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Featured Application: In our proposed method, a new feature named torso angle is firstly 
proposed and imported in the human torso motion model (HTMM) for fall detection. By tracking 
the changing rate of torso angle and centroid height, our fall detection model has a strong 
capability of differentiating falls from other fall-like activities, such as controlled lying down, 
quickly crouching and bending, which may be big obstacles for other existing computer 
vision-based approaches to discriminate. 

Abstract: This paper presents a new approach for fall detection based on two features and their 
motion characteristics extracted from the human torso. The 3D positions of the hip center joint and 
the shoulder center joint in depth images are used to build a fall detection model named the 
human torso motion model (HTMM). Person’s torso angle and centroid height are imported as 
key features in HTMM. Once a person comes into the scene, the positions of these two joints are 
fetched to calculate the person’s torso angle. Whenever the angle is larger than a given threshold, 
the changing rates of the torso angle and the centroid height are recorded frame by frame in a 
given period of time. A fall can be identified when the above two changing rates reach the 
thresholds. By using the new feature, falls can be accurately and effectively distinguished from 
other fall-like activities, which are very difficult for other computer vision-based approaches to 
differentiate. Experiment results show that our approach achieved a detection accuracy of 97.5%, 
98% true positive rate (TPR) and 97% true negative rate (TNR). Furthermore, the approach is time 
efficient and robust because of only calculating the changing rate of gravity and centroid height. 

Keywords: fall detection; human torso motion model; torso angle; centroid height; computer 
vision; depth image; Kinect 

 

1. Introduction 

Falls are one of the major health hazards among the aging population aged over 60. According 
to the report of the World Health Organization, approximately 28~35% of people aged 65 and over 
fall each year and 32~42% for those over 70 years of age. In fact, falls exponentially increase due to 
age-related biological changes, which lead to a high incidence of falls and fall-related injuries in 
ageing societies [1]. Nowadays, falls are not only life threatening, but also one of the major issues in 
elderly health. A fall can cause severe consequences, including broken bones, superficial cuts and 
abrasions to the skin soft tissue [2,3]. If a falling person cannot get help in a short period of time, the 
situation will be even worse. As many people in this ageing group live alone, it is difficult for them 
to seek help immediately. For these and many other reasons, the number of research works on fall 
detection has increased dramatically over recent years. Automatic detection of human falls provides 
help to reduce the time between the fall and the arrival of medical attention [4,5]. 
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During recent years, different kinds of approaches have been proposed to realize automatic fall 
detection. Mubashir et al. [6] classified the fall detection methods into three major categories: the 
wearable device-based method, the ambient sensor-based method and the vision-based method. 

Wearable sensors detect the motion and location of the human body. M.J. Mathie et al. [7,8] 
adopted accelerations as the major feature to identify falls. Sixsmith A. [9] judged falls by checking 
periods of inactivity. M. Kangas et al. [10] identified a fall by analyzing the posture of the person. 
Although these approaches did work in detecting falls, the disadvantages are also obvious. The 
wearable sensors can be worn or damaged due to external factors, and they will not detect falls if the 
person forgets to wear them. Besides, wearable devices may make people feel uncomfortable. 

Another type of approach uses sensors that are deployed in the environment to detect falls. 
Zhuang, Huang et al. [11] checked whether there was a fall by collecting sounds, while  
M. Alwan et al. [12] detected falls by monitoring vibrations in a room. In [13], the authors focus on 
detecting falls in the bathroom by using smart floors to collect floor pressure information. Although 
the ambient sensor-based method is a creative way for fall detection, the accuracy and false alarm 
rate are unacceptable in most situations. Moreover, this kind of operation is limited to those places 
where the sensors have been deployed. 

Due to these main drawbacks of the above two approaches, the computer vision-based method 
has become a hot topic in recent research. The method needs no wearable devices and aims at 
detecting falls by analyzing video streams from one or more cameras. Compared with other 
approaches, this kind of method has more advantages. However, privacy is a problem for the people 
who live under the supervision. Q.M. Rajpoot et al. [14] provided solutions for privacy identification 
and protection. In addition, Chaaraoui, A.A. et al. [15] defined five specific visualization levels 
corresponding to five visualization models, respectively. The appearance of persons can be 
protected at each level to a different degree. Our proposed method is based on computer vision, and 
the usage of only depth images helps maintain privacy. Compared with the method proposed  
in [15], the usage of depth images reaches the third visualization level. More detailed information 
about the typical methods based on computer vision technology is discussed in Section 2. 

The remaining part of this paper is organized as follows. Section 2 gives an overview of the 
current state-of-the-art with regard to features and methods used in the vision-based fall detection 
method. Section 3 describes our model and algorithm of fall detection. Section 4 shows the 
experiment and gives the results of our approach. Section 5 lists three major limitations of our 
model. Finally, we present our concluding remarks in Section 5. 

2. Related Work 

With the development of machine learning, computer vision and image processing techniques, 
the video camera or computer vision-based method has become a new, but hot topic of fall 
detection. Compared with the wearable device-based approaches, the camera or computer 
vision-based methods are less intrusive, more accurate and robust. Moreover, the detection systems 
can be easily updated by downloading the newest programs. 

One typical fall detection method identified and located the person in the video by using a 
vertical projection histogram with a statistical scheme. Then, the ratio of the width and height of the 
bounding box and the absolute difference between these two values were used to detect falls [16].  
In [17], the authors divided the image into many rectangular areas, then falls can be detected by 
calculating the area of the body. Kwolek et al. [18] presented a fuzzy system that used the 
accelerometer and the Kinect sensor to detect the fall event. However, since the human external 
rectangle is difficult to detect accurately, false alarms and missed detections are the major problems 
of this method. 

Video sequence analysis is another major branch of vision-based fall detection. Khan and  
Habib [19] used motion history images and detected large motion in a video sequence. The 
combination of the aspect ratio of the bounding box and the changing rate of width and height were 
used in their approach to detect falls. In [20], overlapping smart cameras were used for fall detection 
and localization. In [21], a single camera covering the full view of the room environment is used for 
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the video recording of an elderly person’s daily activities for a certain time period. Fall detection is 
realized by analyzing the postures that are extracted from video clips. Rougier et al. [22] proposed a 
new way to track 3D head trajectory by only one calibrated camera. The vertical velocity of the 3D 
head is used to judge whether a fall happens. Olivieri et al. [23] used optical flow to detect falls and 
recognize other human activities. 

Recently, depth images have been widely used for action recognition and classification, 
because of the particular advantages in privacy protection and the availability of being easily 
collected by Kinect or other sensors. Lei Yang et al. [24] proposed a fall detection method based on 
spatio-temporal context tracking over three-dimensional (3D) depth images captured by the Kinect 
sensor. Rougier, C. et al. [25] used several cameras to create 3D vision. A measure of the vertical 
distribution along the vertical axis is calculated, and a fall event is detected when this distribution is 
abnormally near the ground for a certain length of time. Gasparrini et al. [26] proposed a fall 
detection method for indoor environments, based on the usage of the Kinect depth sensor in an 
“on-ceiling” configuration and on the analysis of depth frames. Rodrigo Ibañez et al. [27] proposed a 
lightweight approach to recognize gestures with Kinect by utilizing approximate string matching. 
Georgios Mastorakis et al. [28] fetch data from the depth image and detect falls by measuring the 
velocity based on the contraction or expansion of the width, height and depth of the 3D bounding 
box. Aguilar et al. [29] presented a 3D path planning system that uses a point cloud obtained from 
the robot workspace, with a Kinect V2 sensor to identify the interest regions and the obstacles of the 
environment. Alazrai R. [30] built a view-invariant descriptor for human activity representation by 
3D skeleton joint positions to detect falls and other activities. 

However, all of these methods have shortcomings. For example, in [31], the ratio of the height 
and width of the rectangle extracted from a person was used to determine whether a person falls. 
This method uses three features, i.e., human aspect ratio, effective area ratio and center variation 
rate. However, the human aspect ratio changes greatly when the relative positions of the camera and 
the target change, which results in a high false alarm rate and low accuracy of the detection system. 
Multi-cameras [32] and wide-angle camera-based [33] methods are effective ways to detect falls. 
However, the pre-works, i.e., camera installation, image calibration and 3D human identification, 
are difficult and complex. As for the deep learning method [34], the need for a huge number of 
labeled data makes it complicated in adjustment and poor in flexibility. 

3. Our Approach for Fall Detection 

In our proposed method, a new feature named torso angle is adopted. This feature together 
with the centroid height and their motion characteristics form a descriptor for human fall 
representation, called the human torso motion model (HTMM). Different from machine learning 
and deep learning methods, HTMM is a threshold-based approach for fall detection with high time 
efficiency because of the calculation of only the changing rates of the torso angle and centroid height. 
Before we elaborate the model, some technical terms will be detailed first in the following. 

3.1. The Key Concepts and Definitions in HTMM 

3.1.1. Torso Line and Torso Vector 

There are in total 20 points of a person’s skeleton that can be tracked by the Kinect sensor when 
the person is standing, while 10 points when sitting if used in front view. Additionally, the 
untracked joints can be estimated by the embedded program in Kinect. Especially when the part of 
the body that contains the joints can be detected, the positions of these untracked joints can be 
exactly estimated. Figure 1 shows the details of the joints in standing and sitting postures. A line 
connecting the shoulder center and the hip center is a key concept in our algorithm to calculate torso 
angle. This line is named as the torso line and marked in red as shown in Figure 1. 
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(a) (b)

Figure 1. Joints of a person’s skeleton provided by Kinect. (a) Twenty joints of the skeleton that can 
be tracked when the person is standing; (b) 10 joints and two estimated joints of the skeleton when 
the person is sitting, where spin and hip center joints marked with two circles of dotted lines  
are estimated. 

In a red, green, blue (RGB) image, each pixel only contains 2D position information. However, 
the depth image provides each pixel’s 3D position information. Figure 2 shows the joints in 3D depth 
image space. These joints of a person’s skeleton can be considered as pixels in the depth image. With 
these 3D joint points of the skeleton, the computer can understand the meaning of human gestures 
when a set of complex activities is made by human beings in front of the Kinect. As the main 
purpose of our system is to alarm as soon as a fall happens, we only take the shoulder center and hip 
center joints into consideration. In other words, our method only pays attention to the human torso. 

The torso line can be represented as a vector and calculated by: 

( , , )h h hHS X Xs Y Ys Z Zs= − − −


, (1) 

where  is the vector of the torso line. H(Xh, Yh, Zh) is the position of the hip-center joint in 3D 
coordinates, and S(Xs, Ys, Zs) indicates the position of the shoulder-center joint. We call the vector the 
torso vector in our approach. 

 
Figure 2. Depth image space created by the Kinect sensor. 

3.1.2. Gravity Vector and Torso Angle 

As we all know, the gravity line is always vertical to the ground. Therefore, all lines parallel 
with the y-axis can be seen as the gravity lines. Every two points on the gravity line can form a 
vector, which is called the gravity vector in our approach. 

According to vector translation theory in solid geometry, the start point of the gravity vector 
and the start point of the torso vector can be moved to origin coordinates. We take a middle frame of 
a fall video for example. Figure 3 shows the process of forming the torso angle. 
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(a) (b) (c) 

Figure 3. The process of extracting torso angle from a depth image. (a) A depth image fetched from a 
middle frame in a fall video; (b) torso vector represented in 3D coordinates; (c) torso angle 
represented in a 2D plane after vector translation. 

According to the cosine law, the angle between these two vectors, named the torso angle, can be 
calculated by:  

cos( ) cos( , )
| | | |

HS GH
HS GH

HS GH
α •= =

×

  
 

, 
(2) 

where  means the vector from any point on the y-axis to the hip center joint. Since the point on 
the gravity line is self-defined and the hip center is moved to the origin coordinates,  
so = (0, − , 0). Equation (2) can be also represented by: 

2 2 2
( ) ( ) ( )

cos( ) cos( , )
h

h s h hs s

Y Ys

X X Y Y Z Z
GH HSα −

− + − + −
= =

 
, (3) 

Figure 4 shows the torso angles in three common daily activities, standing, walking and sitting. 
Figure 4a–c shows the RGB images of each video and Figure 4d–f are their depth images marked 
with the torso line and the gravity line. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 4. The torso angles in three common daily activities. (a–c) the RGB images of standing, 
walking and sitting; (d–f) their depth images, where the solid line is the gravity line and the dotted 
line is the torso line. 

  



Appl. Sci. 2017, 7, 993 6 of 17 

3.1.3. Centroid Height 

Centroid height means the distance from the centroid point of a person to the ground. In our 
approach, we adopt the hip center joint as the rough centroid of a person. There are three reasons for 
using the hip center joint as the centroid, rather than calculating the human shape pixels and finding 
out the centric position. First, the exact centroid of the human shape is not necessary for our method. 
The approximated point is also a good choice because of the consideration of only the descending 
rate of its height. Secondly, the hip touching the ground is a common scene in nearly all kinds of 
falls. Therefore, although the position of the hip center joint is not the exact position of the centroid 
of the human shape, it is more representative for fall detection. Thirdly, the Kinect software 
development kit (SDK) provides a set of user-friendly and effective functions to track or estimate the 
position of the hip center. 

Before calculating the centroid height, ground plane should be found out first. Although 
finding out the ground plane is a complex work, Kinect SDK provides four parameters for us, which 
can be used to exactly calculate the height from any points in the depth image to the ground plane. 
Equation (4) shows the four parameters. 

0Ax By Cz D+ + + = , (4) 

where A, B, C and D are the ground parameters that can be used to calculate point height. 
The height from the hip center to the ground Hc is calculated using Equation (5). 

2 2 2

|  |c c cAx By Cz D
Hc

A B C

+ + +=
+ +

, (5) 

where C(Xc, Yc, Zc) is the hip center joint in the depth image. 
Through our experiments, we found that the centroid height can be exactly calculated by 

Equation (5) only when the ground is in the scene. When the Kinect sensor is installed too high to 
detect the ground, parameters cannot be accurately provided. All four parameters will be set to zero 
as their default values. Obviously, it will be a big obstacle to estimate one’s centroid height. To 
address this issue, we use the right foot point to estimate the height of centroid when the ground 
parameters are zero. Therefore, Equation (5) is enhanced as: 

2 2 2

2 2 2

ground can be detected

ground cannot be detected

| |

( ) ( ) ( )

c c c

c f c f c f

Ax By Cz D

A B CHc

x x y y z z

+ + +
 + += 
 − + − + −

, 
(6) 

where f(Xf, Yf, Zf) is the position of the right foot joint in the 3D coordinate. 
Figure 5 shows the value of centroid height in two typical daily activities, crouching and 

walking. From the experiment data, it can be concluded that the deviation caused by calculating 
based on the right foot joint is acceptable. 

 
(a) (b)

Figure 5. The values of centroid height recorded in two daily activities videos: crouching and 
walking. (a) Centroid height in crouching activity video; (b) centroid height in walking  
activity video. 
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3.2. Human Torso Motion Model 

Fall activity is the balance loss of a person. When a fall happens, it is always accompanied with 
sharp changes in the torso angle and the centroid height. In the proposed method, we take the torso 
angle and the centroid height as two key features. There are our thresholds in our fall detection 
model, where Tα is the threshold for the start key frame detection, Tvα is the threshold of the 
changing rate of the torso angle, Tvh is the threshold of the velocity of the centroid height and Ŧ is the 
tracking time after the torso angle exceeded Tα. In HTMM. The changing rates of the torso angle and 
centroid height are calculated frame by frame after the torso angle exceeded Tα. The max values of 
these two features in the given period of time, Ŧ, are compared to their thresholds, respectively. 
When both rates exceed their corresponding thresholds Tvα and Tvh, a fall is detected. 

For the result shown in the limit of stability test (LOST), an adult person can keep his/her 
balance with the body leaning forward/backward no more than 12.5 degrees and leaning left/right 
no more than 16 degrees [35]. In LOST, the person is asked to keep the whole body in a line. 
However, there is always an angle between the lower body and the upper body in daily activities. 
However, the person’s torso always keeps parallel with the gravity line. Therefore, we take the torso 
line rather than the body line to form the torso angle with the gravity line. In our experiments, the 
torso angle exceeding 13 degree is the start of our detection model. The usage of only the torso angle 
to detect falls is insufficient and will result in low accuracy and a high false alarm rate. For example, 
bending or controlled lying down will be judged as a fall. To address this issue, the centroid height is 
imported in our model as the second feature. 

Since a fall is an activity that usually happens in a short period of time (in our experiments, 
most of the fall samples last 1.1~1.6 s), for a video captured with 30 frames per second, there are 
33–48 images during a fall. Thus, we built a motion model called HTMM for fall detection. In this 
model, we pay special attention to the changing rate of torso angle and centroid height in a given 
period of time. 

Assume that the given period of time is represented as Ŧ, and N (n | n∈ Z ∧ n ≤ Ŧ × 30) denotes 
the frames’ order in Ŧ. 

Then, the person’s torso angle (α), centroid height (H) and recorded time (T) in each frame can 
be represented as: α = {α1, α2, …, αn}, H = {h1, h2, …, hn}, T = {t1, t2, …, tn}. 

The changing rates of α and H in Ŧ of each frame are calculated using Equations (7) and (8). 

1

1

| R i
t i i

i

V x x x
t t

α α α −= ∈ Λ = − 
, (7) 

1

1

| y Rh i
t i i

i

h h
V y y

t t

 −= ∈ Λ = − 
, (8) 

In HTMM, the max changing rates of torso angle and centroid height in the given period of time 
are used to compare with their thresholds, Tvα and Tvh. When both of them exceed their thresholds, 
HTMM outputs 1one to indicate that the activity is judged as a fall; else HTMM outputs zero to 
indicate that it is not. Our model can be represented as: 

vMax( ) Max( )1      
HTMM ,  = 

0      else   

h

t t vhV T V T
h t

α
αα > > Λ




（ ， ） , (9) 

Figure 6 shows the general block diagram of our approach. 
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Figure 6. General block diagram of our approach; where ( ) is the max changing rate of the 
centroid height in the given period of time and ( ) the max changing rate of the torso angle in 
the given period of time. The definitions of the given threshold values are elaborated in Section 4. 

The general block can be divided into two main steps. The first step is calculating the torso 
angle of every frame and comparing it with the threshold value. When the torso angle reaches the 
threshold value, the program turns to Step 2. The second step is tracking the changing rate of torso 
angle and centroid height frame by frame in a given period of time. Once both rates exceed the 
threshold value, the activity is judged as a fall, and the system starts alarming; or the activity is 
considered as a normal activity when the given period of time is over, and the program turns back to 
Step 1 to start another loop. The pseudocode of our fall detection method is described in the 
following Algorithm 1. 

Algorithm 1: Pseudocode of our proposed method for fall detection.
Input: Sequence of the skeleton frames captured by Kinect sensor
Output: bool bFallIsDetected 
Loop 1: 
while (torsoAngle < Tα) 
{ 

joint_shoulderCenter ← fetch shoulder center 3D position from current skeleton frame; 
joint_hipCenter ← fetch hip center 3D position from current skeleton frame; 
torsoAngle ← calculate torso angle of current skeleton frame; 

} 
       
Loop 2: 
While (trackingTime < Ŧ) 
{ 

V_torsoAngle ← calculate the current torso angle changing rate by current frame; 
MaxV_torsoAngle ← update its value if V_torsoAngle is larger 
V_CentroidHeight ← calculate the current centroid height changing rate by current frame; 
MaxV_CentroidHeight ← update its value if V_ CentroidHeight is larger 



Appl. Sci. 2017, 7, 993 9 of 17 

If (MaxV_torsoAngle > Tvα && MaxV_CentroidHeight > Tvh) 
{ 
    bFallIsDetected = TRUE; 
    fallAlarm(); 
} 

} 
goto Loop 1; 

In HTMM, we introduced the torso angle to clearly judge whether the supervised person is in 
balance or not. Furthermore, the centroid height is used to find out whether the person is falling. 
These two features make HTMM have high accuracy in fall detection and work well in 
differentiating fall and fall-like activities. Figure 7 lists three typical fall-like activities that cause a 
high false alarm rate in previous approaches. 

 
(a) (b)

Figure 7. The data changing curve of the torso angle and centroid height. (a) The torso angle data 
changing curve; (b) the centroid height data changing curve. 

In the bounding box ratio analysis approach, the ellipse shape analysis approach or even deep 
learning approach, the biggest shortcoming of these methods is that there is not a clear line between 
balance and unbalance. Therefore, when fall-like activity appears, the system will consider it as a 
fall. However, the torso angle together with the centroid height make it easy for HTMM to 
distinguish fall-like activities. Take the activities in Figure 7 as examples; each activity reaches only 
one threshold of two features. For controlled lying down and bending, although the torso angle 
changes greatly in a short period of time, the centroid height has no changes or changes little during 
this activity; while for crouching, the centroid height changes dramatically in a short period time, 
but the torso angle keeps at 12.5 degrees, which is lower than the threshold. Section 4 elaborates 
detailed statistics of our experiments. 

4. Experiment and Results 

4.1. Experimental Setup and Dataset 

Our method was implemented using Microsoft Visual Studio 2013 Ultimate 2013 (Redmond, 
WA, USA) + emgu.cv3.1 (SourceForge, San Francisco, CA, USA)+ Microsoft Kinect sensor v1.0 2013 
(Redmond, WA, USA)on a PC using an Intel Core i7-4790 3.60-GHz processor, 8 GB RAM clocked at 
1333 MHz. Since Kinect is a newly emerging sensor and the feature, the torso angle, is first raised 
and imported for fall detection, the existing depth action datasets cannot provide the necessary 
information we need. For example, Cornell Activity Datasets CAD-60/120 [366], the most 
commonly-used RGB-D dataset for action recognition, contains 12 activities, such as rinsing mouth, 
brushing teeth, wearing contact lens, etc., which do not provide falling action samples. Therefore, we 
built a dataset by ourselves for experiments. 
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This dataset was collected using Microsoft Kinect sensor v1.0, which was installed 1.4 m high 
from the ground. The people involved in the self-collected dataset are aged between 20 and 36, with 
different heights (1.70~1.81 m) and genders (four male and one female volunteers). The distance 
from the monitored person to the Kinect sensor is between 3 and 4.5 m. The actions performed by 
the single volunteer were separated into two categories: ADL (activity of daily living, including 
walking, controlled lying down, bending and crouching) and fall (four directions of falls, including 
forward, backward, left and right). For safety and realistic performance considerations, subjects 
performed the fall actions on a 15 cm-thick cushion. Each activity is repeated five times by each 
subject involved. There are in total 100 fall videos (each fall direction contains 25 videos) and 100 
ADL videos (each ADL contains 25 videos). In these experiments, the five volunteers were asked to 
perform in slow motion to imitate the behavior of an elderly person at least one time in different 
kinds of activities. The joints positions in the 3D coordinates and joint heights were recorded frame 
by frame in an XML file. The fall samples contain 55~290 frames, and the ADL samples contain 
65~317 frames in each video. All of the samples start by standing postures, which last 1~8 s, 
containing 30~240 frames. 

4.2. Result and Evaluation 

The human skeleton is used to track the monitored person and to discriminate human objects 
and other objects. Figure 8 shows that the Kinect-provided skeleton is an effective way to recognize 
the human object correctly, even when the joints are covered by a skirt or gown or there are other 
objects in the scene. Additionally, walking devices, such as a walking stick, can also be recognized 
and excluded from skeleton information by the embedded program of Kinect. Although the joints of 
the lower part of the skeleton may have a slight deviation where they are covered, the effect on the 
accuracy of HTMM can be ignored because of the consideration of only the shoulder center and hip 
center joints. 

  

  
Figure 8. The detected skeletons with different postures, clothes or walking devices. 

The four typical falls in Figure 9 show the common torso angle and centroid height changes. 
Before a fall is detected, the torso angle increases rapidly while the centroid height declines sharply. 
In HTMM, the changing rate of the torso angle, the changing rate of the centroid height and the 
tracking time are the three parameters that have a strong effect on the accuracy. In [Error! Reference 
source not found.7], the range of the decay rate of the centroid height is from 1.21~2.05 m/s. We set 
1.21 m/s as its threshold value in our model. Through the experiments, our approach received the 
best accuracy rate when the parameters were set as follows: 

Tvα = 12 degree/100 ms  
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Tvh = 1.21 m/s  

Ŧ = 1300 ms  

where Tvα is the threshold value of the torso angle increase rate, Tvh is the centroid height decay rate 
and Ŧ is the tracking time. 

 
(a)

 
(b)

 
(c)

 
(d)

Figure 9. Detected frames of different falls and two features’ curves. The left picture of each group is 
the depth image of the frame when our method detected the fall. The dotted line in the depth image 
stands for the torso line, while the solid line stands for the gravity line. Shoulder center joint and hip 
center joint were marked in red. (a) Fall left; (b) fall right; (c) fall forward; (d) fall backward. 

As shown in Figure 10, most falls of our self-collected dataset happened in 1.1~1.6 s. Therefore, 
the values from 1100~1600 ms are all suitable for Tα. The max changing rates of the torso angle and 
the centroid height in this period are used in HTMM to check whether there is a fall. In the program, 
we took 1300 ms as the default value. 
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Figure 10. The duration of each fall in the self-collected dataset. There are in total 100 fall videos in 
the dataset. 

Eleven groups of experiments were tested on the self-collected dataset with different Tvα to find 
out its best default value. According to the results, when Tvα was set 12 degree/100 ms, a fall can be 
detected in the middle of the activity; while a fall may not be detected if Tvα was set too large, and 
false alarm rate increases when Tvα was set too small. Table 1 shows the test results on our 
self-collected dataset with different values of Tvα. 

Table 1. The test results on the self-collected dataset with different Tvα. TP: true positive; FN: false 
negative; FP: false positive; TN: true negative 

Tvα 
Fall Non-Fall

 

TP FN FP TN
0 98 2 4 96 
3 98 2 4 96 
6 98 2 4 96 
9 98 2 4 96 

12 98 2 3 97
15 93 7 2 98 
18 92 8 1 99 
21 89 11 1 99 
24 86 14 1 99 
27 80 20 1 99 
30 70 30 1 99 
33 67 33 1 99 

Figures 11 and 12 record the changing curves of the torso angle and centroid height of the five 
wrongly judged samples. By reviewing the data, we found that there are two major factors that affect 
the accuracy of our method. First and foremost, in rare situations, joint positions may be improperly 
provided by the embedded program of the Kinect sensor. For example, in Figure 11, from  
Frame 22~Frame 24 of the “lay” curve, the torso angle increased from 20~69.8 degrees. This 
abnormal transformation let our method make false judgments in two fall samples and one lay 
sample. Secondly, some samples were too quick to be detected correctly. For examples, “crouch” 
and “bend” curves show that the actions were accompanied with a quick lean of the upper body. For 
the first factor, the average filter or other filters can be employed to address the issue. For the second 
factor, the centroid height can be employed as the third feature to improve the accuracy of our 
method. These two improvements are under further investigation for our future work. 
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Figure 11. The torso angle changing curves of falsely judged samples. 

 
Figure 12. The centroid height changing curves of falsely judged samples. 

Fall detection systems are expected to detect falls as soon as possible, so that the most severe 
consequences of falls will be avoided if the falling person can be assisted immediately. Our method 
has advantages in time efficiency because of the calculation of only two features. Figure 13 records 
the time consumptions of each frame in walk and fall. 

 
Figure 13. The time consumptions of each frame in walk and fall. The two test videos of this graph 
were selected randomly from the self-collected dataset. 
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As shown in Figure 13, most frames were processed in 0.1~0.8 ms. Although a few frames 
needed 1.6~1.8 ms, the processing time of each frame can be ignored because the time interval 
between two frames (33.33 ms in our 30 fps videos) is far larger than it. 

False alarms comprise one of the biggest obstacles that prevent the computer vision-based fall 
detection method from being commercialized. Our approach works well in reducing the false alarm 
rate in fall-like activities’ detection. Table 2 records the detailed results. 

Table 2. Experimental results and evaluation of our approach. 

Activity Type The Number of 
Sample Videos 

The Number of 
Detected as Fall 

Videos 

Fall 100 98 

Lay 25 1 

Crouch 25 1 

Bend 25 1 

Walk 25 0 

In Table 2, TP (true positive) denotes the fall samples that are judged as falls. FP (false positive) 
means the non-fall samples that are judged as falls. TN (true negative) denotes the non-fall samples 
that are judged as non-falls. FN (false negative) means the fall samples judged as non-falls. Then, 
we have TPR = 	 	 , TNR = 	 	  and Accuracy = 	 		 	 	 	 	 	 . 

We compared our proposed method with other Kinect sensor-based approaches [22,24,26,28]. 
All of these approaches were tested on our self-collected dataset. The results are recorded in  
Table 3. 

Table 3. Comparison of the fall detection capability on our self-collected dataset with other 
Kinect-based fall detection approaches. 

Approach 
Fall

Crouch Bend Walk Lay 
Forward Backward Left Right

Rougier, C. et al. [22] 25 25 25 25 11 20 0 1 
Yang, L. et al. [24] 10 15 23 18 2 8 0 25 

Gasparrini, S. et al. [26] 23 22 25 25 12 25 0 25 
Mastorakis, G. et al. [28] 8 22 21 25 0 0 0 0 
Our proposed method 25 23 25 25 1 1 0 1 

As shown in Table 3, all of the approaches worked well in discriminating fall and walk. 
However, the height-based approaches [24,26] were unable to differentiate fall and other fall-like 
activities. Especially in terms of controlled lying down, all of the lay samples were wrongly judged 
as falls by the above two methods. The vertical height velocity-based approach [22] performed 
much better than height-based approaches [24,26] in discriminating fall and controlled lying down, 
but it performed poorly in differentiating fall, crouch and bend. The main reason is that both 
height-based and vertical velocity-based approaches did not lay a clear line between balance and 
unbalance. Hence, the fall-like activities are difficult or even impossible to detect correctly. As for 
the bounding box-based approach [28], it performed well in differentiating fall and fall-like 
activities. However, it performed badly in terms of detecting falling forward. By reviewing these 
undetected forward fall samples, we found that the main feature, Vwd, which was calculated by = ℎ + ℎ  [28], changed more gently than it should be in the front-view condition. 
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Although the accuracy can be improved by programmatic calibration, it is an uneasy tricky work. 
After comparing and analyzing these Kinect sensor-based approaches for fall detection, the 
conclusion was made as given in Table 4. 

Table 4. The general comparison of different categories of Kinect sensor-based fall detection approaches. 

Approach 
Capability of 

Detecting Falls 

Capability of 
Discriminating 

Controlled Lying 
Down 

Capability of 
Discriminating ADLs 

with Changing slightly 
in Height 

Capability of 
Discriminating Fall-Like 
Activities with Changing 

Sharply in Height 
Height based method High Poor High Poor 
Height velocity based method High High High Poor 
Bounding box/ratio of the height 
and width based methods 

Medium High High High 

Our proposed method High High High High 

5. Conclusions 

In this paper, we proposed a new and fast fall detection method based on the Kinect sensor. A 
motion model named the human torso motion model (HTMM) is proposed. A new and significant 
feature named torso angle was firstly adopted in our approach for fall detection. Comparing with 
existing posture-based approaches, machine learning-based methods and wearable device-based 
approaches, our proposed approach has obvious advantages in privacy protection and fall-like 
activities’ differentiation. Our method is time efficient and robust because of the calculation of only 
the changing rate of torso angle and centroid height. Moreover, the usage of only the Kinect sensor is 
inexpensive, affordable for common families and capable of being easily applied in the elderly 
person’s home. However, compared to a monocular video camera, the limitation of the utilized 
Kinect sensor is the relatively narrow field-of-view. The best distance from the monitored person to 
the Kinect sensor should be within 7 m. Beyond this distance, the depth data become unreliable. 
Nevertheless, the Kinect-based approaches are still effective, efficient and widely used for  
fall detection. 

Although the Microsoft Kinect sensor v2.0 was launched in 2013 and is more powerful than its 
1.0 version, Microsoft Kinect sensor v1.0 is sufficient for our proposed method because of the 
calculation of only two joints and the cost reduction. The mechanism of our proposed method is 
suitable for Kinect sensor 2.0, as well. In our future work, Kinect sensor 2.0, which is more sensitive 
than Kinect 1.0, will be adopted to collect depth images that contain more information for more 
possible improvement. Our fall detection model will be continuously improved by further 
importing other filters and other features to address exceptional situations. 
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