
applied
sciences

Article

A Hardware-Efficient Vector Quantizer Based on
Self-Organizing Map for High-Speed
Image Compression

Zunkai Huang 1,2,3 ID , Xiangyu Zhang 3, Lei Chen 3, Yongxin Zhu 1, Fengwei An 3,*, Hui Wang 1,*
and Songlin Feng 1

1 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
huangzk@sari.ac.cn (Z.H.); zhuyongxin@sari.ac.cn (Y.Z.); fengsl@sari.ac.cn (S.F.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Engineering, Hiroshima University, Hiroshima 739-8530, Japan;

zhangxiangyu@hiroshima-u.ac.jp (X.Z.); lily.chenlei@gmail.com (L.C.)
* Correspondence: anfengwei@hiroshima-u.ac.jp (F.A.); wanghui@sari.ac.cn (H.W.);

Tel.: +81-080-4261-6996 (F.A.); Tel.: +86-136-3663-0821 (H.W.)

Received: 28 September 2017; Accepted: 24 October 2017; Published: 25 October 2017

Abstract: This paper presents a compact vector quantizer based on the self-organizing map (SOM),
which can fulfill the data compression task for high-speed image sequence. In this vector quantizer,
we solve the most severe computational demands in the codebook learning mode and the image
encoding mode by a reconfigurable complete-binary-adder-tree (RCBAT), where the arithmetic units
are thoroughly reused. In this way, the hardware efficiency of our proposed vector quantizer is greatly
improved. In addition, by distributing the codebook into the multi-parallel processing sub-blocks,
our design obtains a high compression speed successfully. Furthermore, a mechanism of partial
vector-component storage (PVCS) is adopted to make the compression ratio adjustable. Finally,
the proposed vector quantizer has been implemented on the field programmable gate array (FPGA).
The experimental results indicate that it respectively achieves a compression speed of 500 frames/s
and a million connections per second (MCPS) of 28,494 (compression ratio is 64) when working at
79.8 MHz. Besides, compared with the previous scheme, our proposed quantizer achieves a reduction
of 8% in hardware usage and an increase of 33% in compression speed. This means the proposed
quantizer is hardware-efficient and can be used for high-speed image compression.

Keywords: image compression; vector quantization; self-organizing map; FPGA

1. Introduction

High-speed image capture is one of the fundamental tasks for numerous industrial and scientific
applications such as target tracking, optical scientific measurement, autonomous vehicles [1–5], etc.
Generally, in high-speed vision systems, the challenges of insufficient bandwidth and storage are
increasingly severe and gradually become the bottlenecks. In practice, image compression is widely
considered as an effective approach to relieving the above-mentioned problems since it can reduce the
data to a more manageable level before the image sequences are transmitted [6,7].

Vector quantization (VQ) is a popular data compression technique, which holds many superiors
like scalable complexity and high compression ratio. Self-organizing map (SOM) is regarded as an
extremely promising algorithm to implement VQ [8,9]. Vector quantizer based on the SOM always
shows plenty of excellent features such as inherent parallelism, regular topology, and relatively less
well-defined arithmetic operations. These features not only make the SOM-based vector quantizer quite
favorable for hardware implementation but also enable it to achieve high-speed image compression.

Appl. Sci. 2017, 7, 1106; doi:10.3390/app7111106 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7501-8959
http://dx.doi.org/10.3390/app7111106
http://www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 1106 2 of 11

Numerous vector quantizers have been presented in the previous literature [10–13]. Specifically,
M. Fujibayashi et al. [10] developed a novel vector quantizer with a method of needless calculation
elimination. Their work successfully decreased the computational cost to 40% of the conventional
full-search scheme. Similarly, the authors in [12] employed a concept of operator sharing in their design
and thus effectively reduced the complexity of each neural cell in SOM. Furthermore, to accelerate
the best matching vector searching phase in VQ, W. Kurdthongmee [13] tactfully used the distance
as the address of codebook memory to store index. This made the time for the best matching vector
searching process decline to only one clock.

Overall, in the previously proposed vector quantizers, many techniques were adopted to
reduce the calculation complexity in the image encoding phase and thus realized lower resource
usage. Nevertheless, for the codebook generation phase, few special optimizations were carried out.
The previous designs normally required dedicated circuits to accomplish the codebook generation task.
Hence, their entire hardware resource usages might be still high. Furthermore, in the previous works,
most authors paid much attention to achieving low hardware resource usage but often neglected the
characteristic of high processing speed. Even though the authors in [13] presented a novel technique
to accelerate the encoding process, the achievable speed of their quantizer was finally restricted by the
intrinsic high-latency of their architecture.

To solve the above-mentioned issues, we propose a hardware-efficient vector quantizer for
high-speed image compression. A reconfigurable complete-binary-adder-tree (RCBAT), where the
arithmetic units are completely reused, is presented to reduce the hardware usage. The speed
requirement of high-speed data compression is satisfied by distributing the codebook into the
multi-parallel processing sub-blocks. Moreover, a mechanism of partial vector-component storage
(PVCS) is adopted to make the compression ratio adjustable [14].

The rest of this paper is organized as follows: Section 2 briefly introduces the basic principle of
SOM algorithm. Section 3 describes the proposed vector quantizer in detail. In Section 4, the verification
system is developed based on the field programmable gate array (FPGA), and the experimental results
are discussed as well. Finally, conclusions are provided in Section 5.

2. The Basic Principle of Self-Organizing Map

SOM is an unsupervised self-organizing neural network. It has been adopted to solve problems
in a wide range of applications. Usually, SOM can compress information while preserving the most
important topological and metric relationships of the input data [15]. A SOM is normally constructed
by the components named neurons, which are arranged in the form of a two-dimension regular grid.
Each neuron contains one d-dimension vector, Wi, called weight vector, where

Wi = {wi1, wi2, . . . , wid}. (1)

During the learning step, neurons are adapted to the input vector by the criterion of similarity
matching between the input vector and the weight vectors. In this way, the neurons in SOM can
become more representative of the input data. Specifically, the input vectors can be expressed as

X = {x1, x2, . . . , xd} ∈ Rd. (2)

The neuron whose weight vector is the closest one to the input vector is regarded as the
winner-neuron. The Euclidean distance is one of the most popular ways to measure the distance.
It is defined as Equation (3), where R is the number of neurons and thus the winner-neuron can be
expressed as Equation (4).

DEi =

√
∑d

j=1

(
xj − wij

)2, for i ∈ {1, 2, . . . , R}, (3)

Ws = argmin{DEi}, for i ∈ {1, 2, . . . , R}. (4)

Appl. Sci. 2017, 7, 1106 3 of 11

In general, the squared Euclidean distance (SED), (D2
E), is preferred over DE in hardware

implementation since the root operation has no influence on the comparison result but will cause
additional computational costs. Once the winner-neuron is determined, the weight vector of
winner-neuron will be updated according to Equation (5).

Ws(t + 1) = Ws(t) + α(t)[X(t)−Ws(t)]. (5)

In Equation (5), t is the discrete-time coordinate, and α(t) is the learning rate. Ws(t) and
Ws(t + 1) represent the weight vectors of the winner-neuron before and after the updating process,
respectively. As shown in Equation (5), the update procedure can be regarded as a gradual reduction
of the component-wise difference between the input vector and weight vector of the winner-neuron.
Geometrically speaking, the weight vector of the winner-neuron is moved towards the input vector
and the step size of weight vector movement is affected by α(t). In order to drastically train the
SOM, the winner-neuron searching process in Equation (4) and the weight vector updating process in
Equation (5) repeat alternately to facilitate convergence after multiple iterations.

3. Proposed Vector Quantizer Based on SOM

3.1. The Overall Architecture

The overall architecture of the proposed vector quantizer is illustrated in Figure 1. It consists of
an input buffer, k sub-blocks for codebook learning and image encoding, a block distance comparator,
and a winner-block selector. To achieve a high image compression speed, we distribute the codebook
into k sub-blocks. The operation principle of our proposed vector quantizer can be described as follows:
firstly, the winner-neurons in each sub-block are found out and their corresponding minimum SEDs
are output to the block distance comparator. In the block distance comparator, the k minimum SEDs
are further compared. In this way, the sub-block where the winner-neuron exists is determined and
then selected by the winner-block selector. Finally, the address of winner-neuron, as well as the results
of block distance comparator, are output as the index.

Appl. Sci. 2017, 7, 1106 3 of 11

In general, the squared Euclidean distance (SED), (2
ED), is preferred over DE in hardware

implementation since the root operation has no influence on the comparison result but will cause
additional computational costs. Once the winner-neuron is determined, the weight vector of winner-
neuron will be updated according to Equation (5).

௦ܹ(ݐ + 1) = ௦ܹ(ݐ) + (ݐ)ሾܺ(ݐ)ߙ − ௦ܹ(ݐ)ሿ. (5)

In Equation (5), t is the discrete-time coordinate, and α(t) is the learning rate. Ws(t) and Ws(t + 1)
represent the weight vectors of the winner-neuron before and after the updating process,
respectively. As shown in Equation (5), the update procedure can be regarded as a gradual reduction
of the component-wise difference between the input vector and weight vector of the winner-neuron.
Geometrically speaking, the weight vector of the winner-neuron is moved towards the input vector
and the step size of weight vector movement is affected by α(t). In order to drastically train the SOM,
the winner-neuron searching process in Equation (4) and the weight vector updating process in
Equation (5) repeat alternately to facilitate convergence after multiple iterations.

3. Proposed Vector Quantizer Based on SOM

3.1. The Overall Architecture

The overall architecture of the proposed vector quantizer is illustrated in Figure 1. It consists of
an input buffer, k sub-blocks for codebook learning and image encoding, a block distance comparator,
and a winner-block selector. To achieve a high image compression speed, we distribute the codebook
into k sub-blocks. The operation principle of our proposed vector quantizer can be described as
follows: firstly, the winner-neurons in each sub-block are found out and their corresponding
minimum SEDs are output to the block distance comparator. In the block distance comparator, the k
minimum SEDs are further compared. In this way, the sub-block where the winner-neuron exists is
determined and then selected by the winner-block selector. Finally, the address of winner-neuron, as
well as the results of block distance comparator, are output as the index.

Weight Vector
Calculation

Distance
Accumulation

Minimum Distance Search

(xi-wi)2α(xi-wi)Codebook
Memory

#1

Arithmetic Block

Squared Difference Unit

Squared Euclidean Distance

Address
Generator

Load

Address of the Nearest Weight Vector

Updated
Weight

Weight Vector
Calculation

Distance
Accumulation

Minimum Distance Search

(xi-wi)2α(xi-wi)Codebook
Memory

#1

Arithmetic Block

Squared Difference Unit

Squared Euclidean Distance

Address
Generator

Load

Address of the Nearest Weight Vector

Updated
Weight

Weight Vector
Calculation

Distance
Accumulation

Minimum Distance Search

(xi-wi)2α(xi-wi)Codebook
Memory

No.1

Arithmetic Block

Squared Difference Unit

Squared Euclidean Distance

Address
Generator

Load

Address of the Nearest Weight Vector

Updated
Weight

Block No.1

Block No.2

Block No.k

Input Vector Buffer Winner-Block Selector

Bl
oc

k
D

is
ta

nc
e

C
om

pa
ra

to
r

Index(code)

Pixels

Figure 1. The overall architecture of the proposed vector quantizer.

As the most critical element, each sub-block is composed of the address generator and memory
for the codebook, the squared difference unit (SDU), the arithmetic block, and the minimum distance

Figure 1. The overall architecture of the proposed vector quantizer.

Appl. Sci. 2017, 7, 1106 4 of 11

As the most critical element, each sub-block is composed of the address generator and memory
for the codebook, the squared difference unit (SDU), the arithmetic block, and the minimum distance
search unit. In contrast with the previous works, where dedicated circuits were required for codebook
learning, we have thoroughly utilized the design concept of reconfigurable architecture to improve
the hardware efficiency. Specifically, the SDU and arithmetic block can be reconfigured either into
codebook learning mode or into image encoding mode. As a consequence, both the operations of
Euclidean distance computation and new weight vector generation, which are the main sources of
high computational complexity, would be simultaneously executed by the SDU and arithmetic block
without any additional circuits.

3.2. The Squared Difference Unit and Memory Block

The structure of SDU is illustrated in Figure 2. It mainly consists of numerous arithmetic units such
as subtractors and multipliers as well as some auxiliary registers. To improve the hardware efficiency,
several multiplexers are inserted between the subtractors and multipliers. All of the multiplexers are
controlled by an independent signal “S1”. In this way, the data flow can be easily reconstructed by
changing the value of “S1”. As depicted in Figure 2, the SDU can output either (xj − wij)2 or α(xj − wij),
according to the value of signal “S1”. Since (xj − wij)2 and α(xj − wij) are separately the basic elements
for SED calculating and new weight vector updating, the SDU can be successfully reconfigured in both
codebook learning mode and image encoding mode without dedicated circuits.

Appl. Sci. 2017, 7, 1106 4 of 11

search unit. In contrast with the previous works, where dedicated circuits were required for codebook
learning, we have thoroughly utilized the design concept of reconfigurable architecture to improve
the hardware efficiency. Specifically, the SDU and arithmetic block can be reconfigured either into
codebook learning mode or into image encoding mode. As a consequence, both the operations of
Euclidean distance computation and new weight vector generation, which are the main sources of
high computational complexity, would be simultaneously executed by the SDU and arithmetic block
without any additional circuits.

3.2. The Squared Difference Unit and Memory Block

The structure of SDU is illustrated in Figure 2. It mainly consists of numerous arithmetic units
such as subtractors and multipliers as well as some auxiliary registers. To improve the hardware
efficiency, several multiplexers are inserted between the subtractors and multipliers. All of the
multiplexers are controlled by an independent signal “S1”. In this way, the data flow can be easily
reconstructed by changing the value of “S1”. As depicted in Figure 2, the SDU can output either (xj −
wij)2 or α(xj − wij), according to the value of signal “S1”. Since (xj − wij)2 and α(xj − wij) are separately the
basic elements for SED calculating and new weight vector updating, the SDU can be successfully
reconfigured in both codebook learning mode and image encoding mode without dedicated circuits.

Codebook
Memory

No.1 Multiplier

1 0S1

D
Q

α
Subtractor

α(x1-w1) (x1-w1)
2

Multiplier

1 0S1

D
Q

α
Subtractor

α(x2-w2) (x2-w2)
2

Multiplier

1 0S1

D
Q

α
Subtractor

α(x16-w16) (x16-w16)
2

#1
#2
#3

#m
#m+1
#m+2
#m+3

w1 w2 w16

Codebook
Memory

No.1 Multiplier

1 0S1

D
Q

α
Subtractor

α(x1-w1) (x1-w1)
2

Multiplier

1 0S1

D
Q

α
Subtractor

α(x2-w2) (x2-w2)
2

Multiplier

1 0S1

D
Q

α
Subtractor

α(x16-w16) (x16-w16)
2

#1
#2
#3

#m
#m+1
#m+2
#m+3

w1 w2 w16

Codebook
Memory

No.1 Multiplier

1 0S1

D
Q

α
Subtractor

α(x1-w1) (x1-w1)
2

Multiplier

1 0S1

D
Q

α
Subtractor

α(x2-w2) (x2-w2)
2

Multiplier

1 0S1

D
Q

α
Subtractor

α(x16-w16) (x16-w16)
2

#1
#2
#3

#m
#m+1
#m+2
#m+3

w1 w2 w16

Block No.1

Block No.2

Block No.k

x1 x2 x16

Weight Vector

Weight Vector

Weight Vector

Input VectorInput Vector Buffer

Figure 2. Block diagram of the squared difference unit and its related data flow.

As shown in Figure 2, the SDU can process a 16-dimensional vector in every clock. To enable
our proposed vector quantizer to deal with high-dimensional vector, we apply a mechanism of partial
vector-component storage (PVCS) in the codebook memory. Typically, the d-dimensional input
vector and weight vector are distributed into 16 memory blocks, and each complete vector contains
m partial vector, where m = ⌈d/16⌉. Once the address counter for the vector accessing equals to m, a
separation signal “SSEP” is asserted, which implies that an individual vector has been accessed
entirely.

3.3. The Arithmetic Block

As discussed in Section 3.2, the SDU can merely calculate the basic elements, (xj − wij)2 and α(xj −
wij), for distance calculating and weight vector updating. In order to obtain the absolute values of
SED (2

ED) and the new weight vector (Ws(t + 1)), extra calculations must be conducted. In our work,
we proposed an optimized circuit named RCBAT to accomplish these operations.

Figure 3 shows the basic architecture of RCBAT. Similar to the SDU, the arithmetic block in our
design can also be reconfigured either in codebook learning mode or in image encoding mode. In the
image encoding mode, “S1” is set as “0”. The values of (xj − wij)2 are first computed by the SDU and
then provided to the RCBAT. Next, the 16 separate squared differences are accumulated by the 4

Figure 2. Block diagram of the squared difference unit and its related data flow.

As shown in Figure 2, the SDU can process a 16-dimensional vector in every clock. To enable our
proposed vector quantizer to deal with high-dimensional vector, we apply a mechanism of partial
vector-component storage (PVCS) in the codebook memory. Typically, the d-dimensional input vector
and weight vector are distributed into 16 memory blocks, and each complete vector contains m partial
vector, where m = dd/16e. Once the address counter for the vector accessing equals to m, a separation
signal “SSEP” is asserted, which implies that an individual vector has been accessed entirely.

3.3. The Arithmetic Block

As discussed in Section 3.2, the SDU can merely calculate the basi elements, (xj − wij)2 and
α(xj − wij), for distance calculating and weight vector updating. In order to obtain the absolute values
of SED (D2

E) and the new weight vector (Ws(t + 1)), extra calculations must be conducted. In our work,
we proposed an optimized circuit named RCBAT to accomplish these operations.

Appl. Sci. 2017, 7, 1106 5 of 11

Figure 3 shows the basic architecture of RCBAT. Similar to the SDU, the arithmetic block in our
design can also be reconfigured either in codebook learning mode or in image encoding mode. In the
image encoding mode, “S1” is set as “0”. The values of (xj − wij)2 are first computed by the SDU
and then provided to the RCBAT. Next, the 16 separate squared differences are accumulated by the
4 pipeline stages in the RCBAT and thus 1 partial SED is obtained. As we adopt a mechanism of
PVCS in the SDU, we must sum up all of the partial SEDs to get the exact SED. Hence, we add an
additional stage following the fourth stage, which is shown at the right bottom of Figure 3. In the last
stage, the separation signal “SSEP” keeps as “0” until all of the partial vectors have been processed
(after m clock cycles). As shown in Figure 3, when “SSEP” is “0”, the last adder is configured to sum
the new partial SED and the intermediate exact SED up. When “SSEP” turns to “1”, the exact value of
SED, “DE2”, which contains m partial SEDs, will be obtained and then fed into the minimum distance
search circuit for winner-neuron searching. In the codebook learning mode, “S1” is set to “1” once
the winner-neuron searching phase is completed. The beginning address of the winner-neuron is first
loaded to the read-port of the codebook memory and then the 16-dimensional partial weight vectors
of the winner-neuron are read out in sequence. In the meantime, the SDU in Figure 2 is configured to
compute the value of α(xj − wij), and the RCBAT is transformed to 16 individual adders to calculate
the value of wij + α(xj − wij). The data flow of the RCBAT circuit is highlighted with blue color in
Figure 3. In this way, the partial new weight vector can be smoothly obtained in one clock. Once it is
written back to the codebook memory, the calculation procedure for the next partial new weight vector
will be continued in the same manner. Finally, the entire new weight vector of the winner-neuron can
be figured out and updated after m clocks.

Appl. Sci. 2017, 7, 1106 5 of 11

pipeline stages in the RCBAT and thus 1 partial SED is obtained. As we adopt a mechanism of PVCS
in the SDU, we must sum up all of the partial SEDs to get the exact SED. Hence, we add an additional
stage following the fourth stage, which is shown at the right bottom of Figure 3. In the last stage, the
separation signal “SSEP” keeps as “0” until all of the partial vectors have been processed (after m clock
cycles). As shown in Figure 3, when “SSEP” is “0”, the last adder is configured to sum the new partial
SED and the intermediate exact SED up. When “SSEP” turns to “1”, the exact value of SED, “DE2”,
which contains m partial SEDs, will be obtained and then fed into the minimum distance search
circuit for winner-neuron searching. In the codebook learning mode, “S1” is set to “1” once the
winner-neuron searching phase is completed. The beginning address of the winner-neuron is first
loaded to the read-port of the codebook memory and then the 16-dimensional partial weight vectors
of the winner-neuron are read out in sequence. In the meantime, the SDU in Figure 2 is configured to
compute the value of α(xj − wij), and the RCBAT is transformed to 16 individual adders to calculate
the value of wij + α(xj − wij). The data flow of the RCBAT circuit is highlighted with blue color in Figure
3. In this way, the partial new weight vector can be smoothly obtained in one clock. Once it is written
back to the codebook memory, the calculation procedure for the next partial new weight vector will
be continued in the same manner. Finally, the entire new weight vector of the winner-neuron can be
figured out and updated after m clocks.

α(x15-w15)
w15

S1

0 011

+

α(x13-w13)
w13

S1

0 011

+

α(x11-w11)
w11

S1

0 011

+

α(x9-w9)
w9

S1

0 011

+

α(x7-w7)
w7

S1

0 011

+

α(x5-w5)
w5

S1

0 011

+

α(x3-w3)
w3

S1

0 011

+

α(x1-w1)
w1

S1

0 011

+
α(x2-w2)

w2

S1

0 011

+

α(x4-w4)
w4

S1

0 011

+

α(x6-w6)
w6

S1

0 011

+

α(x8-w8)
w8

S1

0 011

+
α(x10-w10)

w10

S1

0 011

+

α(x12-w12)
w12

S1

0 011

+
α(x14-w14)

w14

S1

0 011

+

S1

0
0

1
1 +

0

1 0

SSEP

w16

α(x16-w16)
DE2

ws2(t+1)

ws1(t+1)
ws3(t+1)

ws5(t+1)
ws7(t+1)

ws9(t+1)
ws11(t+1)

ws13(t+1) ws15(t+1)

ws4(t+1) ws8(t+1)ws6(t+1)

ws14(t+1)

ws16(t+1)

(x1-w1)
2

(x2-w2)
2

(x3-w3)
2 (x5-w5)

2 (x7-w7)
2 (x9-w9)

2 (x11-w11)
2 (x13-w13)

2 (x15-w15)
2

(x4-w4)
2 (x6-w6)

2 (x8-w8)
2 (x10-w10)

2 (x12-w12)
2 (x14-w14)

2 (x16-w16)
2

ws10(t+1) ws12(t+1)

D
Q

0 1

S1

D
Q

D
Q

1 0

S1

D
Q

Adder

Figure 3. The basic architecture of reconfigurable complete-binary-adder-tree.

Benefiting from the characteristic of configurability, all of the arithmetic units in SDU and
arithmetic block can be substantially reused for SED accumulating and new weight vector updating.
As a consequence, the hardware efficiency of our proposed vector quantizer is improved to a large
degree.

3.4. Minimum Distance Search Circuit

As discussed in Section 2, the distances between the input vector and all of the weight vectors
must be first computed and then compared with each other to find the winner-neuron. In our design,
the distance calculation is fully conducted by the SDU and the RCBAT circuit, and the operation of
minimum distance search is mainly executed by a winner-takes-all (WTA) circuit. The WTA circuit
acts as an arbitration module which can locate the smallest SED and determine the winner-neuron.

The block diagram of the WTA circuit is depicted in Figure 4. It consists of a shifter register with
a depth of ‘7’, three registers with load signal, one ‘AND’ gate, one comparator, and an additional
ordinary register. The output port of the address generator for the codebook memory is connected to

Figure 3. The basic architecture of reconfigurable complete-binary-adder-tree.

Benefiting from the characteristic of configurability, all of the arithmetic units in SDU and
arithmetic block can be substantially reused for SED accumulating and new weight vector updating.
As a consequence, the hardware efficiency of our proposed vector quantizer is improved to a
large degree.

3.4. Minimum Distance Search Circuit

As discussed in Section 2, the distances between the input vector and all of the weight vectors
must be first computed and then compared with each other to find the winner-neuron. In our design,

Appl. Sci. 2017, 7, 1106 6 of 11

the distance calculation is fully conducted by the SDU and the RCBAT circuit, and the operation of
minimum distance search is mainly executed by a winner-takes-all (WTA) circuit. The WTA circuit
acts as an arbitration module which can locate the smallest SED and determine the winner-neuron.

The block diagram of the WTA circuit is depicted in Figure 4. It consists of a shifter register with
a depth of ‘7’, three registers with load signal, one ‘AND’ gate, one comparator, and an additional
ordinary register. The output port of the address generator for the codebook memory is connected to
the input port of the shift register. The exact SED (DE2) from the RCBAT circuit is fed to the WTA circuit
as an input, and the signal ‘SSEP’ acts as a separate signal for different SEDs. During the winner-neuron
searching phase, the intermediate minimum SED and the corresponding address are temporally stored
in R2 and R3. The separation signal ‘SSEP’ is the same one that has been discussed in the RCBAT circuit.
Once ‘SSEP’ turns into ‘1’, the newly arrived SED ‘DE2’ is loaded in R1 and then compared with the
intermediate minimum SED. If ‘DE2’ is the smaller one, the comparator would output ‘1’ and the
values stored in R2, as well as R3, will be updated accordingly. After all of the weight vectors have been
searched, the start address of the codebook memory where the current weight vector (winner-neuron)
is stored will be output as an index and transmitted to the receiving terminal.

Appl. Sci. 2017, 7, 1106 6 of 11

the input port of the shift register. The exact SED (DE2) from the RCBAT circuit is fed to the WTA
circuit as an input, and the signal ‘SSEP’ acts as a separate signal for different SEDs. During the winner-
neuron searching phase, the intermediate minimum SED and the corresponding address are
temporally stored in R2 and R3. The separation signal ‘SSEP’ is the same one that has been discussed
in the RCBAT circuit. Once ‘SSEP’ turns into ‘1’, the newly arrived SED ‘DE2’ is loaded in R1 and then
compared with the intermediate minimum SED. If ‘DE2’ is the smaller one, the comparator would
output ‘1’ and the values stored in R2, as well as R3, will be updated accordingly. After all of the
weight vectors have been searched, the start address of the codebook memory where the current
weight vector (winner-neuron) is stored will be output as an index and transmitted to the receiving
terminal.

D Q

Load

D Q

Load

A<B

DE2

SSEP
&

D Q

Load

Address Generator for
Codebook Memory

 Read Address of the
Codebook Memory

Winner-Takes-All Circuit

Address of the
Nearest Weight

Vector

R1 R2

R3
R4

Shift Register

G1

C1

……

R

Figure 4. Block diagram of the winner-takes-all circuit.

4. Experimental Results and Discussion

4.1. Hardware Implementation

The hardware of our proposed vector quantizer has been described by Verilog HDL(verilog
hardware description language) and implemented on FPGA. Table 1 summarizes the hardware
resource usages of the proposed vector quantizer. Similar to the previous hardware implementations,
the learning rate α in our design is set as a constant value to simplify the control circuits. In addition,
considering the trade-off between the memory resource usage and the visual quality degeneration,
we define the codebook size as 256. To improve the processing speed, we set the number of sub-block
as 32.

Table 1. Hardware resource usages of the proposed vector quantizer.

Resources Used Available Utilization
Combinational ALUTs 74,368 182,400 40%

Memory ALUTs 0 91,200 0%
Total registers 62,784 N/A N/A

Total block memory bits 36,864 14,625,792 <1%
DSP block 18-bit elements 0 1288 0%

Total PLLs 1 8 12.5%
ALUT: adaptive look-up table; DSP: digital signal processor; PLL: phase-locked loops; N/A: not applicable.

Under such conditions, the synthesis results indicate that the obtained maximum clock
frequency is 79.8 MHz. Furthermore, to verify our design, an image compression system based on
the proposed vector quantizer is developed for high-speed target tracking application and exhibited
in Figure 5. As shown in Figure 5, the demonstration system is composed of a high-speed image
sensor, a FPGA development board, a display, and a PC. The camera link connector and DVI (digital
visual interface) transmitter connector are inserted into the FPGA board for image capture and
display.

Figure 4. Block diagram of the winner-takes-all circuit.

4. Experimental Results and Discussion

4.1. Hardware Implementation

The hardware of our proposed vector quantizer has been described by Verilog HDL(verilog hardware
description language) and implemented on FPGA. Table 1 summarizes the hardware resource usages
of the proposed vector quantizer. Similar to the previous hardware implementations, the learning rate
α in our design is set as a constant value to simplify the control circuits. In addition, considering the
trade-off between the memory resource usage and the visual quality degeneration, we define the
codebook size as 256. To improve the processing speed, we set the number of sub-block as 32.

Table 1. Hardware resource usages of the proposed vector quantizer.

Resources Used Available Utilization

Combinational ALUTs 74,368 182,400 40%
Memory ALUTs 0 91,200 0%
Total registers 62,784 N/A N/A

Total block memory
bits 36,864 14,625,792 <1%

DSP block 18-bit
elements 0 1288 0%

Total PLLs 1 8 12.5%

ALUT: adaptive look-up table; DSP: digital signal processor; PLL: phase-locked loops; N/A: not applicable.

Appl. Sci. 2017, 7, 1106 7 of 11

Under such conditions, the synthesis results indicate that the obtained maximum clock frequency
is 79.8 MHz. Furthermore, to verify our design, an image compression system based on the proposed
vector quantizer is developed for high-speed target tracking application and exhibited in Figure 5.
As shown in Figure 5, the demonstration system is composed of a high-speed image sensor, a FPGA
development board, a display, and a PC. The camera link connector and DVI (digital visual interface)
transmitter connector are inserted into the FPGA board for image capture and display.Appl. Sci. 2017, 7, 1106 7 of 11

LCD Display

Camera

PCFPGA Development
Board

Camera Link
Connector

USB Blaster Port

DVI Transmitter
Connector

Figure 5. A prototype of the image compression system based on the proposed vector quantizer.
FPGA: field programmable gate array; LCD: liquid-crystal display; DVI: digital visual interface.

We have conducted several experiments to intuitively evaluate the compression performance of
our proposed vector quantizer. To make the experimental results comparable, three standard
grayscale 512 × 512-pixel images from the USC-SIPI (University of Southern California-Signal and
Image Processing Institute) image database, respectively—Lena, Peppers, and Tank—were adopted
as the test data. As mentioned before, the codebook size is set as 256, and the number of multi-parallel
processing sub-blocks is set as 32. In this way, the 256 weight vectors are equally distributed into 32
blocks, and thus the processing speed is greatly improved. During the codebook generation phase,
the pixel values of Lena are utilized as the training data. Once the phase of codebook generation is
completed, Lena, Peppers, and Tank are encoded by the trained codebook in sequence. Moreover,
several sizes of pixel-block including 4 × 4, 4 × 8, 8 × 8, 8 × 16, and 16 × 16 are employed to judge the
visual quality of the reconstructed images with different compression ratio. Figure 6 shows the visual
quality comparisons between the compressed images with various compression ratios. It can be seen
that the compressed images are able to keep relatively acceptable visual quality even if the pixel-
block of 8 × 8 is employed (the corresponding compression ratio is 64). Finally, the visual qualities of
the compressed images with different compression ratios are quantified by the metric of peak signal-
to-noise ratio (PSNR) and plotted in Figure 7. Figure 7 indicates that the PSNR of Lena in our work
is about 30.69 dB as the compression ratio keeps to 16, which is slightly worse than that in [11]. That
may stem from the truncation error in the fixed-point calculation when different types of word-
precision are adopted. Finally, benefiting from the mechanism of PVCS, we can adjust the
compression ratio by changing the value of m, which has been discussed in Section 3.2.

(a) The compressed images for Lena with various sizes of pixel-block.

(b) The compressed images for Peppers with various sizes of pixel-block.

Figure 5. A prototype of the image compression system based on the proposed vector quantizer.
FPGA: field programmable gate array; LCD: liquid-crystal display; DVI: digital visual interface.

We have conducted several experiments to intuitively evaluate the compression performance
of our proposed vector quantizer. To make the experimental results comparable, three standard
grayscale 512 × 512-pixel images from the USC-SIPI (University of Southern California-Signal and
Image Processing Institute) image database, respectively—Lena, Peppers, and Tank—were adopted as
the test data. As mentioned before, the codebook size is set as 256, and the number of multi-parallel
processing sub-blocks is set as 32. In this way, the 256 weight vectors are equally distributed into
32 blocks, and thus the processing speed is greatly improved. During the codebook generation phase,
the pixel values of Lena are utilized as the training data. Once the phase of codebook generation is
completed, Lena, Peppers, and Tank are encoded by the trained codebook in sequence. Moreover,
several sizes of pixel-block including 4 × 4, 4 × 8, 8 × 8, 8 × 16, and 16 × 16 are employed to judge
the visual quality of the reconstructed images with different compression ratio. Figure 6 shows the
visual quality comparisons between the compressed images with various compression ratios. It can
be seen that the compressed images are able to keep relatively acceptable visual quality even if the
pixel-block of 8 × 8 is employed (the corresponding compression ratio is 64). Finally, the visual
qualities of the compressed images with different compression ratios are quantified by the metric of
peak signal-to-noise ratio (PSNR) and plotted in Figure 7. Figure 7 indicates that the PSNR of Lena
in our work is about 30.69 dB as the compression ratio keeps to 16, which is slightly worse than that
in [11]. That may stem from the truncation error in the fixed-point calculation when different types
of word-precision are adopted. Finally, benefiting from the mechanism of PVCS, we can adjust the
compression ratio by changing the value of m, which has been discussed in Section 3.2.

Appl. Sci. 2017, 7, 1106 8 of 11

Appl. Sci. 2017, 7, 1106 7 of 11

LCD Display

Camera

PCFPGA Development
Board

Camera Link
Connector

USB Blaster Port

DVI Transmitter
Connector

Figure 5. A prototype of the image compression system based on the proposed vector quantizer.
FPGA: field programmable gate array; LCD: liquid-crystal display; DVI: digital visual interface.

We have conducted several experiments to intuitively evaluate the compression performance of
our proposed vector quantizer. To make the experimental results comparable, three standard
grayscale 512 × 512-pixel images from the USC-SIPI (University of Southern California-Signal and
Image Processing Institute) image database, respectively—Lena, Peppers, and Tank—were adopted
as the test data. As mentioned before, the codebook size is set as 256, and the number of multi-parallel
processing sub-blocks is set as 32. In this way, the 256 weight vectors are equally distributed into 32
blocks, and thus the processing speed is greatly improved. During the codebook generation phase,
the pixel values of Lena are utilized as the training data. Once the phase of codebook generation is
completed, Lena, Peppers, and Tank are encoded by the trained codebook in sequence. Moreover,
several sizes of pixel-block including 4 × 4, 4 × 8, 8 × 8, 8 × 16, and 16 × 16 are employed to judge the
visual quality of the reconstructed images with different compression ratio. Figure 6 shows the visual
quality comparisons between the compressed images with various compression ratios. It can be seen
that the compressed images are able to keep relatively acceptable visual quality even if the pixel-
block of 8 × 8 is employed (the corresponding compression ratio is 64). Finally, the visual qualities of
the compressed images with different compression ratios are quantified by the metric of peak signal-
to-noise ratio (PSNR) and plotted in Figure 7. Figure 7 indicates that the PSNR of Lena in our work
is about 30.69 dB as the compression ratio keeps to 16, which is slightly worse than that in [11]. That
may stem from the truncation error in the fixed-point calculation when different types of word-
precision are adopted. Finally, benefiting from the mechanism of PVCS, we can adjust the
compression ratio by changing the value of m, which has been discussed in Section 3.2.

(a) The compressed images for Lena with various sizes of pixel-block.

(b) The compressed images for Peppers with various sizes of pixel-block. Appl. Sci. 2017, 7, 1106 8 of 11

(c) The compressed images for Tank with various sizes of pixel-block.

Figure 6. Visual quality comparisons between the compressed images for (a) Lena, (b) Peppers, and
(c) Tank. The images in each row from the left to the right are the compressed images as the sizes of
pixel-block are 4 × 4 (the corresponding compression ratio is 16), 4 × 8 (the corresponding compression
ratio is 32), 8 × 8 (the corresponding compression ratio is 64), 8 × 16 (the corresponding compression
ratio is 128), and 16 × 16 (the corresponding compression ratio is 256), respectively.

Figure 7. PSNR (peak signal-to-noise ratio) vs. compression ratio for Lena, Peppers, Tank.

4.2. Speed Analysis

For the compression circuits, processing speed is one of the critical performances, especially
when they are applied in some high-speed vision systems such as high-speed object tracking, motion
analysis, etc. In terms of our proposed vector quantizer, the clock cycles to encode one individual
pixel-block can be defined as Equation (6), where d, N, and k are the pixel-block size, the codebook
size and the number of sub-blocks, respectively. The number ‘7’ represents the depth of the shift
register in Figure 4, which is equal to the sum of 1 stage in SDU (shown in Figure 2), 5 stages in the
RCBAT (shown in Figure 3) and 1 stage in WTA circuits (shown in Figure 4).

In addition, since updating a weight vector will additionally take ⌈d/16⌉ + 3 clock cycles, the
learning time for each pixel-block can be calculated by Equation (7).

௘ܶ௡௖௢ௗ௜௡௚ = ⌈݀/16⌉ × ܰ/݇ + 7 (6)

௟ܶ௘௔௥௡௜௡௚ = ⌈݀/16⌉ × (ܰ/݇ + 1) + 10 (7)

As a matter of fact, the compression speed of vector quantizer is determined by the encoding
time. In our design, if the size of pixel-block is defined as 8 × 8, the clock cycles to encode each pixel-
block can be calculated as 39 according to Equation (6). Hence, the clock cycles to encode a frame of
the grayscale 512 × 512-pixel image will be 159,744, and the corresponding time can be calculated as
2 ms with a maximum frequency of 79.8 MHz. The short encoding time makes our vector quantizer
capable of compressing the high-speed image sequence with a frame-rate of 500 frames/s. Moreover,
if our proposed vector quantizer is fabricated by advanced CMOS (Complementary Metal Oxide

Figure 6. Visual quality comparisons between the compressed images for (a) Lena, (b) Peppers,
and (c) Tank. The images in each row from the left to the right are the compressed images as the sizes of
pixel-block are 4× 4 (the corresponding compression ratio is 16), 4× 8 (the corresponding compression
ratio is 32), 8 × 8 (the corresponding compression ratio is 64), 8 × 16 (the corresponding compression
ratio is 128), and 16 × 16 (the corresponding compression ratio is 256), respectively.

Appl. Sci. 2017, 7, 1106 8 of 11

(c) The compressed images for Tank with various sizes of pixel-block.

Figure 6. Visual quality comparisons between the compressed images for (a) Lena, (b) Peppers, and
(c) Tank. The images in each row from the left to the right are the compressed images as the sizes of
pixel-block are 4 × 4 (the corresponding compression ratio is 16), 4 × 8 (the corresponding compression
ratio is 32), 8 × 8 (the corresponding compression ratio is 64), 8 × 16 (the corresponding compression
ratio is 128), and 16 × 16 (the corresponding compression ratio is 256), respectively.

Figure 7. PSNR (peak signal-to-noise ratio) vs. compression ratio for Lena, Peppers, Tank.

4.2. Speed Analysis

For the compression circuits, processing speed is one of the critical performances, especially
when they are applied in some high-speed vision systems such as high-speed object tracking, motion
analysis, etc. In terms of our proposed vector quantizer, the clock cycles to encode one individual
pixel-block can be defined as Equation (6), where d, N, and k are the pixel-block size, the codebook
size and the number of sub-blocks, respectively. The number ‘7’ represents the depth of the shift
register in Figure 4, which is equal to the sum of 1 stage in SDU (shown in Figure 2), 5 stages in the
RCBAT (shown in Figure 3) and 1 stage in WTA circuits (shown in Figure 4).

In addition, since updating a weight vector will additionally take ⌈d/16⌉ + 3 clock cycles, the
learning time for each pixel-block can be calculated by Equation (7).

௘ܶ௡௖௢ௗ௜௡௚ = ⌈݀/16⌉ × ܰ/݇ + 7 (6)

௟ܶ௘௔௥௡௜௡௚ = ⌈݀/16⌉ × (ܰ/݇ + 1) + 10 (7)

As a matter of fact, the compression speed of vector quantizer is determined by the encoding
time. In our design, if the size of pixel-block is defined as 8 × 8, the clock cycles to encode each pixel-
block can be calculated as 39 according to Equation (6). Hence, the clock cycles to encode a frame of
the grayscale 512 × 512-pixel image will be 159,744, and the corresponding time can be calculated as
2 ms with a maximum frequency of 79.8 MHz. The short encoding time makes our vector quantizer
capable of compressing the high-speed image sequence with a frame-rate of 500 frames/s. Moreover,
if our proposed vector quantizer is fabricated by advanced CMOS (Complementary Metal Oxide

Figure 7. PSNR (peak signal-to-noise ratio) vs. compression ratio for Lena, Peppers, Tank.

Appl. Sci. 2017, 7, 1106 9 of 11

4.2. Speed Analysis

For the compression circuits, processing speed is one of the critical performances, especially when
they are applied in some high-speed vision systems such as high-speed object tracking, motion analysis,
etc. In terms of our proposed vector quantizer, the clock cycles to encode one individual pixel-block
can be defined as Equation (6), where d, N, and k are the pixel-block size, the codebook size and
the number of sub-blocks, respectively. The number ‘7’ represents the depth of the shift register in
Figure 4, which is equal to the sum of 1 stage in SDU (shown in Figure 2), 5 stages in the RCBAT
(shown in Figure 3) and 1 stage in WTA circuits (shown in Figure 4).

In addition, since updating a weight vector will additionally take dd/16e + 3 clock cycles,
the learning time for each pixel-block can be calculated by Equation (7).

Tencoding = dd/16e × N/k + 7 (6)

Tlearning = dd/16e × (N/k + 1) + 10 (7)

As a matter of fact, the compression speed of vector quantizer is determined by the encoding time.
In our design, if the size of pixel-block is defined as 8 × 8, the clock cycles to encode each pixel-block
can be calculated as 39 according to Equation (6). Hence, the clock cycles to encode a frame of the
grayscale 512 × 512-pixel image will be 159,744, and the corresponding time can be calculated as
2 ms with a maximum frequency of 79.8 MHz. The short encoding time makes our vector quantizer
capable of compressing the high-speed image sequence with a frame-rate of 500 frames/s. Moreover,
if our proposed vector quantizer is fabricated by advanced CMOS (Complementary Metal Oxide
Semiconductor)process, a higher work frequency can be reached, and thus a faster compression speed
will be obtained accordingly.

MCPS = d× N
Tencoding

(8)

Furthermore, the million connections per second (MCPS) [16], which is a common metric to
evaluate the performance of SOM, is also calculated according to Equation (8) and then plotted in
Figure 8. Likewise, in Equation (8), d and N represent the pixel-block size and the codebook size,
respectively. The results indicate that the value of MCPS reaches 28,494 when the size of pixel-block is
8 × 8 (compression ratio is 64) and the sub-block number is 32.

Appl. Sci. 2017, 7, 1106 9 of 11

Semiconductor)process, a higher work frequency can be reached, and thus a faster compression
speed will be obtained accordingly. ܵܲܥܯ = ݀ × ܰ௘ܶ௡௖௢ௗ௜௡௚ (8)

Furthermore, the million connections per second (MCPS) [16], which is a common metric to
evaluate the performance of SOM, is also calculated according to Equation (8) and then plotted in
Figure 8. Likewise, in Equation (8), d and N represent the pixel-block size and the codebook size,
respectively. The results indicate that the value of MCPS reaches 28,494 when the size of pixel-block
is 8 × 8 (compression ratio is 64) and the sub-block number is 32.

Figure 8. MCPS (million connections per second) of the proposed vector quantizer with different
compression ratio and parallel block number.

4.3. Comparisons

Performance comparisons between the proposed vector quantizer and the previous VQ-based
compression circuits implemented in FPGA are conducted in this Section. Table 2 summarizes the
comparison results. To make the data comparable, all of the parameters in Table 2 are calculated
under the same condition. Particularly, the grayscale Lena with 512 × 512-pixel is employed as the
test image.

Table 2. Comparison results with the previous VQ (Vector quantization)-based image compression
circuits.

Design [11] [13]
This Work
k = 16 k = 32

FPGA family Virtex II Virtex IV Stratic IV
Compression ratio (CR) 16 (Fixed) 3 (Fixed) ≥16 (Adjustable)
PSNR (dB) 31.28 37.10 30.69 (CR = 16)
Frequency (Hz) 71.43 M 19.6 M 80.1 M 79.8 M
MCPS 11,026 N/A 14,247 @ CR = 16 21,845 @ CR = 16
LUTs 40,280 17,6130 37,214 74,368

Compression speed (frames/s) 160 107
212 @ CR = 16
275 @ CR = 64
296 @ CR = 256

324 @ CR = 16
500 @ CR = 64
585 @ CR = 256

FPGA: field programmable gate array; PSNR: peak signal-to-noise ratio; MCPS: million connections
per second; LUT: look-up table.

Figure 8. MCPS (million connections per second) of the proposed vector quantizer with different
compression ratio and parallel block number.

Appl. Sci. 2017, 7, 1106 10 of 11

4.3. Comparisons

Performance comparisons between the proposed vector quantizer and the previous VQ-based
compression circuits implemented in FPGA are conducted in this Section. Table 2 summarizes the
comparison results. To make the data comparable, all of the parameters in Table 2 are calculated under
the same condition. Particularly, the grayscale Lena with 512 × 512-pixel is employed as the test image.

Table 2. Comparison results with the previous VQ (Vector quantization)-based image compression circuits.

Design [11] [13]
This Work

k = 16 k = 32

FPGA family Virtex II Virtex IV Stratic IV

Compression ratio (CR) 16 (Fixed) 3 (Fixed) ≥16 (Adjustable)

PSNR (dB) 31.28 37.10 30.69 (CR = 16)

Frequency (Hz) 71.43 M 19.6 M 80.1 M 79.8 M

MCPS 11,026 N/A 14,247 @ CR = 16 21,845 @ CR = 16

LUTs 40,280 17,6130 37,214 74,368

Compression speed (frames/s) 160 107
212 @ CR = 16
275 @ CR = 64
296 @ CR = 256

324 @ CR = 16
500 @ CR = 64
585 @ CR = 256

FPGA: field programmable gate array; PSNR: peak signal-to-noise ratio; MCPS: million connections per second;
LUT: look-up table.

As listed in Table 2, the values of PSNR are approximately equal for [11] and this work,
and the higher value of PSNR for [13] is mainly due to the lower compression ratio of [13]. Besides,
our proposed circuit seems to consume more LUTs than [11] when the parameter k is set as 32. However,
this is merely caused by the large degree of block parallelism. Once we modulate the number of
sub-blocks to 16, the proposed quantizer realizes a reduction of 8% in hardware usage even though its
compression speed is 33% higher than that of [11]. In this way, a lower rate of hardware usage than [11]
can be easily reached despite a higher compression speed than that of [11] being kept. The higher
hardware efficiency of this work principally stems from the re-usage of arithmetic units in SDU and
RCBAT. Moreover, Table 2 reveals that our vector quantizer achieves a higher compression speed
than [13], even though [13] requires fewer clock cycles than our design for the minimum distance
searching. This condition partially caused the high latency that introduced by the indispensable
register file and other complicated modules in [13], but primarily arises from the high parallelism of
our design. Finally, owing to the utilization of PVCS, the compression ratio of our proposed circuit is
adjustable while those of the previous works are fixed.

5. Conclusions

Based on the SOM algorithm, we present a hardware-efficient vector quantizer to alleviate
the challenges of insufficient bandwidth and storage in the high-speed vision system. A RCBAT
circuit, which can be reconfigured both into the codebook learning mode and image encoding mode,
is proposed to improve the hardware efficiency of our design. To achieve a high processing speed,
we propose a multi-parallel architecture, where the codebook is evenly distributed into numerous
sub-blocks. Moreover, by adopting a mechanism of PVCS, our vector quantizer easily acquires the
advantage of adjustable compression ratio. Finally, a verification system is developed based on
the FPGA. The experimental results indicate that the hardware resource usage and the achievable
compression speed of our design are respectively 8% lower and 33% higher than that of the previous
work. Overall, our proposed vector quantizer can effectively achieve a higher compression speed
while keeping a lower hardware usage compared with the conventional design.

Appl. Sci. 2017, 7, 1106 11 of 11

Acknowledgments: This work was supported by National Key Research and Development Program of China
under Grant 2017YFA0206104, Shanghai Municipal Science and Technology Commission under Grant 16511108701,
Zhangjiang Administrative Committee under Grant 2016-14, and China Scholarship Council.

Author Contributions: The design was conceived by Zunkai Huang and Fengwei An. Zunkai Huang
performed the experiments, analyzed the data and wrote the manuscript under the supervision of Yongxin Zhu,
Fengwei An, Hui Wang, and Songlin Feng. Xiangyu Zhang and Lei Chen provided technical support for
architecture implementation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, R.; Ng, W.C.; Yuan, J.; Yin, S.; Wei, S.A. 1/2.5 inch VGA 400 fps CMOS image sensor with high sensitivity
for machine vision. IEEE J. Solid-State Circuits 2014, 49, 2342–2351. [CrossRef]

2. Ishii, I.; Taniguchi, T.; Yamamoto, K.; Takaki, T. High-frame-rate optical flow system. IEEE Trans. Circuits
Syst. Video Technol. 2012, 22, 105–112. [CrossRef]

3. Jiang, M.; Gu, Q.; Aoyama, T.; Takaki, T.; Ishii, I. Real-Time Vibration Source Tracking Using High-Speed
Vision. IEEE Sen. J. 2017, 17, 1513–1527. [CrossRef]

4. Liu, X.; Sun, Q.; Zhang, C.; Wu, L. High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating
Heat Pipes with Different Diameters. Appl. Sci. 2016, 6, 321–336. [CrossRef]

5. Cho, C.; Kim, J.; Kim, J.; Lee, S.J.; Kim, K.J. Detecting for high speed flying object using image processing on
target place. Cluster Comput. 2016, 19, 285–292. [CrossRef]

6. Baig, M.Y.; Lai, E.M.; Punchihewa, A. Compressed sensing-based distributed image compression. Appl. Sci.
2014, 4, 128–147. [CrossRef]

7. Nishikawa, Y.; Kawahito, S.; Furuta, M.; Tamura, T. A high-speed CMOS image sensor with on-chip
parallel image compression circuits. In Proceedings of 2007 IEEE Custom Integrated Circuits Conference,
San Jose, CA, USA, 16–19 September 2007; pp. 833–836.

8. Huang, C.M.; Bi, Q.; Stiles, G.S.; Harris, R.W. Fast full search equivalent encoding algorithms for image
compression using vector quantization. IEEE Trans. Image Process. 1992, 1, 413–416. [CrossRef] [PubMed]

9. Horng, M.H. Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl.
2012, 39, 1078–1091. [CrossRef]

10. Fujibayashi, M.; Nozawa, T.; Nakayama, T.; Mochizuki, K.; Konda, M.; Kotani, K.; Ohmi, T. A still-image
encoder based on adaptive resolution vector quantization featuring needless calculation elimination
architecture. IEEE J. Solid-State Circuits 2003, 726–733. [CrossRef]

11. Ramirez-Agundis, A.; Gadea-Girones, R.; Colom-Palero, R. hardware design of a massive-parallel,
modular NN-based vector quantizer for real-time video coding. Microprocess. Microsyst. 2008, 32, 33–44.
[CrossRef]

12. Kurdthongmee, W. A novel hardware-oriented Kohonen SOM image compression algorithm and its FPGA
implementation. J. Syst. Archit. 2008, 54, 983–994. [CrossRef]

13. Kurdthongmee, W.A. A hardware centric algorithm for the best matching unit searching stage of the
SOM-based quantizer and its FPGA implementation. J. Real-Time Image Proc. 2016, 12, 71–80. [CrossRef]

14. Zhang, X.; An, F.; Chen, L.; Mattausch, H.J. Reconfigurable VLSI implementation for learning vector
quantization with on-chip learning circuit. Jpn. J. Appl. Phys. 2016, 55, 04EF02. [CrossRef]

15. Rauber, A.; Merkl, D.; Dittenbach, M. The growing hierarchical self-organizing map: Exploratory analysis of
high-dimensional data. IEEE Trans. Neural Netw. 2002, 13, 1331–1341. [CrossRef] [PubMed]

16. Hikawa, H.; Maeda, Y. Improved Learning Performance of Hardware Self-Organizing Map Using a Novel
Neighborhood Function. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2861–2873. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSSC.2014.2345018
http://dx.doi.org/10.1109/TCSVT.2011.2158340
http://dx.doi.org/10.1109/JSEN.2016.2647690
http://dx.doi.org/10.3390/app6110321
http://dx.doi.org/10.1007/s10586-015-0525-x
http://dx.doi.org/10.3390/app4020128
http://dx.doi.org/10.1109/83.148613
http://www.ncbi.nlm.nih.gov/pubmed/18296173
http://dx.doi.org/10.1016/j.eswa.2011.07.108
http://dx.doi.org/10.1109/JSSC.2003.810064
http://dx.doi.org/10.1016/j.micpro.2007.06.004
http://dx.doi.org/10.1016/j.sysarc.2008.04.007
http://dx.doi.org/10.1007/s11554-013-0387-5
http://dx.doi.org/10.7567/JJAP.55.04EF02
http://dx.doi.org/10.1109/TNN.2002.804221
http://www.ncbi.nlm.nih.gov/pubmed/18244531
http://dx.doi.org/10.1109/TNNLS.2015.2398932
http://www.ncbi.nlm.nih.gov/pubmed/26484943
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Basic Principle of Self-Organizing Map
	Proposed Vector Quantizer Based on SOM
	The Overall Architecture
	The Squared Difference Unit and Memory Block
	The Arithmetic Block
	Minimum Distance Search Circuit

	Experimental Results and Discussion
	Hardware Implementation
	Speed Analysis
	Comparisons

	Conclusions

