern occurrences, where each layer included 16% more parts on average due to the more relaxed
learning conditions.

A comparison between both models on the JKU PDD dataset showed that the SymCHMMerge
achieved significantly better results (Friedman’s test: χ2 = 7.2, p < 0.01). It mostly improved in
establishment measures, which indicated an improvement of the algorithm’s ability to discover at
least one occurrence of a pattern, tolerating for time shift and transposition [20]. On the other hand,
occurrence measures F1occ(c=0.75) and F1occ(c=0.5) which evaluated the algorithm’s ability to find all
occurrences of the established patterns, have dropped by 5%. We attribute this drop to a higher number
of established patterns, for which the occurrence measure is calculated. Finally, the absolute precision,
recall and F scores significantly increased due to the SymCHMMerge’s pattern merging procedure and
increased pattern diversity.

4.3. Sensitivity to Parameter Values

To assess the sensitivity of SymCHMMerge to changes of model parameters, we analysed its
performance by varying the inhibition and hallucination parameters τI and τH , which affect inference.
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We observed the behaviour of occurrence and establishment measures in order to estimate the balance
between the two. Due to the large number of possible parameter combinations, we evaluated how
changes in one parameter (set for all layers) affect performance when all other parameters are fixed.

4.3.1. Inhibition

The top part of Figure 2 shows how changes in the inhibition parameter τI affect the results.
An increase of τI increases inhibition and removes activations which are only partially covered by
others, while a decrease will allow for more overlapping activations to propagate to higher layers.
The plots show that reduced inhibition has a positive effect on occurrence recall, which is expected,
as more activations are produced. It is even more interesting that it also positively affects precision of
found occurrences, which might be explained by the fact that overlapping activations are successfully
merged by the merging algorithm of SymCHMMerge. For the establishment metrics, the effect of
changes in inhibition is not so obvious, and apart from extreme values, performance is stable.

4.3.2. Hallucination

The bottom part of Figure 2 shows how changes in the hallucination parameter τH affect
performance. As described in Section 2.3.1, larger τH values decrease hallucination and thus the
number of activations. Decreased hallucination affects both occurrence and establishment of patterns,
as there is little tolerance for pattern variations. With more hallucination, both measures increase
and then remain stable; again, precision is not affected significantly, as the merging algorithm of
SymCHMMerge reduces the growing number of activations on higher layers.
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Figure 2. Sensitivity of the model to changes of the hallucination parameter τI (top) and the inhibition
parameter τH (bottom). When one parameter was varied, all others remained fixed.

4.4. Error Analysis

To increase our understanding of the model’s performance, we performed an analysis of its most
common types of errors.

4.4.1. Incomplete Matches

We observed that the occurrence metrics increase when we allow for partially incomplete patterns
to be discovered (hallucination), however, the exact F1 scores do not always increase. After observing
the pattern occurrences which do not contribute to the rise in F1 score, we discovered that these
patterns do not completely match the reference annotations, as shown in Figure 3.

The difference between a reference annotation and a model’s proposed pattern usually presents
itself at the edges of an occurrence, where the model assumes that one or more preceding or succeeding
events belong to the pattern. These events frequently occur at the same locations (relative to the pattern),
with similar time and pitch offsets. Thus, the model adds these events to the pattern occurrence,
causing mismatch with the reference annotation. Such errors could be resolved by incorporating
theoretical rules governing the beginnings and endings of patterns, e.g., gap rule ([46], p. 68) into the
pattern selection algorithm.
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Figure 3. An incomplete pattern match of two pattern occurrences in Bach BWV 889 Fugue in A
minor (from the JKU PDD dataset). Two pattern occurrences are presented in the figure (top and
bottom). A piano roll representation is shown where the reference annotation is coloured in grey and
the identified pattern occurrences outlined with red borders. Even though similar, events on the right
side (shown in light blue) are not part of the reference annotations, however they are included in the
model’s patterns due to their co-occurrence with other events.

4.4.2. Unidentified Patterns

Patterns which were not identified by the model usually belong to one of two types: section
patterns and short patterns.

Section patterns, such as in Mozart’s Piano Sonata in E flat major, K. 282-2nd movement, remain
unidentified. These section patterns represent large segments of music (50–137 events). The six layers
in our model have the potential of encoding patterns of up to 64 events. While some of the reference
patterns could be identified, the model did not contain a sufficient amount of layers to cover the largest
patterns. We consequently focused on observing the absence of the shorter section patterns (between
50 and 64 events). While incomplete (often overlapping) matches of these patterns were found on the
L5 and L6 layers (sub-patterns), there were no complete matches between the found patterns and the
reference annotations. Furthermore, the overlap was not high enough that these sub-patterns would
be merged during pattern merging.

The second subgroup—the short patterns—also frequently occur in evaluation datasets.
These patterns are 4–5 events long. They are identified by the model on the layers L2 and L3, and also
form compositions on higher layers. If such larger compositions are present, the pattern selection
procedure excludes the short patterns from the final output.

The discovery of larger patterns could be improved by building additional compositional layers
while learning the model, and by adjusting the merging rules for long patterns. To find more short
patterns, we could add additional criteria that would counterbalance the promotion of longer patterns
during pattern selection. For example, the event duration could be used when considering the
importance of short events.

4.5. Drawbacks of the Evaluation

To establish the effectiveness of the proposed model in the symbolic domain, we evaluated the
model for the pattern discovery task, where a comparison between the SymCHM and other approaches
is based on the JKU PDD and JKU PTD datasets. To avoid diminishing the MIREX’s position of being
an evaluation exchange and not a benchmarking framework, we focused our evaluation on the two
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variants of the compositional model we developed, the SymCHM and SymCHMMerge, as shown in
Table 2.

As thoroughly discussed by Meredith [30], this MIREX task possesses many drawbacks and thus
might not be the optimal tool for an algorithm comparison. However, it is rather difficult to create an
experiment which would provide a clearer evaluation of the algorithm’s performance. First, a definition
of a pattern is vague; there are several sources gathered in the JKU datasets. Some of the patterns in the
ground truth represent themes, while others represent entire sections. Without any prior knowledge
about the goal (length of pattern, perhaps a ratio between the length and the variation within the
pattern occurrences), the metrics are logically leaning towards awarding the approach which finds
most occurrences of the discovered pattern. It seems impossible to design an algorithm capable of
finding a “pattern” when the definition of a pattern varies among the annotators. The three-layer
F score proposed by Meredith is a step towards a metric which provides the balance between the
establishment and the occurrence metrics otherwise provided. Second, the size of the dataset presents
a limitation: the combined JKU PDD and JKU PTD datasets represent ten (classical) musical pieces in
total. It is thus difficult to claim the datasets provide a representative sample of any kind of music or
genre. However, we acknowledge the incredible effort put in the creation of the datasets and the tasks;
we believe the size of the datasets is affected by the effort needed. Nevertheless, we believe the MIREX
discovery of repeated themes and sections task is currently the best currently available approximation
of a performance evaluation for the pattern discovery in music.

5. Conclusions

In the paper, we presented the compositional hierarchical model for pattern discovery in symbolic
music representations. The model calculates a hierarchical representation of melodic patterns in a music
corpus with a statistically-based learning algorithm. It can be viewed as a transparent deep architecture,
combining the ability of unsupervised learning of multi-layer hierarchies with a transparent structure
that enables insight into the learned concepts. The inference process with hallucination and inhibition
mechanisms enables the search for pattern variations.

We evaluated the model in the MIREX evaluation campaign and its improved pattern selection
algorithm on the JKU PDD dataset, where we show that we can obtain favourable results with the
improved version of the model. We showed that the model can be used for finding patterns in symbolic
music and that it can learn to extract patterns in an unsupervised manner without hard-coding the
rules of music theory. We have also demonstrated the transfer of the model from classification tasks
based on audio representations to pattern extraction in the symbolic domain. The results obtained by
the model are not on par with the best two performing algorithms. Nevertheless, the proposed model
performs better than several other proposed approaches. As discussed in Section 4.5, this evaluation
contains many potential drawbacks, but it is currently the best approximation for pattern discovery
evaluation. The definition of the ‘pattern’ itself is elusive and may contain many different explanations,
varying from strictly music-theoretical, to mathematical formalization. The human perception of
patterns in music itself is too difficult to explain and incorporate in a single formalized task. However,
with the proposed model, we have demonstrated that a deep transparent architecture can tackle
the pattern discovery by employing unsupervised learning and may thus better approximate how
listeners recognize patterns than the rule-based systems. Due to its transparency, the model is not only
applicable to tasks where a single output is provided, but can also be used for exploration and pattern
discovery by an expert. The model produces multiple hypotheses on several layers, which can be used
as reference points in a deeper semi-automatic music analysis. We believe this further strengthens the
model’s usefulness to the wider MIR community.

In our future work, we will focus on improving the model. We plan to include event duration
into pattern selection and merging and adapt the model for polyphonic pattern discovery. We could
also introduce pattern ranking, similar to [32], and add music theory rules, as discussed in Section 4.4.
The model’s output could further be optimized by supervised training of model parameters, especially
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the number of layers in the hierarchy and the layers in the model’s output. However, a sufficiently
large annotated dataset is needed for such an optimization, significantly larger than the datasets
currently used to evaluate the pattern discovery task.

The proposed approach can also be applied to identify similar and inexact patterns across larger
corpora. We plan on evaluating the model in an inter-opus pattern discovery task, aiding the current
research in tune family identification and folk music analysis. To tackle classification tasks, the model
can be observed as a feature generator; thus, its output can be employed as an input to tune family
analysis, similarity comparison or composer identification.
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Abbreviations

The following abbreviations are used in this manuscript:

CHM Compositional Hierarchical Model
SymCHM Compositional Hierarchical model for Symbolic music representations
SymCHMMerge An extension of the SymCHM using a pattern merging technique
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