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Abstract: Characterization of nonlinear hysteretic responses plays a significant role in predicting soil
behaviors. They are mostly described with either simple empirical functions or complex constitutive
models. However, the input parameters lack both a physical basis and robustness, and the use of
these models is limited to some typical soils. Therefore, there is a need for a simple but robust model
that uses only a small number of physically meaningful parameters. This study proposes explicit
formulas to capture different nonlinear hysteretic soil responses, including a constitutive model,
backbone curve, tangent shear modulus, secant shear modulus, and damping ratio. In particular, the
Davidenkov model, with two physically meaningful parameters, is adopted to assess the constitutive
relationships of soils under steady-state cyclic loading. The proposed models are validated with
resonant column test (RCT) data (shear modulus and damping ratio). This paper finds that the use of
the linear characteristic equation to calculate the shear modulus from the resonance frequency in the
RCT, which is clearly irrelevant and approximate, produces data interpretation errors.

Keywords: nonlinear hysteretic response; Davidenkov model; backbone curve; tangent shear
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1. Introduction

After earthquakes, detailed studies of the seismic ground responses are typically conducted,
showing that (1) soil deposits exhibit strong dynamic nonlinear responses, and (2) characterization
of the soil dynamic properties plays a crucial role in accurately estimating the site amplification
characteristics [1–3].

Strong ground motion causes the accumulation of plastic deformation during earthquake cycles,
and elastic theory cannot be applied to describe the deformational characteristics of the soil deposits
(i.e., shear modulus decreases and damping ratio increases with the amplitude of the shear strain).
Site response analysis methods with nonlinear responses can be divided into the equivalent linear and
nonlinear approaches. The first approach, the equivalent linear approach, approximates the nonlinear
cyclic responses of soil samples. The effective shear strain (equal to approximately 65% of the peak
strain in the time domain) is iteratively computed by updating the shear modulus and damping, after
which the site response is simply estimated in the frequency domain. Given that the appropriate
selection of the equivalent soil stiffness and damping for soil layers only represents a particular state
in the stress-strain space and not the entire stress-strain evolution, this method fails to predict large
plastic deformations of soil columns over the entire duration of a seismic event, and its use is strictly
limited to relatively small shear strains or small nonlinearities [4–6].

The second approach, in which the soil dynamic characteristics are captured through a nonlinear
hysteretic constitutive relationship, can represent the strain-dependent shear modulus and damping
ratio. The simplest constitutive relationship uses a model relating the shear stress to the shear strain,
whereby the backbone curve is expressed by a hyperbolic function. Several functions with empirical
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fitting parameters have been proposed to describe the strain-dependent response defined by the
backbone curve [7–11]. More sophisticated models for cyclic loading use more fitting parameters so as
to precisely reproduce closed hysteresis loops that are influenced by basic soil parameters (plasticity,
void ratio, confinement stress) and the imposed shear strain amplitude [12–21]. While those models
are capable of expressing the nonlinear hysteretic response or degree of strain-dependency during
steady-state cyclic loading, their input parameters lack both a physical basis and robustness, and the
use of such models is quite limited to certain soils. Therefore, a simple but robust model involving
a small number of physically meaningful parameters is necessary for the characterization of the
hysteretic nonlinear properties (Ockham’s criterion).

This study proposes explicit formulas for capturing certain nonlinear hysteretic soil responses.
These include a constitutive model, as well as the backbone curve, tangent shear modulus, secant
shear modulus, and damping ratio. The proposed models are examined with resonant column test
data (shear modulus and damping ratio). The validity of the linear characteristic equation is addressed
during the process of data interpretation.

2. Nonlinear-Hysteretic Constitutive Model

Particulate materials (i.e., rock, sandstone, sand, and sediment) exhibit strong dynamic behaviors,
such as end-point memory and a closed loop (hysteresis) in the stress-strain curve, higher harmonic
generation in propagating waves, a resonance frequency shift and nonlinear damping in standing
waves, and slow dynamics [22–27]. These macroscopic nonlinear responses of soils are the
consequences of complex frictional mechanisms involving contact between the grains and grain
rearrangement under loading-unloading cycles. The variation of the damping ratio is a physical
indicator of energy dissipation as quantified by a hysteresis loop at one cycle of deformation.

Intensive efforts have been made in the geophysics community to analytically describe these
hysteretic nonlinear behaviors of granular materials. This study adopts the Davidenkov model, which
has been experimentally validated, to capture the amplitude-dependent internal friction related to
nonlinear hysteretic nonlinear behavior. The phenomenological equation of state was analytically
derived, and its parameters were found to have physical meaning. Details can be found in the
literature [28]. The equation can be rewritten in terms of the shear component:
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where Gmax is the small-strain shear modulus, γ is the shear strain, ∆γ is the amplitude of the cyclic
shear strain, n is the integer exponent related to the model order (n > 1), α is the nonlinear parameter,
.
γp“ Bγ{Btq is the strain rate, and sgn(x) is the signum function. Numerical solutions that use a tangent
formulation involve the tangent shear modulus Gtan, which is defined as the slope of the stress-strain
hysteresis loop along the loading path. By taking the derivative of Equation (1), the tangent shear
stiffness is obtained:
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It should be noted that the tangent stiffness is not associated with small strain stiffness, as the
tangent stiffness Gtan is a mathematical concept that reveals the instantaneous state of fabric changes
during a large strain test, while the small strain stiffness Gmax is a fabric constant measurement of the
stiffness [29,30]. The backbone curve represents the trajectory of the extrema of each hysteresis curve.
When the shear strain γ is equal to the strain amplitude ∆γ in Equation (1), the piecewise function of
the backbone curve is formulated for the entire strain range as follows:
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The hysteretic nonlinear models involved with two model parameters are simulated under three
different strain amplitude levels (Figure 1). The backbone curve consists of two polynomial functions,
which intersect at the coordinate origin. Note that, when using the model order of n = 2, the first
derivative of each function is equal to the small strain stiffness Gmax. In addition, higher imposed
strain amplitude produces more energy dissipation and a decreasing slope (the strain-softening effect).
Indeed, the hysteretic loops superimposed on the backbone curve follow the Masing rule, which has
been experimentally observed in particulate materials under cyclic torsional loading [31].
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Figure 1. Nonlinear stress-strain behavior of soil subjected to three different shear strain amplitudes. 
The hysteretic loops and backbone curve are obtained using Equations (1) and (3). The model 
parameters are Gmax = 180 MPa, α = 370, and n = 2. 

3. Explicit Formula for the Characterization of the Nonlinear Response 

The soil dynamic response is often characterized by the shear modulus and damping ratio of 
soils using a resonant column and torsional shear (RCTS) testing apparatus. It is a typical practice to 
express the nonlinear stress-strain behavior of soils in terms of the shear modulus and the damping 
ratio. The secant type shear modulus (Gsec = τupper/γ), which is the slope of the secant drawn from the 
origin to any specified point on the stress-strain curve, can be easily obtained using the analytical 
form of the backbone curve in Equation (3a): 
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Note that the secant modulus is always larger than the tangent modulus, because n is a positive 
integer. Figure 2 presents the evolution of the shear modulus along the loading path. The individual 
part in the hysteresis loop is formulated by mechanical features whose maximum shear stress 
switches between two configurations at the imposed strain amplitude. The phenomenon of discrete 
memory is illustrated in the A → B → C → D loading path. This loop begins and ends at the same 
stress-strain point. This process creates bow-tie stiffness in the entire hysteresis loop [24,32]. The 
results of this simple analysis indicate that the dynamic stiffness has strong dependency on the 
loading path and imposed strain amplitude. In addition, the secant-type shear stiffness at the given 
shear strain amplitude is superimposed on its tangent counterpart. It was found that Gsec(∆γ) is equal 
to the average of the two tangent moduli at γ±Δ  according to Equations (2) and (4), such that 
Gsec(∆γ) = Gtan(γ = 0) with the second model order (n = 2). 
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Figure 1. Nonlinear stress-strain behavior of soil subjected to three different shear strain amplitudes.
The hysteretic loops and backbone curve are obtained using Equations (1) and (3). The model
parameters are Gmax = 180 MPa, α = 370, and n = 2.

3. Explicit Formula for the Characterization of the Nonlinear Response

The soil dynamic response is often characterized by the shear modulus and damping ratio of
soils using a resonant column and torsional shear (RCTS) testing apparatus. It is a typical practice to
express the nonlinear stress-strain behavior of soils in terms of the shear modulus and the damping
ratio. The secant type shear modulus (Gsec = τupper/γ), which is the slope of the secant drawn from the
origin to any specified point on the stress-strain curve, can be easily obtained using the analytical form
of the backbone curve in Equation (3a):

Gsec

Gmax
“ 1´

α

n
p2γqn´1 (4)

Note that the secant modulus is always larger than the tangent modulus, because n is a positive
integer. Figure 2 presents the evolution of the shear modulus along the loading path. The individual
part in the hysteresis loop is formulated by mechanical features whose maximum shear stress
switches between two configurations at the imposed strain amplitude. The phenomenon of discrete
memory is illustrated in the A Ñ B Ñ C Ñ D loading path. This loop begins and ends at the
same stress-strain point. This process creates bow-tie stiffness in the entire hysteresis loop [24,32].
The results of this simple analysis indicate that the dynamic stiffness has strong dependency on the
loading path and imposed strain amplitude. In addition, the secant-type shear stiffness at the given
shear strain amplitude is superimposed on its tangent counterpart. It was found that Gsec(∆γ) is
equal to the average of the two tangent moduli at ˘∆γ according to Equations (2) and (4), such that
Gsec(∆γ) = Gtan(γ = 0) with the second model order (n = 2).
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Figure 2. Evolution of the shear modulus along the A → B → C → D loading path for the given shear 
strain amplitudes of ∆γ = 1.2 × 10−3. (a) Hysteresis loop and (b) Shear modulus. The tangent shear 
modulus is calculated from Equation (2). Circles indicate the secant shear modulus. Note that 
Gsec(∆γ) is equal to the average of the tangent moduli at ± γ. 
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where WS (= Gsec ∆γ2/2) is the maximum strain energy stored during the cycle and WD is the closed 
area related to the hysteresis loop in one cycle of loading. The hysteresis loop is constructed by the 
upper and lower parts depending on the sign of the strain rate. For example, the upper part is the 
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Thus, the nonlinear damping ratio can be expressed using Equation (5): 
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Figure 2. Evolution of the shear modulus along the AÑ BÑ CÑ D loading path for the given shear
strain amplitudes of ∆γ = 1.2 ˆ 10´3. (a) Hysteresis loop and (b) Shear modulus. The tangent shear
modulus is calculated from Equation (2). Circles indicate the secant shear modulus. Note that Gsec(∆γ)
is equal to the average of the tangent moduli at ˘ γ.

The inherent viscous characteristics of soils dissipate the energy against the imposed loads. Thus,
this relationship allows an estimation of the nonlinear damping ratio with closed hysteresis loop:

ζNLpγq “
WD

4πWS
(5)

where WS (= Gsec ∆γ2/2) is the maximum strain energy stored during the cycle and WD is the closed
area related to the hysteresis loop in one cycle of loading. The hysteresis loop is constructed by
the upper and lower parts depending on the sign of the strain rate. For example, the upper part is
the positive strain rate from +∆γ to ´∆γ. The energy dissipation per cycle can be calculated using
Equation (1) with two integration sections:

WD “
r

τdγ “
r`∆γ
´∆γ Gmax

 

γ´ α
n
“

p∆γ` γqn ´ 2n´1p∆γqn
‰(

dγ`
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`∆γ Gmax

 

γ´ α
n
“
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2n`1pn´1q

npn`1q Gmaxαp∆γqn`1 (6)
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Thus, the nonlinear damping ratio can be expressed using Equation (5):

ζNLpγq “
2n

π

pn´ 1qαγn´1

npn` 1q
Gmax

Gsec
(7)

Theoretically, there should be no energy dissipation below the elastic threshold range for the
hysteresis damping function defined by Equation (5). However, even at a very low strain level, some
energy dissipation can be measured in laboratory tests. The linear damping ratio ζL at very low strain
levels has a constant value. At higher strain levels, nonlinearity in the stress-strain relation produces
more energy dissipation with an increase in the strain amplitude. Thus, the damping ratio of a granular
material is the summation of the linear damping ratio at a small strain level and the nonlinear damping
ratio which increases with the strain. The strain-dependent damping function can be rewritten by
inserting Equation (4) into Equation (7):

ζpγq “ ζL ` ζNLpγq “ ζL `
2n

π

pn´ 1qαγn´1

npn` 1q
¨

´

1´
α

n
p2γqn´1

¯´1
(8)

4. Discussion

4.1. Examples

Resonant column test data (shear modulus and damping ratio) sourced from the literature are
compared with a model for sand and clay with different confinement stress levels. The parameters
of model are selected by least-square fitting of the model to the damping ratio as measured from
a resonant column test. The linear damping ratio ζL is experimentally constrained with a constant
value below elastic threshold regime. It was found that the model order as an indicator of degree of
nonlinearity is less sensitive then the nonlinear parameter. Moreover, the values only range from 2
to 3 (41 cases are tested). Previous studies revealed that the exponent of the hysteresis is n = 2 for
many polycrystalline metals (copper, zinc, and lead) and particulate materials (rock, sandstone, and
sand), and that these materials require quadratic correction by a constitutive stress-strain equation in
order to describe the symmetrical hysteresis response [24,33]. Therefore, this study uses the second
model order. The data points and fitted models are plotted on the semi-log scale (Figure 3). Higher
confinement stress extends the elastic threshold region with lower α values. Clay is expected to be
less flexible or less nonlinear than sand and the application of confinement stress would reduce the
nonlinearity. These outcomes are reflected in the trends of the α values. These examples demonstrate
that the α parameter contains physical, not ad-hoc, fitting parameters.

4.2. Is the Linear Characteristic Equation Valid for Data Interpretation?

The secant shear modulus curve, when computed with the optimal α parameter, deviates
somewhat from the experimental results obtained through the conventional procedure, which relies
on the linear characteristic equation. The conventional RC test provides both the resonance frequency
and damping ratio as a function of the shear strain, with the shear modulus then calculated from
the resonance frequency using the characteristic equation for the linear vibration of a column-mass
system. Indeed, the hysteretic nonlinear property of the vibration problem, as manifested by the strong
strain-dependency, is ignored during the data interpretation process. Therefore, these deviations
indicate how much error the use of a linear characteristic equation can introduce into the shear
modulus. As an alternative means of describing the amplitude-dependent frequency shift, a nonlinear
characteristic equation can be derived by incorporating Equation (1) into the moment balance equation
together with the relevant boundary conditions, yet a nonlinear vibration analysis is quite challenging.
Given that the resonance frequency shift is inherently related to the increase in the damping ratio,
it is recommended that the strain-dependent shear stiffness be estimated using Equation (4), with the
optimal nonlinear parameter defined by the measured damping curve.
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Figure 3. Strain-dependent behavior of sand and clay under different confinement stress levels: (a) 
Damping ratio and (b) Secant shear modulus. The symbols are experimental data and the lines are 
defined by Equations (8) and (4). The symbols are experimental data [31]. 
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estimating the degree of site amplification. While previously suggested models have been proposed 
to capture the nonlinear-hysteretic during seismic loading, they had physically meaningless or 
redundant input parameters. This paper employs a two-parameter Davidenkov model to 
characterize the strain-dependent properties of soil under steady-state cyclic loading. Explicit 
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and damping ratio. The models are tested with the resonant column test data (the shear modulus and 
damping ratio). The results show that the proposed models can capture the strain-dependent soil 
dynamic responses and help to infer the nonlinear hysteretic stress-strain relation. The results 
demonstrate that the shear modulus degradation curve unfortunately includes data interpretation 
errors because a linear characteristic equation is used to estimate the shear modulus from the resonant 
frequency. Thus, it is recommended that the strain-dependent shear stiffness be characterized using 
the models proposed here, which utilize optimal nonlinear parameters. 
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Figure 3. Strain-dependent behavior of sand and clay under different confinement stress levels:
(a) Damping ratio and (b) Secant shear modulus. The symbols are experimental data and the lines are
defined by Equations (8) and (4). The symbols are experimental data [31].

5. Conclusions

The characterization of the dynamic properties of soils plays a crucial role in accurately estimating
the degree of site amplification. While previously suggested models have been proposed to capture
the nonlinear-hysteretic during seismic loading, they had physically meaningless or redundant
input parameters. This paper employs a two-parameter Davidenkov model to characterize the
strain-dependent properties of soil under steady-state cyclic loading. Explicit formulas are derived
to describe the backbone curve, tangent shear modulus, secant shear modulus, and damping ratio.
The models are tested with the resonant column test data (the shear modulus and damping ratio).
The results show that the proposed models can capture the strain-dependent soil dynamic responses
and help to infer the nonlinear hysteretic stress-strain relation. The results demonstrate that the
shear modulus degradation curve unfortunately includes data interpretation errors because a linear
characteristic equation is used to estimate the shear modulus from the resonant frequency. Thus, it is
recommended that the strain-dependent shear stiffness be characterized using the models proposed
here, which utilize optimal nonlinear parameters.



Appl. Sci. 2017, 7, 1110 7 of 8

Acknowledgments: This research was supported by the Convergence R&D program of MSIP/NST
(Convergence Research-14-2-ETRI). Dr. Kim gave valuable suggestions and comments to improve this study.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Martin, P.P.; Seed, H.B. One-dimensional dynamic ground response analyses. J. Geotech. Eng. Div. 1982, 108,
935–952. [CrossRef]

2. Muravskii, G.; Frydman, S. Site response analysis using a non-linear hysteretic model. Soil Dyn. Earthq. Eng.
1998, 17, 227–238. [CrossRef]

3. Pavlenko, O.V.; Irikura, K. Types of elastic nonlinearity of sedimentary soils. Geophys. Res. Lett. 2002, 29,
36-31–36-34. [CrossRef]

4. Hartzell, S.; Bonilla, L.F.; Williams, R.A. Prediction of Nonlinear Soil Effects. Bull. Seismol. Soc. Am. 2004, 94,
1609–1629. [CrossRef]

5. Hashash, Y.M.A.; Park, D. Viscous damping formulation and high frequency motion propagation in
non-linear site response analysis. Soil Dyn. Earthq. Eng. 2002, 22, 611–624. [CrossRef]

6. Prévost, J.H.; Abdel-Ghaffar, A.M.; Elgamal, A.W.M. Nonlinear Hysteretic Dynamic Response of Soil Systems.
J. Eng. Mech. 1985, 111, 696–713. [CrossRef]

7. Kondner, R.L. Hyperbolic Stress-Strain Response: Cohesive Soils. J. Geotech. Eng. Div. 1963, 89, 115–143.
8. Duncan, J.M.; Chang, C.Y. Non-linear analysis of stress and strain in soils. J. Soil Mech. Found. Div. 1970, 96,

1629–1653.
9. Darendeli, M.B. Development of a New Family of Normalized Modulus Reduction and Material Damping

Curves. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 2001.
10. Ramberg, W.; Osgood, W.R. Description of Stress-Strain Curves by Three Parameters; National Advisory

Committee for Aeronautics: Washington, DC, USA, 1943.
11. Hardin, B.O.; Drnecivh, V.P. Shear modulus and damping in soils: Design equation and curve. J. Soil Mech.

Found. Div. 1972, 98, 667–692.
12. Zhang, J.; Andrus, R.D.; Juang, C.H. Normalized Shear Modulus and Material Damping Ratio Relationships.

J. Geotech. Geoenviron. Eng. 2005, 131, 453–464. [CrossRef]
13. Assimaki, D.; Kausel, E.; Whittle, A. Model for Dynamic Shear Modulus and Damping for Granular Soils.

J. Geotech. Geoenviron. Eng. 2000, 126, 859–869. [CrossRef]
14. Pyke, R. Nonlinear soil models for irregular cyclic loadings. J. Geotech. Eng. 1979, 105, 715–725.
15. Chiang, D.-Y. The generalized Masing models for deteriorating hysteresis and cyclic plasticity.

Appl. Math. Model. 1999, 23, 847–863. [CrossRef]
16. Muravskii, G. On description of hysteretic behaviour of materials. Int. J. Solids Struct. 2005, 42, 2625–2644.

[CrossRef]
17. Iwan, W.D. A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response.

J. Appl. Mech. 1966, 33, 893–900. [CrossRef]
18. Bolton, M.D.; Wilson, J.M.R. An experimental and theoretical comparison between static and dynamic

torsional soil tests. Géotechnique 1989, 39, 585–599. [CrossRef]
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