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Abstract: In this paper, an experimental study was conducted to determine the effect of different
cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface
roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC)
end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial
Neural Network (ANN) and Response Surface Methodology (RSM). ANN trained network using
Levenberg-Marquardt (LM) and weights were trained. On the other hand, the mathematical models
in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM
was found to be very close to the data obtained from experimental studies. The lowest cutting force
and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut.
The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.
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1. Introduction

Titanium has good mechanical properties in high temperatures, good corrosion resistance and low
weight rate. Generally, titanium is alloyed with elements such as Al, V, Mn, Sn, Zr, Mo, etc. [1]. In this
way, many titanium alloys—Ti-6Al-4V, Ti-5Al1-2.55n, Ti-6 Al-25n-4Zr-2Mo, etc. are manufactured for
different engineering applications. Ti-6Al-4V is used for rings, fasteners, airframes, vessels, biomedical
implants, forging, and hubs; Ti-5Al-2.55n is used in gas turbine engines, aerospace structures,
and chemical processing equipment; and Ti-6Al-25n-4Zr-2Mo is used jet engines, automotive valves,
blades, and discs.

Mechanical and thermal properties of Ti-6242S alloy are lower than other titanium alloys.
Therefore, this alloy is preferred many industrial areas. However, there are difficulties encountered in
the machining of Ti-62425 [2]. Excessive heat and tool wear due to especially low thermal properties
of this alloy have occurred. Cutting forces are increased due to high mechanical properties and
excessive tool wear. This also leads to an increase in vibration. In this case, the quality of the machined
surface is deteriorates. Many studies of the turning, milling, and drilling of titanium alloys have been
conducted in order to address this problem. However, many of the studies are related to machinability
of Ti-6Al-4V alloy. Ti-6242S alloy is the second most-used as second titanium alloys after Ti-6Al-4V
alloy. Ginting and Nouari [3] made an experimental study with milling of Ti-6242S to determine
optimal cutting parameters. In the experiments, they investigated the effect of different cutting speeds
and feed rates on tool wear, metal removal rate, and temperature using cemented carbide tools.
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They emphasized that the increase of tool wear and the decrease of tool life with increasing of
cutting speed and feed rate. Lebaal et al. [4] studied a new optimization approach based on Kriging
interpolation and sequential quadratic programming algorithm for end milling of Ti-6242S using coated
and uncoated Chemical Vapour Deposition (CVD) tools. They reported that the surface roughness
increased with increasing depth of cut and feed rate. The lowest surface roughness was obtained
from minimum cutting speed. Ginting et al. [5] investigated the performance of cutting tools in green
machining of Ti-6242S. They researched the tool life, tool wear types, and plastic deformation of tools
using uncoated and multilayer coated cemented carbide cutting tools.

When considering the literature, it is known that there are many problems in the machinability
of titanium and its alloys [6-8]. Because of these difficulties, machinability of these alloys was
investigated using various modelling and optimization techniques. Pradhan and Bhattacharyya [9]
studied optimization of electro discharge manufacturing (EDM) parameters in micro-EDM of Ti-6Al-4V.
They showed that these methods are appropriate with experimental results. Thepsonthi and Ozel [10]
investigated the tool wear in micro-milling of Ti-6Al-4V using Cubic Boron Nitride (CBN) coated
tools. Then, they analyzed the experiment results using the DEFORM program. Andriya et al. [11]
modelled the cutting forces in machining of Ti-6Al-4V with TiAIN Physical Vapour Deposition (PVD)
coated tools using response surface methodology. Khanna and Davim [12] studied the machinability of
various titanium alloys under different cutting parameters. They optimized the cutting temperatures
and cutting forces by means of Taguchi Techniques.

Scientists have used different optimization techniques such as Taguchi Methods (TM),
Response Surface Methodology (RSM), Artificial Neural Network (ANN)), etc. in machining [13-15].
Scientific studies on optimization techniques are on-going in machining. The aim of this study is to
find the relationship between cutting parameters—such as cutting speeds, feed rate, and depth of
cut—and optimization techniques as RSM and ANN for cutting forces, surface roughness, and tool
wear in the milling of Ti-6242S alloy.

2. Experimental Methods

The milling operation was performed in VMC-1000 CNC vertical machining center
(Hummer, Taichung, Taiwan) with a spindle power of 15 kW and a maximum speed of 8000 rpm.
After the Kistler 9257B dynamometer (Kistler, Winterthur, Switzerland) detected cutting signals,
the charge amplifier (Kistler type 5070A) (Kistler, Winterthur, Switzerland) amplified the signals and
then, through a data accusation card (sampling rate = 5000 Hz), transmitted to a personal computer
to compute the cutting forces. The obtained data were processed in software Kistler DynoWare
(Kistler, Winterthur, Switzerland). After experimental work was completed, the surface roughness
of the machined surface was measured using Surtonic 3+ surface roughness measuring instrument
(Taylor Hobson, Leicester, UK). The diameter of the device probe was 6 mm and the whole system
was set at a sampling length of 0.8 mm. The tool wear was determined by using optical microscope.
The surface roughness values (Ra) were taken at four positions. Mechanical and chemical properties of
the Ti-6242S alloy are given in Tables 1 and 2, respectively.

Table 1. Mechanical properties of Ti-6242S.

Tensile Strength, Ultimate (N/ mm?) 1110

Tensile Strength, Yield (N/mm?) 1050
Elongation at Break (%) 13
Vickers Hardness (HV) 333

Elasticity Modules (N/mm?) 118,000
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Table 2. Chemical properties of Ti-62425 (%).

Al Sn Zr Mo Si C H Fe N Ti
5.5-6.5 1.8-2.2 3.6-4.4 1.8-2.2 0.06-0.10 <0.05 <0.015 <0.25 <0.05 Balance

The milling experiments of Ti-6242S were carried out at different cutting parameters using WC
end mills which have 10 mm diameter. The used cutting parameters are given in Table 3.

Table 3. Cutting parameters.

Cutting Speed, V (m/min) 10, 15, and 20
Feed Rate, f (mm/rev) 0.04, 0.08, and 0.12
Depth of Cut, a (mm) 1,15,and 2

3. Mathematical Modelling and Optimization

The development of computer technology has enabled to optimize of studies of made
experimentally using computer programs. Many optimization programs such as ANN, RSM, Taguchi,
Fuzzy Logic, Genetic Algorithms, etc. are used in machining manufacturing. ANN and the other is
RSM are the most commonly used programs.

3.1. Artificial Neural Network (ANN)

ANN, inspired by biological neurons, was developed to solve engineering problems in 1940 in the
USA. Recently, use of ANN has been widespread [16]. There is input layer, interlayer, and output layer
in ANN. These layers are connected with one another. Data obtained from experiments are trained
in ANN, so initially randomly selected weights are reached optimum levels. The more parameters
the ANN are trained in, the better the results obtained are. The created structure for ANN is given in
Figure 1. The number of cells in interlayer is 10.

(Cutting speed) (Cutting force)
(Feed rate) (Surface roughness)
(Depth of cut) (Tool wear)

Input layer Interlayer Output layer

Figure 1. The structure of Artificial Neural Network (ANN) to Ti-6242S.

The necessary equations for ANN are given below. The sum of input parameters (X;) are multiplied
with the sum of weights in the interlayer (Wy;). A net value (1;) was obtained.

ai =Y (Wi - X;) 1
izl
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This net value was transferred from activation functions (A4;).

1— e(_ai)

A= T

)

Then, output value (y;) was found by multiplying activation function and weights (W;) between
the interlayer and output layer.
Yi = Wi~ A; ®)

when the obtained value was substracted from real value (d;), the error (¢;) was found.

e =di —y; (4)
and the total error (SSE) was calculated.
SSE = li e/ ®)
B 2i:l l

Train Levenberg Markuad backpropagation was used to adjust weight to the learning algorithms.
These systems used the Hessian (H), Jacobian (J), and gradient (g) matrices.

Wipr = W — (H) ' g] ©)

The Hessian matrix,
H=]-J+p-1 @)

where p and I were the Marquardt parameter and the unit matrix, respectively. ] was the transpose of
the Jacobien matrix. The Jacobian matrix,

de;
J=s50— ®)
aW(i,l)
The gradient matrix,
§=J e ©)
In the main equation, If all the matrix were replaced, the weight was found.
Wi = W= (J-J +p-1)7" -] el (10)

It was used to 70% training, 15% testing, and 15% validation of the defined parameters from
experimental study to ANN. All weights were trained.

3.2. Response Surface Methodology (RSM)

The used RSM in modeling and analyzing of problems consists of statistical techniques and
mathematical terminology and it is developed in 1951. Especially, RSM is widely used for the
formulation of problems and process optimization. Due to unknown format of actual response function,
a suitable approach for true functional relationship between the response and the independent variables
must be found [17]. If the response of the system is a good fit as a linear function of independent
variables, it is a model of the first order.

y=PBo+P1-X1+PB2-Xo+....o. +Bk- X +e (11)
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A second-order model may be more appropriate if there is a curvature in the response surface.

k k k-1 k
y=PBo+ L B Xj+ Y By Xi+ 1 Y By Xi X te (12)
j=1 j=1 ij=1
where y is response variable; By, B1, B2 ... Px are unknown regression parameters; X; and X; are

process variables; e is error term.

The data obtained from experiments was transferred to Box Behnken design in RSM. The highest
and lowest value of process variables was defined into system and 17 test results were entered.
The other 10 tests were used to determine the validity of the produced equations. Then RSM produced
optimum results of experiments depending on machining parameters.

4. Results and Discussion

Cutting force, surface roughness, and tool wear in the milling of Ti-6242S were investigated
by using different cutting parameters. The cutting force diagram obtained from Kistler DynoWare
was given in Figure 2 and the tool wear (VB) was given in Figure 3 for the 15 m/min cutting speed,
0.08 mm/rev feed rate, and 1.5 mm depth of cut.

Figure 2. Cutting force diagram in milling Ti-6242S.

Figure 3. Tool wear in milling Ti-6242S.

The cutting force was calculated by using Equation (13).

1
2

F— (Fx2 +EP2+ Fzz) (13)

Cutting forces, tool wear, and surface roughness values were experimentally determined for all
cutting parameters. The predicted values were obtained from ANN and RSM using the experimental
results. Optimum weights depending on training of ANN were found by Equations (1)-(10). Then these
optimum weights were written in Equations (1)—(3). Thus, the estimated cutting parameters were
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calculated. Mathematical models related to cutting force, surface roughness, and tool wear were
produced by Equation (11) or Equation (12) in RSM. These are given in Equations (14)-(16).

F =17.75+5.75V + 2868.75f — 4a — 0.23V% — 9218.75f2 + 74> — 27.5Vf —02Va —75fa  (14)

Ra = 1.69 — 0.042V — 0.96f — 0.57a + 6.3V — 10.47f% +0.15a> + 2V f + 6Va + 1.62fa  (15)
VB = 0.07 +2.95V +0.168f — 2a — V> — 1.89f% + 94> + 0.018Vf +2Va + 0.025fa  (16)

where F is cutting force, Ra is surface roughness, VB is tool wear, V is cutting speed, f is feed rate,
and a is depth of cut.

The predicted values obtained from ANN and RSM together with experimental results are given
in Table 4. Predicted and actual values of cutting force, surface roughness, and tool wear are given in
Figures 4-6, respectively.

Table 4. The obtained Artificial Neural Network (ANN) and Response Surface Methodology (RSM)
results from experimental data (Exp.) depending on cutting parameters.

F(N) Ra (um) VB (mm)
Exp. ANN RSM Exp. ANN RSM Exp. ANN RSM

Exp.No. V (m/min) f (mm/rev) a (mm)

1 1 145 14832 139.22 1.00 0.99 1.06  0.100 0.101 0.104
2 0.04 1.5 148  160.34 14347 1.01 1.01 1.03 0107 0.105 0.107
3 2 152 16756 151.22 1.06 1.06 1.07 0112 0.118 0.110
4 1 192 19176 195.69 1.12 1.12 1.11 0.11 0110 0.110
5 10 0.08 1.5 197 196.52 198.44 1.14 1.13 1.11 0.113 0.112 0.113
6 2 203 199.99 204.69 1.18 1.14 1.19 0117 0117 0.116
7 1 219 20630 222.67 1.15 1.14 113 0116 0.116 0.110
8 0.12 1.5 225 22252 22392 1.18 1.17 116  0.115 0.116 0.113
9 2 239 22717 22867 1.27 1.26 127 0120 0.117 0.117
10 1 132 14234 13272 0.97 0.96 096 0112 0112 0.111
11 0.04 15 136 14044 13647 0.98 0.97 094 0116 0115 0.114
12 2 141 137.38 143.72 1.02 0.96 1.00 0118 0.116 0.117
13 1 184  182.80 183.69 1.00 0.99 1.01 0.123  0.123  0.120
14 15 0.08 15 187  185.72 18594 1.03 1.01 1.03 0.124 0.124 0.124
15 2 196  185.06 191.69 1.11 1.03 112 0129 0.128 0.128
16 1 208  199.85 205.17 1.01 1.02 1.03 0125 0.129 0.124
17 0.12 15 209 20539 20592 1.05 1.06 1.08  0.125 0125 0.128
18 2 211 19249 21017 1.19 1.16 120  0.133 0.132 0.132
19 1 117 11643 11472 0.87 0.86 089 0114 0116 0.113
20 0.04 1.5 117 119.88 11797 0.87 0.87 089 0116 0.116 0.116
21 2 129 13495 12472 0.93 0.93 096 0123 0121 0.120
22 1 162 16095 160.19 0.95 0.87 094 0127 0127 0.126
23 20 0.08 1.5 164  159.33 16194 0.99 0.88 097 0132 0131 0.130
24 2 171 18093 167.19 1.07 1.05 1.08 0.136 0.132 0.134
25 1 168 18728 176.17 1.02 1.02 096 0129 0129 0.133
26 0.12 1.5 172 17201 17642 1.04 1.01 1.02 0139 0139 0.137

27 2 184  180.80 180.17 1.13 1.11 116  0.143 0.142 0.142
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Figure 4. Predicted versus actual values for cutting forces (a) ANN; (b) RSM.
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Figure 5. Predicted versus actual values for surface roughness (a) ANN; (b) RSM.
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Figure 6. Predicted versus actual values for tool wear (a) ANN; (b) RSM.

When the cutting force, surface roughness, and tool wear were examined in Figures 4-6, it was
seen that predicted and actual values was close to the absolute line for ANN and RSM. The results

of experimental were compared to the results of ANN and RSM for cutting force, surface roughness,
and tool wear in Figures 7-9, respectively.
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Figure 7. Comparison of cutting forces of experimental data, ANN, and RSM. (a) Cutting Speed
20 m/min; Depth of Cut: 2 mm; (b) Feed Rate 0.08 m/min; Depth of Cut: 1.5 mm; (c) Cutting Speed:
10 m/min; Feed Rate: 0.12 mm/rev.
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Figure 8. Comparison of surface roughness of experimental data, ANN, and RSM. (a) Cutting Speed
20 m/min; Depth of Cut: 2 mm; (b) Feed Rate 0.08 m/min; Depth of Cut: 1.5 mm; (¢) Cutting Speed:
10 m/min; Feed Rate: 0.12 mm/rev.
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Figure 9. Comparison of tool wears of experimental data, ANN and RSM. (a) Cutting Speed: 20 m/min;
Depth of Cut: 2 mm; (b) Feed Rate 0.08 m/min; Depth of Cut: 1.5 mm; (c) Cutting Speed: 10 m/min;
Feed Rate: 0.12 mm/rev.

As seen in Figure 7, obtained values from ANN and RSM for cutting force were very close to the
experiment results. When the feed rate and the depth of cut increased, the cutting force increased.
In this case, the metal removal rate increased. Thus, it was considered that the cutting force increased.
On the other hand, higher cutting speed reduced the cutting force. It was considered that the cutting
force reduced because increased of the cutting speed was led to increase of removed chip cross section.
Maximum deviation between experimental results and ANN was found as 11.48% at 25th experiment.
On the other hand, Maximum deviation between experimental results and RSM was found as 4.95% at
ninth experiment for cutting forces. However, total average deviations obtained from all experimental
studies were found 0.074% and 0.53% for ANN and RSM, respectively.

From Figure 8, it was seen that experiment results were be closed to obtained values from ANN
and RSM for surface roughness. It was seen that obtained values from ANN and RSM were close to
experimental results for surface roughness. Surface roughness reduced with increasing of the cutting
speed and it increased with increasing of the feed rate and the depth of cut. The cause of the increase
of surface roughness was cutting force. For surface roughness, while maximum deviation between
experimental results and ANN was obtained as 12.5% in the 23rd experiment, it was obtained as 5.7%
at the first experiment between experimental results and RSM. However, total average deviations
obtained from all experimental studies were found 1.98% and 2.13% for ANN and RSM, respectively.

As could be understood from Figure 9, tool wear increased with increasing of cutting speed,
feed rate, and depth of cut. The reason of tool wear was the increase in the cutting forces formed with
increasing of the feed rate and the depth of cut. The heat was a result of friction between the tool
and the workpiece with increasing cutting speed. The excessive heat led to tool wear. The maximum
deviation obtained from both ANN and RSM according to experimental results was found as 5% from
third and seventh experiments respectively for tool wear. However, total average deviations obtained
from all experimental studies were found to be 0.15% and 0.76% for ANN and RSM, respectively.
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Analysis of variance (ANOVA) is used to analyze how the arguments interact with each other
and the effects of these interactions on the dependent variable. Tables 5-7 give the ANOVA results of
the effects of machining parameters on cutting forces, surface roughness, and tool wear in the milling
of the Ti-6242S.

Table 5. Analysis of variance (ANOVA) table for cutting forces in the milling of Ti-6242S.

Source SDQ “ DF?b MS*© Foalue Prob > F
Model 13,681.47 9 1520.16 90.95 <0.0001
1% 2664.50 1 2664.50 159.41 <0.0001
f 9660.50 1 9660.50 577.98 <0.0001
a 128.00 1 128.00 7.66 0.0278
V2 139.21 1 139.21 8.33 0.0235
f? 916.05 1 916.05 54.81 0.0001
a2 12.89 1 12.89 0.77 0.4089
V-f 121.00 1 121.00 7.24 0.0311
Vea 1.00 1 1.00 0.06 0.8138
fa 9.00 1 9.00 0.54 0.4869
Residual 117.00 7 16.71
Total 13,798.47 16 R? =0.9915

2 SDQ = Sum of squares; b pF = Degrees of freedom; © MS = Mean square.

Table 6. Analysis of variance (ANOVA) table for surface roughness in the milling of Ti-6242S.

Source SDQ DF MS F Value Prob >F
Model 0.11 9 0.012 34.06 <0.0001
v 0.039 1 0.039 107.82 <0.0001
f 0.038 1 0.038 104.00 <0.0001
a 0.021 1 0.021 57.79 0.0001
V2 0.0001 1 0.0001 2.87 0.1339
f2 0.0118 1 0.0118 3.25 0.1145
a? 0.0616 1 0.0616 16.94 0.0045
Vf 0 1 0 0 1.0000
Va 0.0009 1 0.0009 248 0.1596
fa 0.04225 1 0.04225 11.62 0.0113
Residual 0.02545 7 0.0003
Total 0.11 16 R?=0.9777

Table 7. ANOVA table for tool wear in the milling of Ti-6242S.

Source SDQ DF MS F Value Prob > F
Model 7894.19 9 877.13 2.15 0.0163
174 1426.42 1 1426.42 3.50 0.1037
f 1426.69 1 1426.69 3.50 0.1037
a 112 x 1074 1 112 x 1074 2.75 x 1077 0.9996
V2 751.43 1 751.43 1.84 0.2169
f2 751.38 1 751.38 1.84 0.2169
a2 751.69 1 751.69 1.84 0.2168
V-f 2857.33 1 2857.33 7.00 0.0331
Va 1.0 x 10~ 1 1.0 x 10 24 %1077 1.0000
fa 1.0 x 106 1 1.0 x 107 24 x 1077 1.0000
Residual 2856.53 7
Total 10,750 16 R? =0.7343
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From Tables 5-7, it can be observed that F-values producing by the models imply the significance
of the model. There is only a 0.01% chance that a model F-value this large could occur due to noise.
The values of “Prob > F” for models are less than 0.0500, they indicate that the model terms are
significant. R? is very important for models as the accuracy increases as this value increases.

5. Conclusions

In this experimental study, the effects of different cutting parameters on cutting forces,
surface roughness, and tool wear were investigated in the milling of Ti-6242S alloys. The results of
the study are given below:

1. ANN and RSM models were developed to predict cutting force, surface roughness, and tool wear.
To train a network in ANN, a Levenberg-Marquardt algorithm was used. Models in RSM used
Box Behnken design. Values obtained from the ANN and the RSM were found to be very close to
the data obtained from experimental studies.

3. The increase of the feed rate and the depth of cut increased the cutting force, surface roughness,
and tool wear.

4.  The increase of the cutting speed reduced the cutting force and the surface roughness and
increased the tool wear.

5. To obtain low cutting force and a good surface quality, high cutting speed, low feed rate, and low
depth of cut should be selected as machining parameters.

6.  Cutting speed, feed rate, and cutting depth must be set at low levels to minimize tool wear.
From the results obtained from the experiment and RSM models, the predicted and measured
values are quite close. The developed models can be effectively used to predict the cutting force
and surface roughness.

Experimental results using optimization and modelling methods such as ANN and RSM can be
obtained in less time and result in economical machining. Results for different input parameters can
be modelled without experimental studies.
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