Supplementary Materials: Computational and Experimental Study on Molecular Structure of benzo[g]pyrimido[4,5-b]quinoline Derivatives: Preference of Linear over the Angular Isomer

Jorge Trilleras¹, Dency José Pacheco¹, Alfredo Pérez-Gamboa¹, Jairo Quiroga², Alejandro Ortiz², Jaime Gálvez³, Manuel Nogueras and Justo Cobo⁴

Table of Contents

General Information	S2
General Procedure for the MCR of compounds 4a-q	S2
Spectroscopic Data of 4a-q	S2 – S8
Figure S1. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4a	S8
Figure S2. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4b	S9
Figure S3. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4c	S10
Figure S4. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4d	S10
Figure S5. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4e	S11
Figure S6. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4f	S11
Figure S7. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4g	S12
Figure S8. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4h	S12
Figure S9. ¹ H-NMR (400 MHz, DMSO- <i>d</i> ₆) spectra of compound 4i	S13
Figure S10. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4j	S13
Figure S11. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4k	S14
Figure S12. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 41	S14
Figure S13. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4m	S15
Figure S14. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4n	S16
Figure S15. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 40	S16
Figure S16. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4p	S17
Figure S17. ¹ H-NMR (400 MHz, DMSO-d ₆) spectra of compound 4q	S17
Figure S18. X-ray structure of compound 4c	S18
Figure S19. Conformation of the pyridine ring in the structure of compound 4c	S18
Table S1. X-ray data and calculated bond lengths, bond angles and dihedral angles of 4c at	
DFT method	S18
Figure S20. One-dimensional potential energy surface (PES) scan of the calculated energies	
vs. dihedral angles (τ) using DFT/B3LYP/6-31G (d,p) for 5-(4-methoxyphenyl)-2-methylthio-	
5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3 <i>H</i>)-trione 4c	S22
Figure S21. Highest and lowest energy conformations using DFT/B3LYP/6-31G(d,p) for 4c	S22
Table S2. Experimental FT-IR and computed vibrational bands for 4c and their assignments	
at B3LYP/6-31G(d,p) level	S23
Table S3. Occupation of natural orbitals and hybrids for 4c calculated by the DFT/B-3LYP/6-	523
31G (d,p) method for the representative atoms	525
Table S4. Occupation of natural orbitals (NBO) no Lewis and hybrids for 4c calculated by the	
DFT/B-3LYP/6-31G (d,p) method for the representative atoms	S24
Table S5. Analysis perturbation theory second order in Fock matrix in NBO by level	\$25
calculation B3LYP/6-31G (d,p) for compound 4c	020
Table S6. Electrical dipole moment, polarizability and first order hyperpolarizability of 4c at	

the level DFT/B3LYP/6-31G (d,p)	S25
Table S7. Enthalpy, Gibbs free energy and entropy calculated for 4c and 5c compounds	S26

General Information

All reagents used in this work were purchased commercially without further purification. Identifications of compounds and measurements of properties were carried out by general procedures employing the following equipment: Microwave irradiation was carried out with microwave oven CEM Discover with controlled power and temperature. Melting points were determined in a Büchi Melting Point Apparatus and are reported uncorrected. The ¹H and ¹³C NMR spectra were measured at RT on a Bruker Avance 400 spectrometer operating at 400 and 100 MHz, respectively, and using DMSO-*d*⁶ as solvent and tetramethylsilane (TMS) as internal standard. The mass-spectra were scanned on a Hewlett Packard HP Engine-5989 spectrometer (equipped with a direct inlet probe) which was operating at 70 eV. Elemental analyses were obtained using a LECO CHNS-900 elemental analyzer.

The compound **4c** was optimized based on the crystal structure. The geometry have been fully optimized using DFT with the Becke three-parameter hybrid exchange and the Lee-Yang-Parr correlation density functional (B3LYP) and the Pople's split-valence 6-31G(d,p) extended basis set. The optimum structures so obtained were further certified as true minima by constructing and diagonalizing the corresponding Cartesian Hessian matrix, this procedure providing also the harmonic vibrational frequencies which, after properly scaled by the recommended scaling factor 0.964, allow reliable calculations of the thermal corrections to the molecular energy. The conformational studies, natural bond orbital (NBO) and nonlinear optical (NLO) analysis NBO and NLO analysis on the title compound were performed; the NBO analyses have been done on B3LYP/6-31+G(d,p) wave functions obtained with the B3LYP/6-31G(d,p) optimum geometries. All calculations were performed by using Gaussian 09W program package [42].

General Procedure for the MCR's of compounds 4a-q.

The mixture of 6-aminopyrimidin-4-one **1** (1 mmol), naphthalene-1,2,4(3*H*)-trione **2** (1 mmol) and aldehyde **3** (1 mmol), were irradiated for 5-9 minutes and 200 $^{\circ}$ C under solvent-free conditions. Upon completion, monitored by TLC, the reaction mixture was cooled to room temperature. The solid was further purified by recrystallization from EtOH (95%).

Spectroscopic Data of 4a- q

2-methylthio-5-phenyl-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4a).

80%. M.p. >300 °C. IR (KBr, υ cm⁻¹), 3398 (N-H st), 2689 (CH₃ st), 1652, 1630 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.55 (s, 3H, SCH₃), 5.25 (s, 1H, CH), 7.11 (t, *J* = 6.78 Hz, 1H, H*p*), 7.21 (t, *J* = 7.28 Hz, 2H, H*m*), 7.30 (d, *J* = 7.78 Hz, 2H, H*o*), 7.76 – 7.84 (m, 2H, H8, H9), 7.90 (d, *J* = 7.28 Hz, 1H, H7), 8.03 (d, *J* = 7.03 Hz, 1H, H10), 9.60 (s, 1H, NH), 12.49 (s, 1H, NH). ¹³C NMR δ (ppm): 12.7 (SCH₃), 54.3 (C5), 117.4 (C4a), 124.5 (C*p*), 125.3 (C*o*), 125.6 (C10), 127.3 (C*m*), 127.9 (C7), 130.3, 131.8 (C10a), 133.2 (C8), 134.6 (C9), 139.3 (C5a), 145.0 (C*i*), 179.1 (C=O), 181.6 (C=O). MS: (70 eV) *m*/*z* = 401 (16, M⁺), 325 (19), 324 (100), 276 (13). Anal. Calcd. for C₂₂H₁₅N₃O₃S C, 65.82; H, 3.77; N, 10.47; found C, 65.85; H, 3.80; N, 10.45.

2-methylthio-5-(4-methylphenyl)-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4b).

80%. M.p. >300 °C (dec). IR (KBr, υ cm⁻¹), 3395 (N-H st), 2929 (CH₃ st), 1651 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.18 (s, 3H, CH₃), 2.55 (s, 3H, SCH₃), 5.21 (s, 1H, CH), 7.00 (d, *J* = 8.03 Hz, 2H, Hm), 7.16 (d, *J* = 8.03 Hz, 2H, Ho), 7.77 – 7.84 (m, 2H, H8, H9), 7.90 (d, *J* = 7.53 Hz, 1H, H7), 8.02 (d, *J* = 7.03 Hz, 1H, H10), 9.58 (s, 1H, NH), 12.51 (s, 1H, NH). ¹³C NMR δ (ppm): 12.7 (*p*-CH₃), 20.5 (SCH₃), 34.1 (C5), 117.7 (C4a), 125.6 (C10), 125.9 (C7), 127.7 (Co), 128.7 (Cm), 130.3 (C6a), 131.9 (C10a), 133.3 (C8), 134.8 (C9), 135.6 (C2), 139.2 (C5a), 142.2 (C*i*), 179.2 (C=O), 181.7 (C=O). MS: (70 eV) *m*/*z* (%) = 415 (30, M⁺), 324 (100), 276 (14). Anal. Calcd. for C₂₃H₁₇N₃O₃S C, 66.49; H, 4.12; N, 10.11; found C, 66.48; H, 4.13; N, 10.14.

5-(4-methoxyphenyl)-2-methylthio-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4c).

Yellow crystalline solid, 80%. M.p. >300°C (dec). IR (KBr, υ cm⁻¹), 3272 (N-H st), 2841 (CH₃ st), 1674, 1650 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.55 (s, 3H, SCH₃), 3.65 (s, 3H, OCH₃), 5.18 (s, 1H, H5), 6.76 (d, *J* = 8.79 Hz, 2H, H*o*), 7.18 (d, *J* = 8.79 Hz, 2H, H*m*), 7.77-7.85 (m, 2H, H8, H9), 7.90 (d, *J* = 7.53 Hz, 1H, H7), 8.02 (d, *J* = 7.03 Hz, 1H, H10), 9.60 (s, 1H, H12), 12.52 (s, 1H, H3). ¹³C NMR δ (ppm): 12.7 (SCH₃), 34.0 (OCH₃), 55.0 (C5), 114.0 (C*o*), 129.0 (C*p*), 158.0 (C=O). MS: (70 eV) *m*/*z* = 431 (61, M⁺), 325 (19), 324 (100), 276 (18), 248 (12). Anal. Calcd. for C₂₃H₁₇N₃O₄S C, 64.03; H, 3.97; N, 9.74; found C, 64.02; H, 4.01; N, 9.78.

2-methylthio-5-(3,4,5-trimethoxyphenyl)-5,12-dihydrobenzo[g]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione (**4d**).

80%. M.p. 265 °C. IR (KBr, υ cm⁻¹), 3264 (N-H st), 2933 (CH3 st), 1656 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.55 (s, 3H, SCH₃), 3.58 (s, 3H, OCH₃), 3.67 (s, 6H, OCH₃), 5.22 (s, 1H, CH), 6.57 (s, 2H), 7.77 – 7.85 (m, 2H, H9, H8), 7.93 (d, *J* = 8.53 Hz, 1H, CH), 8.03 (d, *J* = 8.78 Hz, 1H, H10), 9.49 (s, 1H, NH), 12.48 (s, 1H, NH). ¹³C NMR δ (ppm): 12.5 (SCH₃), 34.5 (C5), 55.7 (OCH₃), 59.6 (OCH₃), 105.2 (Co), 125.4 (C7), 125.7 (C10), 133.0 (C8), 134.5 (C9), 135.6, 136.3 (C5a), 139.2, 140.3 (C*i*), 152.4 (C11a), 178.9 (C=O), 181.5 (C=O). MS: (70 eV) *m*/*z* (%) = 491 (48, M⁺), 460 (17), 325 (19), 324 (100), 276 (18). Anal. Calcd. for C₂₅H₂₁N₃O₆S C, 61.09; H, 4.31; N, 8.55; found C, 61.12; H, 4.30; N, 8.58.

2-methylthio-5-(2-thienyl)-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4e).

70%. M.p. 315 °C. IR (KBr, υ cm⁻¹), 3384 (N-H st), 2969 (CH₃ st), 1655 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.55 (s, 3H, SCH₃), 5.53 (s, 1H, CH), 6.81 – 6.85 (m, 2H, Hetaryl), 7.25 (d, *J* = 6.28 Hz, 1H, Hetaryl) 7.77 – 7.86 (m, 2H, H9, H8), 7.97 (d, *J* = 8.53 Hz, 1H, H7), 8.04 (d, *J* = 8.53 Hz, 1H, H10), 9.86 (s, 1H, NH), 12.64 (s, 1H, NH). ¹³C NMR δ (ppm): 12.7 (SCH₃), 29.1 (CH), 116.6 (C4a), 124.3 (CH, Hetaryl), 124.5 (CH, Hetaryl), 125.7 (C10), 126.0 (CH, Hetaryl),

126.7 (C7), 130.3 (C6a), 131.7 (C10a), 133.3 (C8), 134.8 (C9), 138.9 (C5a), 148.0 (C2), 179.1 (C=O), 181.5 (C=O). MS: (70 eV) m/z (%) = 407 (100, M⁺), 392 (11), 346 (18), 324 (59), 276 (18). Anal. Calcd. for C₂₀H₁₃N₃O₃S₂ C, 58.95; H, 3.22; N, 10.31; found C, 58.99; H, 3.25; N, 10.34.

5-(4-fluorophenyl)-2-methylthio-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4f).

70%. M.p. >300 °C. IR (KBr, $v \text{ cm}^{-1}$), 3337 (NH st), 1656 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.56 (s, 3H, SCH₃), 5.25 (s, 1H, H5), 7.03 (t, *J* = 8.79 Hz, 2H, Ho), 7.34 (d, *J* = 7.03 Hz, 2H, Hm), 7.79 – 7.83 (m, 2H, H8, H9), 7.90 (d, *J* = 6.78 Hz, 1H, H7), 8.03 (d, *J* = 7.28 Hz, 1H, H10), 9.64 (s, 1H, NH), 12.53 (s, 1H, NH). ¹³C NMR δ (ppm): 12.8 (SCH₃), 35.7 (C5), 114.8 (C4a), 124.8 (C10), 128.6 (C7), 129.4 (Co), 129.5 (Cm), 131.1 (C8), 134.6 (C9), 141.2 (C*i*), 145.5, 162.3, 178.6 (C=O). MS: (70 eV) *m*/*z* (%) = 419 (84, M⁺), 417, (25), 474 (50), 324 (100). Anal. Calcd. for C₂₂H₁₄FN₃O₃S C, 63.00; H, 3.36; N, 10.02; found C, 63.04; H, 3.34; N, 10.05.

5-(4-chlorophenyl)-2-methylthio-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4g).

80%. M.p. >300 °C. IR (KBr, υ cm⁻¹), 3367 (NH st), 2684 (CH₃ st), 1652, 1626 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.55 (s, 3H, SCH₃), 5.23 (s, 1H, H5), 7.26 (d, *J* = 8.54 Hz, 2H, Ho), 7.32 (d, *J* = 8.54 Hz, 2H, Hm), 7.79 – 7.82 (m, 2H, H8, H9), 7.90 (d, *J* = 7.03 Hz, 1H, H7), 8.03 (d, *J* = 7.03 Hz, 1H, H10), 9.66 (s, 1H, NH), 12.53 (s, 1H, NH). ¹³C NMR δ (ppm): 12.7 (SCH₃), 34.3 (C5), 125.6 (C10), 125.9 (C7), 128.1 (Co), 129.7 (Cm), 130.4 (C6a), 131.8 (C10a), 133.3, 134.7 (C9), 139.4 (C5a), 143.9 (C*i*), 178.5 (C4), 179.2 (C=O), 181.6 (C=O). MS: (70 eV) *m*/*z* (%) = 437 (6, M⁺²), 436 (5.7, M⁺¹), 435 (15, M⁺), 326 (6), 325 (18), 324 (100), 276 (13). Anal. Calcd. for C₂₂H₁₄ClN₃O₃S C, 60.62; H, 3.24; N, 9.64; found C, 60.64; H, 3.22; N, 9.68.

5-(4-bromophenyl)-2-methylthio-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4h).

80%. M.p. >300 °C. IR (KBr, υ cm⁻¹), 3369 (NH st), 1658 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.56 (s, 3H, SCH₃), 5.33 (s, 1H, H5), 7.54 (d, *J* = 8.28 Hz, 2H, Ho), 7.58 (d, *J* = 8.28 Hz, 2H, Hm), 7.77 – 7.82 (m, 2H, H8, H9), 7.89 (d, 1H, *J* = 7.27 Hz, H7), 8.03 (d, 1H, *J* = 7.03 Hz, H10), 9.72 (s, 1H, NH), 12.55 (s, 1H, NH).¹³C NMR δ (ppm): 12.7 (SCH₃), 35.0 (C5), 116.5 (C5a), 125.0, 125.6 (C10), 125.9 (C7), 127.8 (Co), 129.5 (Cm), 131.7 (C10a), 133.2 (C8), 134.7 (C9), 139.7 (C*i*), 149.3 (C2), 162.2, 178.9 (C4), 179.0 (C=O), 181.5 (C=O). MS: (70 eV) *m*/*z* (%) = 469 (17), 467 (8), 325 (19), 324 (100), 276 (14). Anal. Calcd. for C₂₂H₁₄BrN₃O₃S C, 55.01; H, 2.94; N, 8.75; found C, 55.04; H, 2.98 N, 8.72.

3-methyl-2-(methylthio)-5-phenyl-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3H)-trione (4i).

Red solid. 81%. M.p. 277 °C. IR (KBr, υ cm⁻¹), 3227 (N-H st), 1647 (C=O, st), 1522 (C=C, st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.62 (s, 3H, SCH₃), 3.31 (s, 3H, NCH₃), 5.24 (s, 1H. CH) 7.10 (t, *J* = 7.03 Hz, 1H, Hp), 7.20 (t, *J* = 7.53 Hz, 2H, Hm), 7.29 (d, *J* = 7.28 Hz, 2H, Ho), 7.70 – 7.81 (m, 2H, H9, H8), 7.87 (d, *J* = 7.53 Hz, 1H, H7), 8.01 (d, *J* = 7.28 Hz, 1H, H10), 9.68 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (SCH₃), 30.0 (NCH₃), 35.3 (C5), 117.4 (C4a), 125.6 (C10), 125.8 (C7), 126.4 (Cp), 128.0 (Co), 128.6 (Cm), 130.3 (C6a), 131.8 (C10a), 133.2 (C8), 134.7 (C9), 139.2 (C5a), 145.0 (C*i*), 149.7 (C2), 160.2 (C4, C=O), 161.6 (C12a), 179.1 (C=O), 181.5 (C=O). MS: (70 eV) *m*/*z* (%) = 414 (11, M⁺), 337 (100). Anal. Calcd. for C₂₃H₁₇N₃O₃S C, 66.49; H, 4.12; N, 10.11; found C, 66.47; H, 4.15; N, 10.12.

3-methyl-2-(methylthio)-5-(4-methylphenyl)-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3*H*)-trione (4j).

Red solid. 75 %. M.p. 280 °C. IR (KBr, υ cm⁻¹), 3234 (NH st), 1650 (C=0 st), (1521 C=C st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.18 (s, 3H, *p*-CH₃), 2.63 (s, 3H, SCH₃), 2.75 (s, 3H, NCH₃), 5.22 (s, 1H, H5), 7.02 (d, *J* = 8.03 Hz, 2H, Hm), 7.17 (d, *J* = 8.03, 2H, Ho), 7.79-7.83 (m, 2H, H8, H9), 7.90 (d, *J* = 7.28 Hz, 1H, H7), 8.03 (d, *J* = 7.28 Hz, 1H, H-10), 9.72 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (*p*-CH₃), 20.5 (SCH₃), 29.8 (NCH₃), 34.9 (C5), 117.6 (C4a), 125.6 (C10), 125.8 (C7), 127.8 (Co), 128.6 (Cm), 130.3 (C6a), 131.8 (C10a), 133.2 (C8), 134.7 (C9), 135.5 (C11a), 139.1 (C5a), 142.1 (C*i*), 149.7 (C2), 160.2 (C=O), 161.4 (C12a), 179.2 (C=O), 181.6 (C=O). MS: (70 eV) *m*/*z* (%) = 429 (22, M⁺), 337 (100). Anal. Calcd. for C₂₄H₁₉N₃O₃S C, 67.12; H, 4.46; N, 9.78; found C, 67.15; H, 4.45; N, 9.76.

3-methyl-5-(4-methoxyphenyl)-2-methylthio-5,12-dihydrobenzo[*g*]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione (**4k**).

Red solid. 70%. M.p. 282 °C. IR (KBr, $v \text{ cm}^{-1}$), 3222 (NH st), 1647 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.63 (s, 3H, SCH₃), 3.32 (s, 3H, NCH₃), 3.84 (s, 3H, OCH₃), 5.21 (s, 1H, H5), 6.77 (d, *J* = 8.79 Hz, 2H, Ho), 7.21 (d, *J* = 8.53 Hz, 2H, Hm), 7.78 – 7.82 (m, 2H, H8, H9), 7.89 (d, *J* = 8.54 Hz, 1H, H7), 8.03 (d, *J* = 8.53 Hz, 1H, H10), 9.66 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (SCH₃), 29.9 (NCH₃), 34.4 (C5), 54.9 (OCH₃), 113.5 (Co), 117.7 (C4a), 125.6 (C10), 128.8 (Cm), 130.3 (C6a), 131.8 (C*i*), 133.1 (C7), 134.7 (C9), 137.3 (C10a), 138.9 (C5a), 149.6 (C2), 157.8 (C2), 160.2 (C=O), 161.4 (C12a). MS: (70 eV) *m*/*z* (%) = 445 (45, M⁺), 337 (100). Anal. Calcd. for C₂₄H₁₉N₃O₄S C, 64.71; H, 4.30; N, 9.43; found C, 64.75; H, 4.27; N, 9.45.

3-methyl-2-(methylthio)-5-(3,4,5-trimethoxyphenyl)-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3*H*)-trione (**4**).

Brown solid. 80%. M.p. 263 °C. IR (KBr, υ cm⁻¹), 3243 (NH st), 1648 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.62 (s, 3H, SCH₃), 3.33 (s, 3H, NCH₃), 3.56 (s, 3H, OCH₃), 3.67 (s, 6H, OCH₃), 5.21 (s, 1H, H5), 6.57 (s, 2H, Ho) 7.78 – 7.82 (m, 2H, H8, H9), 7.91 (d, *J* = 7.28 Hz, 1H, H7), 8.03 (d, *J* = 7.28 Hz, 1H, H10), 9.60 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (SCH₃), 29.9 (NCH₃), 35.6 (C5), 55.8 (OCH₃), 59.7 (OCH₃), 105.6 (Co), 117.1 (C4a), 125.6 (C7), 125.8 (C10), 130.4 (C6a), 131.8 (C10a), 133.1 (C8), 134.6 (C9), 136.5 (C5a), 140.6 (C*i*), 149.7 (C2,), 152.5 (C11a), 161.5 (C12a), 179.1 (C=O), 181.6 (C=O). MS: (70 eV) *m*/*z* (%) = 505 (76, M⁺), 474 (15), 337 (100). Anal. Calcd. for C₂₆H₂₃N₃O₆S C, 61.77; H, 4.59; N, 8.31; found C, 61.79; H, 4.62; N, 8.34.

3-methyl-2-(methylthio)-5-(4-trifluoromethylphenyl)-5,12-dihydrobenzo[*g*]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione (**4m**).

Red solid. 75%. M.p. >300 °C. IR (KBr, $v \text{ cm}^{-1}$), 3447 (NH st), 1687 (C=O st), 1519 (C=C st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.74 (s, 3H, SCH₃), 2.88 (s, 3H, NCH₃), 5.33 (s, 1H, H5), 7.39 (d, *J* = 7.03 Hz, 1H, H7), 7.56 (d, *J* = 7.06 Hz, 2H, H0), 7.72 – 7.74 (d, *J* = 7.03 Hz, 2H, H*m*), 7.80 (t, 1H, H8), 7.89 (t, 1H, H9), 8.03 (d, *J* = 7.03 Hz, 1H, H10), 9.88 (s, 1H, NH). ¹³C NMR δ (ppm): 14.5 (SCH₃), 29.9 (NCH₃), 35.7 (C5), 99.5 (C4a), 111.6 (C5a), 127.0 (C10), 127.3 (Co), 128.0 (C7), 128.9 (C*m*), 133.2 (C8), 135.4 (C9), 139.7 (C*i*), 149.8 (C2), 157.3, 159.2 (C6a), 160.2 (C=O), 166.1 (C12a), 178.3 (C=O), 198.50 (C6). MS: (70 eV) *m*/*z* (%) = 480 (18, M⁺), 337 (100), 437 (40). Anal. Calcd. for C₂₄H₁₆F₃N₃O₃S C, 59.62; H, 3.34; N, 8.69; found C, 59.65; H, 3.30; N, 8.73.

5-(benzo[*d*][1,3]dioxol-6-yl)-3-methyl-2-methylthio-5,12-dihydrobenzo[*g*]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione (**4n**).

Red solid. 75%. M.p. 254 °C. IR (KBr, υ cm⁻¹), 3225 (NH st), 1647 (C=O st), 1519 (C=C st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.63 (s, 3H, SCH₃), 3.34 (s, 3H, NCH₃), 5.19 (s, 1H, H5), 5.91 (s, 2H, CH₂), 6.74 (d, *J* = 6.79 Hz, 2H, aryl), 6.86 (s, 1H, aryl), 7.78–7.84 (m, 2H, H8, H9), 7.91 (d, *J* = 7.89 Hz, 1H, H7), 8.03 (d, *J* = 8.02 Hz, 1H, H10), 9.72 (s, 1H, NH). ¹³C NMR δ (ppm): 14.45 (SCH₃), 29.9 (NCH₃), 35.0 (C5), 100.7 (CH₂), 107.8, 108.6 (C2′-C6′), 117.3 (C4a), 121.0 (C5′), 125.6 (C10), 125.9 (C7), 130.4 (C6a), 131.8 (C10a), 133.2 (C8), 134.7 (C9), 139.1 (C5a), 145.8 (C*i*), 146.9 (C11a), 149.6 (C2), 160.3 (C=O), 161.6 (C12a), 179.2 (C=O), 181.6 (C6). MS: (70 eV) *m*/*z* (%) = 458 (38, M⁺), 337 (100). Anal. Calcd for C₂₄H₁₇N₃O₅S C, 62.74; H, 3.73; N, 9.15; found C, 62.71; H, 3.71; N, 9.18.

5-(4-fluorophenyl)-3-methyl-2-methylthio-5,12-dihydrobenzo[g]pyrimido[4,5-b]quinoline-4,6,11(3*H*)-trione (**4o**).

Red solid. 74%. M.p. 276 °C. IR (KBr, υ cm⁻¹), 3237 (NH st), 1646 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.61 (s, 3H, SCH₃), 3.30 (s, 3H, NCH₃), 5.22 (s, 1H, H5), 7.01 (d, *J* = 7.30 Hz, 2H, Ho), 7.32 (t, *J* = 7.30 Hz, 2H, Hm), 7.77-7.82 (m, 2H, H8, H9), 7.87 (d, *J* = 7.98 Hz, 1H, H7), 8.01 (d, *J* = 7.03 Hz, 1H, H10), 9.73 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (SCH₃), 29.9 (NCH₃), 34.8 (C5), 114.6 (C4a), 114.8 (C6a), 117.1 (C10a), 125.6 (C10), 125.9 (C7), 129.8 (Co), 130.3 (Cm), 131.7 (C11a), 133.2 (C8), 134.7 (C9), 139.3 (C*i*), 149.8 (C2), 179.1 (C=O), 181.5 (C=O). MS: (70 eV) *m*/*z* (%) = 441 (7, M⁺), 432 (22), 430 (42), 387 (75), 337 (100). Anal. Calcd. for C₂₃H₁₆FN₃O₃S C, 63.73; H, 3.72; N, 9.69; found C, 63.77; H, 3.76; N, 9.70.

5-(4-chlorophenyl)-3-methyl-2-methylthio-5,12-dihydrobenzo[*g*]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione (**4p**).

Red solid. 71%. M.p. 283 °C. IR (KBr, $v \text{ cm}^{-1}$), 3233 (NH st), 1648 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.62 (s, 3H, SCH₃), 3.31 (s, 3H, NCH₃), 5.24 (s, 1H, H5), 7.24 (d, *J* =8.28 Hz, 2H, H*o*), 7.32 (d, *J* = 8.28 Hz, 2H, H*m*), 7.78– 7.82 (m, 2H, H8, H9), 7.88 (d, *J* = 7.28 Hz, 1H, H7), 8.02 (d, *J* = 7.28 Hz, 1H, H10), 9.75 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (SCH₃), 29.8 (NCH₃), 35.1 (C5), 116.8 (C4a), 125.6 (C10), 125.9 (C7) 127.9 (C*o*), 129.8 (C*m*), 133.2 (C8), 134.7 (C9), 139.5 (C5a), 143.9 (C*i*), 149.7 (C2), 160.2 (C4), 161.8 (C12a), 179.1 (C=O), 181.5 (C=O). MS: (70 eV) *m*/*z* (%) 448 (12, M⁺), 337 (100). Anal. Calcd. for C₂₃H₁₆ClN₃O₃S C, 61.40; H, 3.58; N, 9.34; found C, 61.37; H, 3.57; N, 9.33.

5-(4-bromophenyl)-3-methyl-2-methylthio-5,12-dihydrobenzo[*g*]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione (**4q**).

Red solid. 76%. M.p. 264 °C. IR (KBr, $v \text{ cm}^{-1}$), 3228 (NH st), 1650 (C=O st). ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.62 (s, 3H, SCH₃), 3.30 (s, 3H, NCH₃), 5.20 (s, 1H, H5), 7.25 (d, *J* = 8.29 Hz, 2H, Ho), 7.37 (d, *J* = 8.53 Hz, 2H, Hm), 7.77 – 7.81 (m, 2H, H8, H9), 7.88 (d, *J* = 7.27 Hz, 1H, H7), 8.01 (d, *J* = 8.03 Hz, 1H, H10), 9.73 (s, 1H, NH). ¹³C NMR δ (ppm): 14.4 (SCH₃), 29.8 (NCH₃), 35.2 (C5), 99.4 (C4a), 116.7 (C5a), 119.5 (Cp) 125.5 (C10), 125.8 (C7), 130.2 (Co), 130.3 (C6a), 130.9 (Cm), 131.7 (C10a), 133.2 (C8), 134.7 (C9), 139.4 (C*i*), 144.3 (C11a), 149.7 (C2), 160.1 (C4), 161.8 (C12a), 179.0 (C=O), 181.5 (C=O). MS: (70 eV) *m*/*z* (%) = 492 (9, M⁺), 337 (100). Anal. Calcd. for C₂₃H₁₆BrN₃O₃S C, 55.88; H, 3.26; N, 8.50; found C, 55.91; H, 3.29; N, 8.49.

Figure S1. ¹H-NMR (400 MHz, DMSO-d₆) spectra of compound 4a.

Figure S2. 1H-NMR (400 MHz, DMSO-d6) spectra of compound 4b.

Figure S5. 1H-NMR (400 MHz, DMSO-d₆) spectra of compound 4e.

Figure S6. 1H-NMR (400 MHz, DMSO-d6) spectra of compound 4f.

Figure S8. ¹H-NMR (400 MHz, DMSO-*d*₆) spectra of compound 4h.

Figure S9. ¹H-NMR (400 MHz, DMSO-d₆) spectra of compound 4i.

Figure S10. 1H-NMR (400 MHz, DMSO-d6) spectra of compound 4j.

Figure S11. ¹H-NMR (400 MHz, DMSO-d₆) spectra of compound 4k.

Figure S12. 1H-NMR (400 MHz, DMSO-d6) spectra of compound 41.

Figure S13. ¹H-NMR (400 MHz, DMSO-d₆) spectra of compound 4m.

Figure S14. ¹H-NMR (400 MHz, DMSO-*d*₆) spectra of compound 4n.

Figure S15. ¹H-NMR (400 MHz, DMSO-*d*₆) spectra of compound 40.

Figure S16. 1H-NMR (400 MHz, DMSO-d₆) spectra of compound 4p.

Figure S17. 1H-NMR (400 MHz, DMSO-d6) spectra of compound 4q.

Figure S18. X-ray structure of 5-(4-methoxyphenyl)-2-methylthio-5,12-dihydrobenzo[*g*]pyrimido[4,5*b*]quinoline-4,6,11(3*H*)-trione **4c**: (Left) ORTEP diagram, displacement ellipsoids are drawn at the 30% probability level. (Right) The optimized structure with B3LYP/6-31G(d,p) level.

Figure S19. Conformation of the dihydropyridine ring in the structure of compound 4c.

Parameter			Parameter		
Bond Length (Å)	Experimental X-ray	6-31G(d,p)	Bond Length (Å)	Experimental X-ray	6-31G(d,p)
N1-C2	1.31 (4)	1.33	C11-C17	1.50 (4)	1.49
N1-C13	1.37 (4)	1.40	C11-C18	1.50 (4)	1.51
C2-N3	1.36 (4)	1.38	C11-O23	1.22 (4)	1.21
C2-S19	1.75 (3)	1.76	N12-C13	1.38 (4)	1.40
N3-C4	1.39 (4)	1.47	N12-C18	1.37 (4)	1.41
C4-C14	1.43 (4)	1.44	C13-C14	1.37 (4)	1.39
C4-O21	1.24 (4)	1.21	C15-C18	1.34 (4)	1.36
C5-C14	1.52 (4)	1.51	C16-C17	1.39 (4)	1.41
C5-C15	1.52 (4)	1.52	S19-C20	1.79 (3)	1.80
C5-C24	1.54 (5)	1.52	C24-C25	1.39 (4)	1.41
C6-C15	1.47 (4)	1.49	C24-C29	1.38 (5)	1.40
C6-C16	1.50 (4)	1.50	C25-C26	1.38 (5)	1.39
C6-O22	1.22 (4)	1.21	C26-C27	1.38 (5)	1.41
C7-C8	1.38 (4)	1.40	C27-C28	1.40 (5)	1.40
C7-C16	1.39 (4)	1.40	C27-O44	1.37 (4)	1.38

Table S1. X-ray data and calculated bond lengths, bond angles and dihedral angles of 4c at DFT method.

C8-C9	1.39 (5)	1.39	C28-C29	1.37 (5)	1.40
C9-C10	1.38 (5)	1.40	O44-C45	1.44 (4)	1.45
C10-C17	1.40 (4)	1.40			

Parameter			Parameter		
Bond angles °	Experimental X-ray	6-31G(d,p)	Bond angles °	Experimental X-ray	6-31G(d,p)
C2-N1-C13	115.2 (3)	116.7	C5-C14-C13	124.0 (3)	121.5
N1-C2-N3	123.4 (3)	124.3	C5-C15-C6	117.4 (3)	116.6
N1-C2-S19	122.6 (2)	119.5	C5-C15-C18	122.1 (3)	122.0
N3-C2-S19	114.0 (2)	116.2	C6-C15-C18	120.4 (3)	121.4
C2-N3-C4	123.1 (2)	121.1	C6-C16-C7	119.0 (3)	118.9
N3-C4-C14	114.8 (3)	113.8	C6-C16-C17	121.5 (3)	121.4
N3-C4-O21	120.0 (3)	114.7	C7-C16-C17	119.4 (3)	119.8
C14-C4-O21	125.2 (3)	131.5	C10-C17-C11	119.8 (3)	118.9
C14-C5-C15	109.0 (3)	110.7	C10-C17-C16	120.4 (3)	120.0
C15-C5-C24	110.7 (3)	108.4	C11-C17-C16	119.8 (3)	121.0
C15-C6-C16	117.7 (3)	116.5	C11-C18-N12 113.4 (114.8
C15-C6-O22	120.9 (3)	122.5	C11-C18-C15	123.3 (3)	123.1
C16-C6-O22	121.3 (3)	120.9	N12-C18-C15	123.2 (3)	122.1
C8-C7-C16	119.9 (3)	120.1	C2-S19-C20	101.5 (15)	104.5
C7-C8-C9	120.7 (3)	120.1	C5-C24-C25	121.9 (3)	118.8
C8-C9-C10	120.1 (3)	120.0	C5-C24-C29	120.2 (3)	121.6
C9-C10-C17	119.5 (3)	120.0	C25-C24-C29	117.8 (3)	119.6
C17-C11-C18	117.0 (3)	115.8	C24-C25-C26	121.4 (3)	120.7
C17-C11-O23	123.9 (3)	123.9	C25-C26-C27	119.9 (3)	118.6
C18-C11-O23	119.1 (3)	120.2	C26-C27-C28	119.1 (3)	121.8
C13-N12-C18	120.6 (3)	118.9	C27-C28-C29	119.9 (3)	118.4
N1-C13-N12	114.2 (3)	115.0	C24-C29-C28	121.9 (3)	121.0

N1-C13-C14	126.1 (3)	123.6	C27-O44-C45	117.9 (3)	117.8
N12-C13-C14	119.7 (3)	121.4	O44-C27-C26	124.5 (3)	123.2
C4-C14-C5	118.8 (3)	118.0	O44-C27-C28	116.4 (3)	116.0
C4-C14-C13	117.2 (3)	120.4			

Parameter			Parameter		
Dihedral angles °	Experimental X-ray	6-31G(d,p)	Dihedral angles °	Experimental X-ray	6-31G(d,p)
N1-C2-N3-C4	-0.7 (5)	1.3	C16-C17-C11-C18	16-C17-C11-C18 -0.9 (5) 4	
C13-N1-C2-N3	1.5 (5)	-1.3	C10-C17-C11-C18	177.8 (3)	-175.5
C13-N1-C2-S19	-178.9 (2)	179.2	C6-C15-C18-N12	179.5 (3)	174.5
S19-C2-N3-C4	179.7 (2)	-179.2	C5-C15-C18-N12	2.7 (5)	-6.1
C2-N3-C4-O21	176.3 (3)	-178.1	C6-C15-C18-C11	2.2 (5)	-5.2
C2-N3-C4-C14	-2.4 (5)	1.2	C5-C15-C18-C11	-174.6 (3)	174.2
O21-C4-C14-C13	-174.1 (3)	175.6	O24-C11-C18-15	178.7 (3)	178.5
N3-C4-C14-C13	4.6 (5)	-3.6	C17-C11-C18-15	1.1 (5)	-2.1
O21-C4-C14-C5	6.7 (5)	-5.8	O24-C11-C18-N12	1.2 (5)	-1.2
N3-C4-C14-C5	-174.7 (3)	175.0	C17-C11-C18-N12	-176.4 (3)	178.1
C13-C14-C5-C15	12.7 (5)	-18.2	C15-C18-N12-C13	5.7 (5)	-8.5
C4-C14-C5-C15	-168.1 (3)	163.1	C11-C18-N12-C13	-176.8 (3)	171.2
C13-C14-C5-C24	-109.7 (4)	102.8	C2-N1-C13-C14	1.1 (5)	-1.3
C4-C14-C5-C24	69.5 (4)	-75.9	C2-N1-C13-N12	-177.8 (3)	178.1
C14-C5-C15-C18	-10.8 (5)	18.4	C4-C14-C13-N1	-4.2 (5)	3.9
C24-C5-C15-C18	111.8 (4)	-104.7	C5-C14-C13-N1	174.9 (3)	-174.6
C14-C5-C15-C6	172.3 (3)	-162.1	C4-C14-C13-N12	174.7 (3)	-175.5
C24-C5-C15-C6	-65.1 (4)	74.8	C5-C14-C13-N12	-6.2 (5)	5.9
C18-C15-C6-O22	174.9 (3)	-168.9	C18-N12-C13-N1	175.1 (3)	-170.9
C5-C15-C6-O22	-8.1 (5)	11.6	C18-N12-C13-C14	-3.9 (5)	8.5
C18-C15-C6-C16	-5.5 (5)	10.1	N1-C2-S19-C20	-8.6 (3)	0.1

C5-C15-C6-C16	171.4 (3)	-169.4	N3-C2-S19-C20	171.1 (3)	-179.4
O22-C6-C16-C7	6.3 (5)	-8.4	C14-C5-C24-C29	C14-C5-C24-C29 71.1 (3)	
C15-C6-C16-C7	-173.2 (3)	172.6	C14-C5-C24-C29	-50.3 (4)	83.1
O22-C6-C16-C17	-174.7 (3)	171.1	C14-C5-C24-C25	-110.0 (3)	141.4
C15-C6-C16-C17	5.7 (5)	-7.9	C15-C5-C24-C25	128.7 (3)	-96.2
C17-C16-C7-C8	1.0 (5)	0.1	C25-C24-C29-C28	-0.1 (5)	-0.5
C6-C16-C7-C8	180.0 (3)	179.6	C5-C24-C29-C28	178.9 (3)	-179.8
C16-C3-C3-C9	0.4 (6)	-0.2	C24-C29-C28-C27	-0.5 (5)	0.1
C7-C8-C9-C10	-0.5 (6)	0.1	C29-C28-C27-O44	-178.6 (3)	179.9
C8-C9-C10-C17	-0.7 (5)	0.1	C29-C28-C27-C26	0.5 (5)	0.3
C7-C16-C17-C10	-2.2 (5)	0.2	O44-C27-C26-C25	179.1 (3)	180.0
C6-C16-C17-C10	178.8 (3)	-179.4	C35-C27-C26-C25	0.0 (4)	-0.4
C7-C16-C17-C11	176.5 (3)	-179.7	C27-C26-C25-C24	-0.6 (5)	0
C6-C16-C17-C11	-2.5 (5)	0.8	C29-C24-C25-C26	0.7 (4)	0.4
C9-C10-C17-C16	2.1 (5)	-0.3	C35-C24-C25-C26	-178.3 (3)	179.8
C9-C10-C17-C11	-176.6 (3)	179.6	C26-C27-O44-C45	9.9 (4)	-0.1
C16-C17-C11-O24	-178.4 (3)	-176.4	C28-C27-O44-C45	-171.0 (3)	179.9
C10-C17-C11-O24	0.3 (5)	3.8			1

Figure S20. One-dimensional potential energy surface (PES) scan of the calculated energies *vs.* dihedral angles (τ) using DFT/B3LYP/6-31G (d,p) for 5-(4-methoxyphenyl)-2-methylthio-5,12-dihydrobenzo[g]pyrimido[4,5-*b*]quinoline-4,6,11(3*H*)-trione 4c.

Figure S21. Highest and lowest energy conformations using DFT/B3LYP/6-31G(d,p) for 4c.

Table S2. Experimental FT-IR and computed vibrational bands for 4c and their assignments at B3LYP/6-31G(d,p) level.

	F 1 (1	Calcul	ate	
v	Experimental	Un-scaled	Scaled	Assignment
1	2272	3459	3334	N12-H stretching
1	3272	3450	3325	N₃-H stretching
		3141	3027	O-CH3 bending symmetric
		3127	3014	O-CH ₃ stretching asymmetric
2	2841	3108	2996	S-CH ³ stretching asymmetric
		3039	2929	O-CH3 stretching symmetric
		3018	2909	S-CH3 stretching symmetric
3	1674	1851	1784	C4=O21 stretching
4	1650	1822	1756	C11=O23 stretching
5	1620	1811	1745	C6=O22 stretching
6	1496	1495	1436	C=N stretching
7	1450	1467	1409	C=N stretching
8	1390	1350	1297	C-N stretching

9	1332	1185	1138	C-N stretching
10	1247	1126	1082	C-N stretching

Donor		Flastersia		Co	ontributi	on of nat	ural
Lewis	Trues	Electronic	Hybridization		atomic o	rbitals (%	6)
NBOs	Type	Density			S	p	d
6.0		1 00441	0.5052(-2.201)C + 0.802((-2.2143)C)		33.23	66.68	0.09
C4 - O21	σ	1.99441	$0.5952(sp^{2.01})C + 0.8036(sp^{1.43})O$	O:	41.00	58.65	0.34
	_	1 09/21	0.5492 (am ^{1,00})C + 0.825 (am ^{1,00})O	C:	0.01	99.81	0.18
C4 - O21	π	1. 98431	$0.5492 (sp^{1.00}) C + 0.835 (sp^{1.00}) O$	O:	0.01	99.69	0.31
C. On	a	1 00/92	$0.5895(am^{2}31)C + 0.8078(am^{1}38)O$	C:	30.22	69.68	0.11
C6 - 022	0	1.99403	0.3893 (sp)C + 0.8078 (sp)O	O:	41.88	57.80	0.01
C_{1}	-	1 94776	$0.5813 (cn^{99.99})C + 0.8137 (cn^{99.99})O$	C:	0.01	99.84	0.14
C6-022	1	1.94770	0.0010 (sp)C + 0.0107 (sp)O	O:	0.02	99.67	0.31
$C_{11} = O_{22}$	σ	1 99525	$0.5885(sn^{2.30})C + 0.8085(sn^{1.38})O$	C:	30.26	69.63	0.11
CII - 023	0	1.77525	0.5005 (sp ~)C + 0.6005 (sp ~)O	O:	41.89	57.79	0.32
$C_{11} = O_{22}$	π	1 95767	$0.5756 (cm^{1.00})C + 0.8177 (cm^{1.00})O$	C:	0.00	99.85	0.15
CII - 023	1	1.95707	0.5750 (sp)C + 0.8177 (sp)O	O:	0.00	99.69	0.31
Cur. Cur	a	1 07240	0.7021 (cm ¹⁸³)C + 0.7121 (cm ¹⁵¹)C	C:	35.30	64.66	0.04
C15 - C18	0	1.97340	$0.7021 (sp^{-net})C + 0.7121 (sp^{-net})C$	C:	39.87	60.10	0.03
Cur. Cur	_	1 77022	0.7101 (am100)C + 0.6040 (am100)C	C:	0.00	99.94	0.06
C15 - C18	π	1.77932	52 0.7171 (sp 4) C + 0.0747 (sp 4) C	C:	0.00	99.95	0.05
Co Sto	C2 - S19 σ	1 97646	$0.7439 (sp^{2.38})$ C + $0.6683 (sp^{5.04})$ S	C:	29.51	70.38	0.10
C2 - 319		1.97040		S:	16.44	82.84	0.73
$C_{27} = O_{44}$	σ	1 99168	$0.5705 (cn^{3}.02)C + 0.8213 (cn^{2}.01)O$	C:	24.82	74.97	0.21
C27 - O44		1.77100	0.5705 (sp~~)C + 0.6215 (sp~~)O	O:	33.17	66.76	0.07
N ₁₀ H ₂₁	σ	1 98256	1.09256 0.9506 (cm ² 5 ²)NI + 0.5110 (c ⁹⁹ 89)H	N:	28.02	71.96	0.02
1112 - 1131		1.90550	$0.0390 (sp - 2) + 0.0110 (s^{-10}) + 1$	H:	99.89	0.11	
$N_2 = H_{20}$	σ	1 98394	0.8551 (cm ^{2.61})N + 0.5184 (c ^{99.90})H	N:	27.68	72.29	0.02
1 N 3 - 1130		1.90394	$0.0001 (sp^{-1}) + 0.0104 (s^{-10}) + 11$	H:	99.90	0.10	
N1	LP ^a (1)	1.89271	<i>sp</i> ^{2.45}	N:	28.94	70.90	0.16
N3	LPa (1)	1.61063	$p^{1.00}$	N:	0.00	98.99	0.01
N12	LPa (1)	1.73427	<i>sp</i> ^{.90.58}	N:	1.09	98.89	0.01
O21	LPa (1)	1.97642	$p^{1.00}$	O:	58.92	41.03	0.04
O21	LP ^a (2)	1.84939	p ^{,99.99}	O:	0.03	99.73	0.24
O22	LP ^a (1)	1.97885	sp ^{0.72}	O:	58.07	41.88	0.04
O22	LPa (2)	1.88965	$p^{1.00}$	O:	0.00	99.80	0.20
O23	LPa (1)	1.97850	sp ^{0.72}	O:	58.02	41.93	0.05
O23	LP ^a (2)	1.88503	$p^{1.00}$		0.05	99.74	0.20
O44	LP ^a (1)	1.96389	$sp^{1.59}$	O:	38.53	61.41	0.06
O44	LP ^a (2)	1.84157	$p^{1.00}$	O:	0.00	99.91	0.09
S19	LP ^a (1)	1.98246	$sp^{0.48}$	N:	67.55	32.43	0.02
S19	LPa (2)	1.82875	$p^{1.00}$	N:	0.00	99.94	0.05

Table S3. Occupation of natural orbitals and hybrids for 4c calculated by the DFT/B-3LYP/6-31G (d,p) method for the representative atoms.

^aLone pair on natural Lewis structure.

Acceptor not	Туре	Electronic	Hybridization		Contribut atomic o	ion of nat orbitals (%	ural 6)
Lewis		Density			S	р	d
C. On	*	0.00802	$0.8036 (ap^{2}\theta) = 0.5052 (ap^{4})$	C:	33.23	66.68	0.09
C4 - O21	0	0.00892	$0.8030 (sp^{-1})C = 0.3932 (sp^{-1})O$	0:	41.00	58.65	0.34
	*	0 35268	$0.8357 (p^{1.00})$ C - $0.5492 (p^{1.00})$ O	C:	0.01	99.81	0.18
C4- O21	71	0.55208		0:	0.01	99.69	0.31
$C_{4} = 0_{22}$	σ*	0.00782	$0.8078 (sp^{2.31})C = 0.5895 (sp^{1.38})O$	C:	30.22	69.68	0.11
C6 - 022		0.00782	0.0070 (sp)C = 0.5075 (sp)O	0:	41.88	57.80	0.01
$C_{6} = O_{22}$	<i>π</i> *	0 20945	$0.8137 (n^{99.99})$ C = 0.5813 $(n^{99.99})$ O	C:	0.01	99.84	0.14
	1	0.20713	0.0157 (p) (c 0.5015 (p) (c	0:	0.02	99.67	0.31
$C_{11} = O_{22}$	σ*	0.00754	$0.8085 (sp^{2.30})$ C - $0.5885 (sp^{1.38})$ O	C:	30.26	69.63	0.11
011 023		0.00731		0:	41.89	57.79	0.32
C11 - O22	π^*	0 19366	$0.8177 (n^{1.00})C = 0.5756 (n^{1.00})O$	C:	0.00	99.85	0.15
011 023		0.19500	0.01// (p) C 0.0/00 (p) C	0:	0.00	99.69	0.310
$C_{15} - C_{18}$	σ*	0.02406	$0.7121 (sn^{1.83})C = 0.7021 (sn^{1.51})C$	C:	35.30	64.66	0.04
015 018		0.02100	0./121(<i>sp</i>) e 0./021(<i>sp</i>) e	C:	39.87	60.10	0.03
$C_{15} = C_{10}$	 *	0.24133	$0.6949 (n^{1.00})C = 0.7191 (n^{1.00})C$	C:	0.00	99.94	0.06
015 018	<i></i>	0.21135		C:	0.00	99.95	0.05
$C_{2} = S_{10}$	σ*	0.05230	$0.6683(sp^{2.38})C = 0.7439(sp^{5.04})S$	C:	29.51	70.38	0.10
02 019		0.05250	0.0005 (sp) e 0.1155 (sp) 5	S :	16.44	82.84	0.73
Cra Ou		0.02055	$0.8213 (an^{3}.02)C = 0.5705 (an^{2}.01)O$	C:	24.82	74.97	0.21
C27 - O44	σ	0.02933	$0.8213 (sp^{2.02}) C = 0.5/05 (sp^{2.07}) O$	O:	33.17	66.76	0.07
Nuo Hai	*	0.02603	0.5110 (am ^{2.52})NL 0.8506 (a ^{99.89})H		28.02	71.96	0.02
1N12 - H31	0.	0.02003	0.5110 (sp)11 - 0.8590 (s)H	H:	99.89	0.11	
No Has	~	0.01822	0.5184 (sp2.61)N ± 0.8551 (s92.90)H	N:	27.68	72.29	0.02
1N3 - Π30	U	0.01822	$0.5164 (sp -)10 + 0.8551 (s^{-10})H$	H:	99.90	0.10	

Table S4. Occupation of natural orbitals (NBO) no Lewis and hybrids for 4c calculated by the DFT/B-3LYP/6-31G (d,p) method for the representative atoms.

Table S5. Analysis perturbation theory second order in Fock matrix in NBO by level calculation B3LYP/6-
31G (d,p) for compound 4c.

		E ₂	E_{j} - E_{i}	F(i,j)
Donor NBO (1)	Acceptor NBO (j)	Kcal/mol	a.u	a.u
LP N ₃	π* N1-C2	65.72	0.26	0.116
LP N ₃	π* C4-O21	44.57	0.30	0.104
LP N12	π* C13-C14	41.73	0.30	0.101
LP N12	π* C15-C18	39.97	0.30	0.101
π* C4-O ₂₁	π* C13-C14	256.96	0.01	0.080
π* C6-O22	π* C15-C18	94.72	0.02	0.076
π* C11-O23	π* C15-C18	41.82	0.04	0.075
π* C11-O23	π* C ₁₆ -C ₁₇	76.69	0.03	0.075

Dipole Moment		Polarizability			First Order Hyperpolarizability		
Parameter	D	Parameter	au	esu (10 ⁻²⁴)	Parameter	au	esu (10 ⁻³³)
μx	-0.28	Axx	373.29	55.26	ßxxx	1497.24	12941.0
μ_y	-1.34	$lpha_{ m xy}$	7.513	1.11	β _{xxy}	-165.57	-1431.10
μz	-1.28	$lpha_{ m yy}$	336.29	49.78	β _{xyy}	665.94	5755.80
μο	1.88	$lpha_{ m xz}$	12.913	1.91	β_{yyy}	-3426.60	-29616.0
		$lpha_{ m yz}$	55.10	8.15	βxxz	420.33	3633.0
		$lpha_{zz}$	211.86	31.36	βxyz	72.03	622.60
		α_0	307.15	45.46	β_{yyz}	438.54	3790,30
		Δα	207.15	30.66	βxzz	20.44	176.73
					βyzz	-87.92	-759.93
					βzzz	-25.13	-217.26
					βο 3768.07 x 10 ⁻³³		

Table S6. Electrical dipole moment, polarizability and first order hyperpolarizability of 4c at the level DFT/B3LYP/6-31G (d,p).

 Table S7. Enthalpy, Gibbs free energy and entropy calculated for 4c and 5c compounds.

THERMODYNAMIC PARAMETERS	4c	5c
Enthalpy $(H/a.u)$	-549.949	-1181.96
Gibbs free energy $(G/a.u)$	-549.994	-1182.04
Entropy (<i>S/cal mol</i> ⁻¹ <i>K</i> ⁻¹)	93.941	172.531
ZEP vibrational energy (Kcal/Mol)	226.975	226.194
ZEP + electronic energy	-1749.749	-1749.758