
applied
sciences

Article

Accelerated Simulation of Discrete Event Dynamic
Systems via a Multi-Fidelity Modeling Framework †

Seon Han Choi 1, Kyung-Min Seo 2,* ID and Tag Gon Kim 1

1 Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
gigohan01@kaist.ac.kr (S.H.C.); tkim@ee.kaist.ac.kr (T.G.K.)

2 Daewoo Shipbuilding & Marine Engineering (DSME), Seoul 04521, Korea
* Correspondence: kmseo.kumsung@gmail.com; Tel.: +82-10-3376-9109
† This paper is an extension of the conference paper, “Multi-Fidelity Modeling & Simulation Methodology for

Simulation Speed Up,” presented in the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, Denver, CO, USA, 18–21 May 2014.

Received: 7 September 2017; Accepted: 12 October 2017; Published: 13 October 2017

Abstract: Simulation analysis has been performed for simulation experiments of all possible input
combinations as a “what-if” analysis, which causes the simulation to be extremely time-consuming.
To resolve this problem, this paper proposes a multi-fidelity modeling framework for enhancing
simulation speed while minimizing simulation accuracy loss. A target system for this framework is
a discrete event dynamic system. The dynamic property of the system facilitates the development
of variable fidelity models for the target system due to its high computational cost; and the discrete
event property allows for determining when to change the fidelity within a simulation scenario.
For formal representation, the paper defines several key concepts such as an interest region, a fidelity
change condition, and a selection model. These concepts are integrated into the framework to allow
for the achievement of a condition-based disjunction of high- and low-fidelity simulations within a
scenario. The proposed framework is applied to two case studies: unmanned underwater and urban
transportation vehicles. The results show that simulation speed increases at least 1.21 times with a
5% accuracy loss. We expect that the proposed framework will resolve a computationally expensive
problem in the simulation analysis of discrete event dynamic systems.

Keywords: system modeling; simulation analysis; simulation speedup; discrete event dynamic
system; differential equation; discrete event system specification (DEVS)

1. Introduction

Simulation analysis is playing an increasingly prominent role in resolving real-world problems
that cannot be solved with numerical and analytical methods [1]. For example, in the system-on-chip
field, distributed cosimulation is a practical approach to unify and analyze abstracted hardware
resources [2]. In the social systems, simulations have been utilized to evaluate passenger flow
organization and facility layout at metro stations [3] or to find an optimal condition for the growth of
crops in greenhouse control systems [4]. Generally, such a simulation analysis requires one to perform
simulation evaluations of all possible input combinations as a “what-if” analysis [5]; thus, it consumes
too much simulation execution time due to many repeated experiments. To reduce the execution
time, various studies have been conducted: the distributed execution of simulators using hardware
resources [6], parallel event scheduling using the graphics processing units [7], a flattening simulation
algorithm for hierarchical models [8], and simulation-based optimization integrating a meta-model
and a meta-heuristic method [9], etc.

This paper focuses on a multi-fidelity modeling scheme to achieve simulation speedup for
simulation analysis. In the simulation world, the most common use of the term “fidelity” refers to the

Appl. Sci. 2017, 7, 1056; doi:10.3390/app7101056 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1017-1674
http://dx.doi.org/10.3390/app7101056
http://www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 1056 2 of 23

faithfulness with which model behavior reflects modeled system behavior [10,11]. For the models that
represent the same reference system, fidelity is compared by their outputs for the same input. In other
words, a high-fidelity model has a high accuracy in model output compared to the reference system,
whereas a low-fidelity model has a relatively less accurate output. Because the high-fidelity simulation
is very time-consuming due to the high computational load, an appropriate portion of a simulation
scenario requires simulating with high-fidelity models.

To decrease the simulation time without significant loss in respect to simulation accuracy, we
propose a multi-fidelity modeling framework. The proposed framework consists of a dynamical
conversion process between high- and lower-fidelity models. It employs a fidelity change approach
to select a suitable model from a pool of models with variable fidelities. Within a single simulation
scenario (i.e., a simulation design point), all the time frames need not be simulated with high-fidelity
models [12]. Therefore, the high-fidelity models are primarily used for important regions of the
scenario, whereas the lower-fidelity models are used for marginal parts. In this context, the point of
our framework is to decide which model needs to change its level of fidelity and to know when to
change the fidelity within the simulation scenario.

To this end, we define three concepts in the framework: (1) an interest region where the model
output has a serious effect on the overall simulation analysis, (2) a fidelity change condition (FCC) to
check whether the fidelity of the model needs to be changed based on the defined interest region, and (3)
a selection model to choose a model with the proper fidelity when the FCC is satisfied. The proposed
framework, based on these concepts, allows the achievement of a condition-based transformation
between high- and low-fidelity simulations within a scenario, reducing the overall computational cost
and ensuring the accuracy of the simulation analysis.

The targeted system of this paper is a discrete event dynamic system. It exhibits hybrid behaviors
characterized by a set of continuous laws that are switched by discrete events [13]. The dynamic
property facilitates the development of apparent high- and low-fidelity models for a target system,
and the discrete event property allows one to know when the level of fidelity is changed with
discrete events. In our framework, these concepts are proposed with formal modeling specifications.
In particular, this paper uses the discrete time system specification (DTSS) for the dynamic system model
and the discrete event system specification (DEVS) for the discrete event system [14]. Such a formal
modeling approach facilitates maximizing the reusability of existing models and simulation algorithms.

In recent years, multi-fidelity modeling and simulation (M&S) have been studied in many
application fields such as aerospace engineering [15], submarine systems [16], computational fluid
dynamics [17], and supply chain systems [18], etc. A common point of these studies is to drive
the preliminary design process using low-fidelity models as surrogates for expensive high-fidelity
simulations. High-fidelity models are then used in the final design stages to refine the design. This
means that the fidelity change has not occurred during the same simulation scenario. In addition,
these studies focused on application-oriented methods, which have key differences from our study.

For experimentation, we performed two practical applications that show the effectiveness of the
proposed framework in simulation speedup and accuracy. An unmanned underwater vehicle (UUV)
was modeled for the dynamic system, and urban transportation vehicles (UTVs) were modeled for
the discrete event system. For empirical evaluations, we define two measurements (i.e., an output
error and a speedup ratio). The proposed modeling framework enhances the simulation speed about
1.25 times and 1.21 times for each application with an accuracy loss of about 5%. Additionally, due to
the use of formal representation, most existing models and simulation engines were reused without
any modifications.

This paper is organized as follows. Section 2 explains the target system, model fidelity, and
simulation region, and Section 3 introduces the literature review. Section 4 describes the proposed
multi-fidelity modeling framework. The two case studies are described in Section 5, and a conclusion
is given in Section 6.

Appl. Sci. 2017, 7, 1056 3 of 23

2. Problem Definition

2.1. Target System

A discrete event dynamic system is a (typically asynchronous) dynamic system in which state
transitions are triggered by the occurrence of discrete events [19]. In the following subsections,
we introduce the target system by distinguishing between two systems: dynamic and discrete
event systems.

2.1.1. Dynamic System

The output (Y(t)) of a dynamic system is affected by the inputs (X(τ)) for τ ≤ t; in other words,
not only the input at the present time (u(t)) but also its past inputs (u(τ)) will affect the system
(for τ < t) [20]. For a simulation of the dynamic system, simulation time is divided into many small
steps (i.e., discrete time tick). The system model evolves its states at each time step, assuming that the
states are unchanged during a time step. This is a typical characteristic of discrete time simulations;
thus, the discrete time system models are usually the most intuitive to grasp all forms of the dynamic
system models [18].

The dynamic system using a discrete time simulation has numerous applications. For example,
a compartment dynamic model was simulated to describe the dynamic response and distribution
characteristics of the gasifier [21], and trajectories of unmanned aerial vehicles were modeled for
collision avoidance [22]. In this paper, the maneuvering behaviors of a UUV are modeled based on the
DTSS, which is a generalized form of a Mealy system [18].

Figure 1 shows the structure of a DTSS model and the following specification is its formal
representation [23]. The DTSS model consists of three variable sets (i.e., input, output, and state sets)
and two functions—state transition and output functions. Input, output, and state variables have
continuous values according to the simulation time. The state transition function, f (t), updates the
state at the next time instant given the current state and input values. Note that a derivative equation
is used to specify the rate of change of the state variables for the state transition function. The output
function, g(t), also requires state and input variables. At any particular time instant on the time axis,
given the current state and input values, the function computes the output values. In the DTSS model
of Figure 1, the state variable is represented by a circle and the two functions are depicted with squares.

Appl. Sci. 2017, 7, 1056 3 of 24

2. Problem Definition

2.1. Target System

A discrete event dynamic system is a (typically asynchronous) dynamic system in which state
transitions are triggered by the occurrence of discrete events [19]. In the following subsections, we
introduce the target system by distinguishing between two systems: dynamic and discrete event
systems.

2.1.1. Dynamic System

The output (Y(t)) of a dynamic system is affected by the inputs (X(τ)) for τ ≤ t; in other words,
not only the input at the present time (u(t)) but also its past inputs (u(τ)) will affect the system (for τ <
t) [20]. For a simulation of the dynamic system, simulation time is divided into many small steps
(i.e., discrete time tick). The system model evolves its states at each time step, assuming that the
states are unchanged during a time step. This is a typical characteristic of discrete time simulations;
thus, the discrete time system models are usually the most intuitive to grasp all forms of the
dynamic system models [18].

The dynamic system using a discrete time simulation has numerous applications. For example,
a compartment dynamic model was simulated to describe the dynamic response and distribution
characteristics of the gasifier [21], and trajectories of unmanned aerial vehicles were modeled for
collision avoidance [22]. In this paper, the maneuvering behaviors of a UUV are modeled based on
the DTSS, which is a generalized form of a Mealy system [18].

Figure 1 shows the structure of a DTSS model and the following specification is its formal
representation [23]. The DTSS model consists of three variable sets (i.e., input, output, and state sets)
and two functions—state transition and output functions. Input, output, and state variables have
continuous values according to the simulation time. The state transition function, f(t), updates the
state at the next time instant given the current state and input values. Note that a derivative
equation is used to specify the rate of change of the state variables for the state transition function.
The output function, g(t), also requires state and input variables. At any particular time instant on
the time axis, given the current state and input values, the function computes the output values. In
the DTSS model of Figure 1, the state variable is represented by a circle and the two functions are
depicted with squares.

Figure 1. An example of a dynamic system model: Discrete time system specification (DTSS) model. ܯܵܦ = 〈ܺ, ܻ, ܵ, ݂, ݃〉 ܺ is the set of inputs; ܻ is the set of outputs; ܵ is the set of continuous states;

Figure 1. An example of a dynamic system model: Discrete time system specification (DTSS) model.

DSM = 〈X, Y, S, f , g〉

X is the set of inputs;
Y is the set of outputs;
S is the set of continuous states;
f : d

dt S(t) = f (S(t), X(t), t) is the state transition function;
g : Y(t) = g(S(t), X(t), t) is the output function.

Appl. Sci. 2017, 7, 1056 4 of 23

2.1.2. Discrete Event System

A discrete event system is an event-driven system in which discrete states are updated depending
entirely on the occurrence of asynchronous discrete events over time. In discrete event simulations,
system states are scheduled dynamically as the simulation proceeds. Various modeling schemes
(e.g., finite state machine, Petri-net, DEVS, or Markov chain) have been used for discrete event
simulations [24–28]. Among them, the DEVS is a modular and hierarchical formalism for object-oriented
modeling and analysis [2], which is our approach for modeling the discrete event system.

Figure 2 shows the structure of a DEVS atomic model and the following specification is its formal
representation [18]. The DEVS atomic model consists of three variables and four functions. As the
DTSS model in Figure 1, a circle in the DEVS model represents the state variable and the squares
indicate the functions. System behaviors in the model are represented by state transitions using input
and output events. State variables with discrete values are updated by two transitions: when the
model receives an input event, state variables are updated; otherwise, if it does not receive any input
events until a certain time, an output event occurs and the state variables are renewed. The former
case is conducted by an external transition function, and the latter one is carried out by an output and
an internal transition function. The amount of time that a state waits for an input event is decided by
a time advance function. In Figure 2, the solid arrows in the DEVS model are relevant to the former
case, whereas the dotted ones correlate to the latter case. We modeled UTVs with the DEVS formalism,
which will be explained in Section 5.

Appl. Sci. 2017, 7, 1056 4 of 24

݂:	 ௗௗ௧ (ݐ)ܵ = ,(ݐ)ܵ)݂ ,(ݐ)ܺ (ݐ)ܻ	:݃ ;is the state transition function (ݐ = ,(ݐ)ܵ)݃ ,(ݐ)ܺ .is the output function (ݐ

2.1.2. Discrete Event System

A discrete event system is an event-driven system in which discrete states are updated
depending entirely on the occurrence of asynchronous discrete events over time. In discrete event
simulations, system states are scheduled dynamically as the simulation proceeds. Various modeling
schemes (e.g., finite state machine, Petri-net, DEVS, or Markov chain) have been used for discrete
event simulations [24–28]. Among them, the DEVS is a modular and hierarchical formalism for
object-oriented modeling and analysis [2], which is our approach for modeling the discrete event
system.

Figure 2 shows the structure of a DEVS atomic model and the following specification is its
formal representation [18]. The DEVS atomic model consists of three variables and four functions.
As the DTSS model in Figure 1, a circle in the DEVS model represents the state variable and the
squares indicate the functions. System behaviors in the model are represented by state transitions
using input and output events. State variables with discrete values are updated by two transitions:
when the model receives an input event, state variables are updated; otherwise, if it does not
receive any input events until a certain time, an output event occurs and the state variables are
renewed. The former case is conducted by an external transition function, and the latter one is
carried out by an output and an internal transition function. The amount of time that a state waits
for an input event is decided by a time advance function. In Figure 2, the solid arrows in the DEVS
model are relevant to the former case, whereas the dotted ones correlate to the latter case. We
modeled UTVs with the DEVS formalism, which will be explained in Section 5.

Figure 2. An example of a discrete event system model: Discrete event system specification (DEVS)
model. ܯܵܧܦ = 〈ܺ, ܻ, ܵ, ,௘௫௧ߜ ,௜௡௧ߜ ,ߣ ௘௫௧ߜ ;is the set of inputs; ܻ is the set of outputs; ܵ is the set of states ܺ 〈ܽݐ ∶ ܳ × ܺ → ܵ is the external transition function ܳ = ሼ(ݏ, ݏ	|	(݁ ∈ ܵ, 0 ≤ ݁ ≤ ௜௡௧ߜ ;ሽ(ݏ)ܽݐ ∶ ܵ → ܵ is the internal transition function; ߣ ∶ ܵ → ܻ is the output function;

Figure 2. An example of a discrete event system model: Discrete event system specification
(DEVS) model.

DESM = 〈X, Y, S, δext, δint, λ, ta〉

X is the set of inputs;
Y is the set of outputs;
S is the set of states;
δext : Q× X → S is the external transition function

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)};
δint : S→ S is the internal transition function;
λ : S→ Y is the output function;
ta : S→ Real is the time advance function.

2.2. Model Fidelity

In the simulation world, the level of fidelity is defined as the degree of output similarity between
a reference system and a model that abstracts the reference system. Figure 3 illustrates conceptual

Appl. Sci. 2017, 7, 1056 5 of 23

examples to show the level of fidelity for the target system model: dynamic and discrete event systems.
In Figure 3, the desired result is an output of the reference model, which is the reference system
itself or the most accurate model compared with the reference system. Fundamentally, outputs of the
high-fidelity models (blue lines in Figure 3) are much more similar to the desired outputs compared to
those of the low-fidelity models (red lines in the second rows of Figure 3).

Appl. Sci. 2017, 7, 1056 5 of 24

ܽݐ ∶ ܵ → ܴ݈݁ܽ is the time advance function.

2.2. Model Fidelity

In the simulation world, the level of fidelity is defined as the degree of output similarity
between a reference system and a model that abstracts the reference system. Figure 3 illustrates
conceptual examples to show the level of fidelity for the target system model: dynamic and discrete
event systems. In Figure 3, the desired result is an output of the reference model, which is the
reference system itself or the most accurate model compared with the reference system.
Fundamentally, outputs of the high-fidelity models (blue lines in Figure 3) are much more similar
to the desired outputs compared to those of the low-fidelity models (red lines in the second rows of
Figure 3).

Figure 3. Output errors of high- and low-fidelity models: Value error for the dynamic system model
and time error for the discrete event system model.

To evaluate the fidelity quantitatively, we measure an error between the output of the
reference model and that of the target system model, which is classified into two aspects (i.e., time
and value). In the dynamic system model, a value error is calculated as the ratio between two
output values given the same input. On the other hand, in the discrete event system model, a time
error is measured by the difference between time intervals from input to output events given the
same input event.

For each aspect, the output error ϵ	is defined by the following equation:

ϵ = ඨ∑ ଶே௜ୀଵܰ(௜ݎ݋ݎݎܧ) − 1 (1)

In Equation (1), ϵ as the root mean square error can be the value error for the dynamic system
model or the time error for the discrete event system model. N is the number of samples. For
example, N is the number of time samples for the dynamic system model or the number of output
events for the discrete event system. The range of ϵ is [0, +∞]. If ϵ is close to zero, the outputs of the
target model are almost identical with those of the reference model, which means that the target
model has a very high fidelity for the samples, N. On the contrary, a large ϵ value means that the
target model has a low fidelity so that the outputs of the model are distinguished from those of the
reference model.

Figure 3. Output errors of high- and low-fidelity models: Value error for the dynamic system model
and time error for the discrete event system model.

To evaluate the fidelity quantitatively, we measure an error between the output of the reference
model and that of the target system model, which is classified into two aspects (i.e., time and value).
In the dynamic system model, a value error is calculated as the ratio between two output values given
the same input. On the other hand, in the discrete event system model, a time error is measured by the
difference between time intervals from input to output events given the same input event.

For each aspect, the output error ε is defined by the following equation:

ε =

√
∑N

i=1(Errori)
2

N − 1
(1)

In Equation (1), ε as the root mean square error can be the value error for the dynamic system
model or the time error for the discrete event system model. N is the number of samples. For example,
N is the number of time samples for the dynamic system model or the number of output events for the
discrete event system. The range of ε is [0, +∞]. If ε is close to zero, the outputs of the target model
are almost identical with those of the reference model, which means that the target model has a very
high fidelity for the samples, N. On the contrary, a large ε value means that the target model has a low
fidelity so that the outputs of the model are distinguished from those of the reference model.

In the DTSS model for the dynamic system, the output values are influenced by the state variables,
and the state variables are updated from the state transition function. Therefore, the state transition is
closely connected to determining the fidelity of the model. In the DEVS model for the discrete event
system, the time of the output is decided in the time advance function. Thus, the time advance function
is important in evaluating the fidelity of the model. These functions will be used for developing
lower-fidelity models in Section 4.

Appl. Sci. 2017, 7, 1056 6 of 23

2.3. Interest Region within a Single Simulation Scenario

A simulation scenario places concepts, attributes, and relations of simulated objects into a dynamic
context [29]. The discrete event dynamic system needs a time-based simulation during a specified
period suited for satisfactory simulation objectives. The motivated point for multi-fidelity modeling is
that the outputs of the low-fidelity model might have little influence on the overall simulation result
during a particular simulation period.

Figure 4 shows an example scenario for tracking and attacking a true target of a UUV. The objective
of this simulation is to evaluate a rate of success to attack the target. In this case, the scenario includes
a course of action with sequential tasks. First, the UUV is launched and searches for a true target.
When the UUV comes closer to a detectable area, it detects the true target. Then, the UUV approaches
the true target and attacks it (this scenario will be concretely explained in Section 5). In this scenario,
the UUV includes five major tasks: Launch, Search, Detect, Approach, and Attack. Among them,
the simulation objective is considered, and the critical tasks are Detect, Approach, and Attack. That
is, the low-fidelity outputs of the UUV model in Launch and Search have little effect on the overall
simulation accuracy, whereas the outputs in Detect, Approach, and Attack are likely to have a serious
impact on the overall accuracy.

Appl. Sci. 2017, 7, 1056 6 of 24

In the DTSS model for the dynamic system, the output values are influenced by the state
variables, and the state variables are updated from the state transition function. Therefore, the state
transition is closely connected to determining the fidelity of the model. In the DEVS model for the
discrete event system, the time of the output is decided in the time advance function. Thus, the time
advance function is important in evaluating the fidelity of the model. These functions will be used
for developing lower-fidelity models in Section 4.

2.3. Interest Region within a Single Simulation Scenario

A simulation scenario places concepts, attributes, and relations of simulated objects into a
dynamic context [29]. The discrete event dynamic system needs a time-based simulation during a
specified period suited for satisfactory simulation objectives. The motivated point for multi-fidelity
modeling is that the outputs of the low-fidelity model might have little influence on the overall
simulation result during a particular simulation period.

Figure 4 shows an example scenario for tracking and attacking a true target of a UUV. The
objective of this simulation is to evaluate a rate of success to attack the target. In this case, the
scenario includes a course of action with sequential tasks. First, the UUV is launched and searches
for a true target. When the UUV comes closer to a detectable area, it detects the true target. Then,
the UUV approaches the true target and attacks it (this scenario will be concretely explained in
Section 5). In this scenario, the UUV includes five major tasks: Launch, Search, Detect, Approach,
and Attack. Among them, the simulation objective is considered, and the critical tasks are Detect,
Approach, and Attack. That is, the low-fidelity outputs of the UUV model in Launch and Search
have little effect on the overall simulation accuracy, whereas the outputs in Detect, Approach, and
Attack are likely to have a serious impact on the overall accuracy.

Figure 4. Interest region in a single simulation scenario: Target attacking scenario of an unmanned
underwater vehicle (UUV).

This paper proposes an interest region that is a portion of the whole scenario where the model
output has a serious effect on the overall simulation analysis. In the example of Figure 4, the interest
region is an interval when Detect, Approach, and Attack tasks are conducted. Thus, only the
high-fidelity model is employed in this region and lower-fidelity models are used in the remaining
parts. The fidelity of the target model is changed based on the interest region during the simulation.

Figure 4. Interest region in a single simulation scenario: Target attacking scenario of an unmanned
underwater vehicle (UUV).

This paper proposes an interest region that is a portion of the whole scenario where the model
output has a serious effect on the overall simulation analysis. In the example of Figure 4, the interest
region is an interval when Detect, Approach, and Attack tasks are conducted. Thus, only the
high-fidelity model is employed in this region and lower-fidelity models are used in the remaining
parts. The fidelity of the target model is changed based on the interest region during the simulation.
With this concept, the simulation result will be very similar to using the high-fidelity model for all
intervals; furthermore, simulation speedup will be achieved.

3. Literature Review

Over the last decade, several studies have sought to use multi-fidelity M&S to speed up
simulations. The fundamental concept for these studies is multi-fidelity optimization, where
lower-fidelity simulations are used to approximate the behavior of the high-fidelity simulation.

Appl. Sci. 2017, 7, 1056 7 of 23

For example, Viana et al. [30] used multi-fidelity approximations combined with heuristic methods
for the optimal design of aircraft pressure bulkheads. They coupled nonlinear high-fidelity analysis
and linear low-fidelity analysis with four methods (i.e., ant colony optimization, genetic algorithm,
particle swarm optimization, and life cycle model). Zheng et al. [31] introduced several applications,
such as an airfoil wing simulation, car crash simulation, and an artificial neural network, etc., which
were achieved with multi-fidelity modeling and an approximation management framework.

Sun et al. [32] proposed a two-stage multi-fidelity procedure for solving crashworthiness design
for cellular structures and materials. In the first stage of their proposed work, a correction response
surface was constructed based on the ratio between high-fidelity and low-fidelity analyses at a few
sample points. In the second stage, low-fidelity analysis is replaced with a radial bias function
approximation. Xu et al. [33] presented an ordinal transformation approach to transform the original
solution space into a one-dimensional space based on the rankings of solutions using the low-fidelity
model. After that, they used an optimal sampling approach to search solutions in the transformed
one-dimensional space for optimal solutions using high-fidelity simulations.

One of the common points of the above-mentioned studies is to drive the preliminary design
process using low-fidelity models as surrogates for expensive high-fidelity simulations. Then,
high-fidelity models are employed in the final design stages to refine the design. In this case,
the multi-fidelity technique is to utilize initial design points determined from a low-fidelity simulation
to correct the simulation at other design points. This means that the fidelity did not change
dynamically during the same simulation scenario. In addition, because these studies have focused on
application-based approaches to resolve practical issues, there has been no formal representation of
the multi-fidelity model and no model reusability of existing simulation models.

Williams and Alleyne [34] presented a modeling framework for dynamically changing the fidelity
of component models throughout a single scenario–the approach most similar to our own. For a
dynamic change of fidelity, they proposed the following design concepts: (1) a supervisor filter to
analyze and determine which inputs trigger a switch to low- and high-fidelity models and (2) a dwell
time that provides a buffer during fidelity switching. The proposed framework was demonstrated
for a finite-volume model of a vapor compression system where the model fidelity is based on the
number of volumes used for the evaporator. Although the authors regarded dynamic changes of the
fidelity, this study also suffers from an insufficient representation of behaviors of the event-based
system. For example, the authors did not consider internal discrete events of the model but focused
on exogenous signals; thus, the modeling form used in Williams and Alleyne’s study also makes it
difficult to directly apply it to the discrete event dynamic system.

In common with most M&S methods, multi-fidelity M&S inevitably involves behavioral errors
of the developed models due to their approximations. Cassettari et al. [35] classified them into two
types. The first error is directly connected to the translation of the real system into a simulation
model; the second one is related to the transformation of the simulation models. In multi-fidelity
M&S, the high-fidelity model facilitates reducing the first error, whereas the lower-fidelity models
make the second error in place of enhancing simulation speedup. To minimize the second error, in this
paper, we only use lower-fidelity models for the marginal parts of a single scenario. As we explained
in the introduction, the single simulation scenario does not need to be simulated with high-fidelity
models. For example, if a simulation analysis for one-day traffic is carried out, it is highly effective to
focus on analyzing traffic during rush hour. Therefore, the high-fidelity models are primarily used
for important regions of the scenario, whereas the lower-fidelity models are used for marginal parts.
With this concept, this paper proposes a general framework for multi-fidelity modeling for enhancing
simulation speed while minimizing accuracy loss and maximizing model reusability. We will show
these points with empirical simulation results in Section 5.

Appl. Sci. 2017, 7, 1056 8 of 23

4. Proposed Framework

This section proposes the overall procedure for the multi-fidelity modeling framework.
As depicted in the left diagram of Figure 5, the framework consists of the following five steps: (1) target
model selection, (2) interest region definition, (3) lower-fidelity model design, (4) multi-fidelity model
composition, and (5) selected target model substitution. In this framework, we assume that the
target model already has a high fidelity (Target ModelHF in Figure 5 are relevant here). Based on
the high-fidelity model, lower-fidelity models for the target model (e.g., Target ModelIF and Target
ModelLF) are additionally developed for simulations in non-interest regions. A multi-fidelity model
(e.g., Target ModelMF) contains a selection model to choose a proper model from among the models
with variable fidelities. With regard to a systemic aspect, the input and output variables of the existing
target model are equal to those of the multi-fidelity model that is substituted for the model (see Target
ModelHF and Target ModelMF in Figure 5). This guarantees the reuse of other existing models and the
simulation engine minimizing modifications.

Appl. Sci. 2017, 7, 1056 8 of 24

for marginal parts. With this concept, this paper proposes a general framework for multi-fidelity
modeling for enhancing simulation speed while minimizing accuracy loss and maximizing model
reusability. We will show these points with empirical simulation results in Section 5.

4. Proposed Framework

This section proposes the overall procedure for the multi-fidelity modeling framework. As
depicted in the left diagram of Figure 5, the framework consists of the following five steps: (1) target
model selection, (2) interest region definition, (3) lower-fidelity model design, (4) multi-fidelity
model composition, and (5) selected target model substitution. In this framework, we assume that
the target model already has a high fidelity (Target ModelHF in Figure 5 are relevant here). Based on
the high-fidelity model, lower-fidelity models for the target model (e.g., Target ModelIF and Target
ModelLF) are additionally developed for simulations in non-interest regions. A multi-fidelity model
(e.g., Target ModelMF) contains a selection model to choose a proper model from among the models
with variable fidelities. With regard to a systemic aspect, the input and output variables of the
existing target model are equal to those of the multi-fidelity model that is substituted for the model
(see Target ModelHF and Target ModelMF in Figure 5). This guarantees the reuse of other existing
models and the simulation engine minimizing modifications.

Figure 5. Proposed multi-fidelity modeling framework.

In the following subsections, we will explain the steps in detail and describe the evaluation
index for simulation speedup.

4.1. Target Model Selection and Interest Region Definition

The first step of the proposed framework is to choose a target sub-model from the entire
simulation model. The selected model should satisfy the following two prerequisites: (1) it is
modeled by the DTSS or DEVS formalism and (2) it fundamentally has high fidelity with
computational complexity and is executed frequently during the simulation.

Next, we define an interest region of the target model. As we explained in Section 2.3, the
interest region is a part of the whole simulation scenario where the model output has a serious effect
on the overall simulation analysis. The definition of the interest region simplifies how the
framework achieves multi-fidelity modeling: the high-fidelity model is exclusively simulated within
the interest region of the whole scenario. If the overall scenario is designated as a large interest
region, the high-fidelity model is fully simulated without using lower-fidelity models, which means
that changes of the model’s fidelity do not occur within the scenario.

Figure 5. Proposed multi-fidelity modeling framework.

In the following subsections, we will explain the steps in detail and describe the evaluation index
for simulation speedup.

4.1. Target Model Selection and Interest Region Definition

The first step of the proposed framework is to choose a target sub-model from the entire simulation
model. The selected model should satisfy the following two prerequisites: (1) it is modeled by the
DTSS or DEVS formalism and (2) it fundamentally has high fidelity with computational complexity
and is executed frequently during the simulation.

Next, we define an interest region of the target model. As we explained in Section 2.3, the interest
region is a part of the whole simulation scenario where the model output has a serious effect on the
overall simulation analysis. The definition of the interest region simplifies how the framework achieves
multi-fidelity modeling: the high-fidelity model is exclusively simulated within the interest region
of the whole scenario. If the overall scenario is designated as a large interest region, the high-fidelity
model is fully simulated without using lower-fidelity models, which means that changes of the model’s
fidelity do not occur within the scenario.

Figure 6 shows two examples for setting up the interest region. Because our target system is
a discrete event dynamic system, which is represented with either the DEVS or DTSS model, the

Appl. Sci. 2017, 7, 1056 9 of 23

simulation is a process of updating input, state, and output variables as time progresses. In this context,
the interest region is an acceptable range of the input and state variables of the target model. Figure 6a
shows that two regions are set up with two ranges (i.e., R1 and R2) for one interest region variable
(IRVA); Figure 6b represents just one region to intersect two ranges for two variables (i.e., R3 for IRVB

and R4 for IRVC).

Appl. Sci. 2017, 7, 1056 9 of 24

Figure 6 shows two examples for setting up the interest region. Because our target system is a
discrete event dynamic system, which is represented with either the DEVS or DTSS model, the
simulation is a process of updating input, state, and output variables as time progresses. In this
context, the interest region is an acceptable range of the input and state variables of the target
model. Figure 6a shows that two regions are set up with two ranges (i.e., R1 and R2) for one interest
region variable (IRVA); Figure 6b represents just one region to intersect two ranges for two variables
(i.e., R3 for IRVB and R4 for IRVC).

(a) (b)

Figure 6. Examples of interest regions: (a) two regions defined from one interest region variable
(IRV); (b) one region defined from two IRVs.

4.2. Lower-Fidelity Model Design

The third step is to develop lower-fidelity models for the selected target model. We will explain
this step by distinguishing between dynamic and discrete event system models.

4.2.1. Lower-Fidelity Models Design for the Dynamic System

As mentioned in Section 2, the fidelity of the DTSS model is determined by the state transition
function. Therefore, lower-fidelity models are designed to simplify this function of the current
target model that already has a high fidelity. For simplification of the function, this paper suggests
two methods: elimination and projection. The elimination method deletes the terms that have little
effect on the accuracy of output in the state transition function and the projection method fixes the
values of variables in the state transition function.

Figure 7 shows an example of lower-fidelity model design for a UUV surfacing simulation. The
target model is the maneuver model for UUV motion in six degrees of freedom. We assume that the
input of the UUV maneuver model is an elevator S(t), the output is a depth Z(t), and one of the state
variables is a pitch q(t). The state transition function of the model is a differential equation, which
consists of many terms. Further explanations for the maneuver equation are found in [36].
Depending on the level of eliminating terms, an intermediate-fidelity model and a low-fidelity
model can be developed by using the elimination method, which is used to derive fM and fL from fH
and fM, respectively. The more terms that are eliminated, the more the accuracy of the state and out
variables decreases.

Table 1 shows empirical results regarding the simulation execution time and simulation
accuracy for the above example. We first measured the elapsed time for a single simulation. The
simulation of the high-fidelity model took about twice as much execution time as the low-fidelity
model. For example, if the number of iterations of this simulation is more than 500,000, the
high-fidelity model’s simulation takes twenty-three more days than that of the low-fidelity model.
We next calculated ϵ derived from Equation (1). In this experiment, the desired result is obtained
from the high-fidelity model (this means that the reference model is the high-fidelity model fH). For
simulation accuracy, the high-fidelity and the intermediate-fidelity models had similar ϵ	 values;
however, the low-fidelity model had an ϵ value with a significant difference.

Figure 6. Examples of interest regions: (a) two regions defined from one interest region variable (IRV);
(b) one region defined from two IRVs.

4.2. Lower-Fidelity Model Design

The third step is to develop lower-fidelity models for the selected target model. We will explain
this step by distinguishing between dynamic and discrete event system models.

4.2.1. Lower-Fidelity Models Design for the Dynamic System

As mentioned in Section 2, the fidelity of the DTSS model is determined by the state transition
function. Therefore, lower-fidelity models are designed to simplify this function of the current target
model that already has a high fidelity. For simplification of the function, this paper suggests two
methods: elimination and projection. The elimination method deletes the terms that have little effect
on the accuracy of output in the state transition function and the projection method fixes the values of
variables in the state transition function.

Figure 7 shows an example of lower-fidelity model design for a UUV surfacing simulation.
The target model is the maneuver model for UUV motion in six degrees of freedom. We assume
that the input of the UUV maneuver model is an elevator S(t), the output is a depth Z(t), and one of
the state variables is a pitch q(t). The state transition function of the model is a differential equation,
which consists of many terms. Further explanations for the maneuver equation are found in [36].
Depending on the level of eliminating terms, an intermediate-fidelity model and a low-fidelity model
can be developed by using the elimination method, which is used to derive fM and fL from fH and
fM, respectively. The more terms that are eliminated, the more the accuracy of the state and out
variables decreases.

Table 1 shows empirical results regarding the simulation execution time and simulation accuracy
for the above example. We first measured the elapsed time for a single simulation. The simulation of the
high-fidelity model took about twice as much execution time as the low-fidelity model. For example,
if the number of iterations of this simulation is more than 500,000, the high-fidelity model’s simulation
takes twenty-three more days than that of the low-fidelity model. We next calculated ε derived from
Equation (1). In this experiment, the desired result is obtained from the high-fidelity model (this means
that the reference model is the high-fidelity model fH). For simulation accuracy, the high-fidelity and
the intermediate-fidelity models had similar ε values; however, the low-fidelity model had an ε value
with a significant difference.

Appl. Sci. 2017, 7, 1056 10 of 23
Appl. Sci. 2017, 7, 1056 10 of 24

Figure 7. High-, intermediate-, and low-fidelity model design for the dynamic system: An example of
a UUV surfacing simulation.

Table 1. Execution time and error of high-, intermediate-, and low-fidelity models for a UUV
surfacing simulation.

Evaluation Index High-Fidelity
Model

Intermediate-Fidelity
Model

Low-Fidelity
Model

Execution time (sec) 8.01 7.50 4.08 ϵ 0 0.08 0.22

4.2.2. Lower-Fidelity Models Design for the Discrete Event System

In the discrete event system, lower-fidelity models are designed to simplify the time advance
function of the DEVS model. We explained high- and low-fidelity models for the UTV, which is
shown in Figure 8. The UTV brings passengers to their destinations via the fastest route; thus, its
DEVS model computes the duration time from pickup to drop-off, which is carried out by the time
advance function. In Figure 8, when the UTV model receives an input event, Departure, the model
changes the state to MOVE from WAIT. Then, the model computes the time of the state, MOVE, to
generate the output event. The high-fidelity model calculates it by using the Dijkstra algorithm [37],
which finds the shortest path from a start node to an end node in a map with several nodes and their
connections. However, the Dijkstra algorithm has computational complexity and the increase in
computational cost is exponentially related to the number of nodes. The low-fidelity model uses a
simple algorithm that just calculates the travel time of the straight-line distance between the start
and end nodes. The accuracy of this simple algorithm is lower than that of the Dijkstra algorithm,
though its calculation speed is much faster than that of the Dijkstra algorith.

We measured the execution time and ϵ for 2000 input events, as shown in Table 2. The
simulation of the low-fidelity model was approximately seven times faster than the case of the
high-fidelity model; however, ϵ for the low-fidelity model was 0.21 higher than that of the
high-fidelity model. ϵ,	 which	 was	 measured	 in	 these	 two simple	 examples, is a theoretical
measurement focusing on the target model itself, not the overall simulation model. Because the
target model is a sub-model of the whole model, we will evaluate the simulation accuracy from the
view of the overall simulation objective in Section 5.

Figure 7. High-, intermediate-, and low-fidelity model design for the dynamic system: An example of
a UUV surfacing simulation.

Table 1. Execution time and error of high-, intermediate-, and low-fidelity models for a UUV
surfacing simulation.

Evaluation Index High-Fidelity Model Intermediate-Fidelity Model Low-Fidelity Model

Execution time (sec) 8.01 7.50 4.08
ε 0 0.08 0.22

4.2.2. Lower-Fidelity Models Design for the Discrete Event System

In the discrete event system, lower-fidelity models are designed to simplify the time advance
function of the DEVS model. We explained high- and low-fidelity models for the UTV, which is shown
in Figure 8. The UTV brings passengers to their destinations via the fastest route; thus, its DEVS
model computes the duration time from pickup to drop-off, which is carried out by the time advance
function. In Figure 8, when the UTV model receives an input event, Departure, the model changes
the state to MOVE from WAIT. Then, the model computes the time of the state, MOVE, to generate
the output event. The high-fidelity model calculates it by using the Dijkstra algorithm [37], which
finds the shortest path from a start node to an end node in a map with several nodes and their
connections. However, the Dijkstra algorithm has computational complexity and the increase in
computational cost is exponentially related to the number of nodes. The low-fidelity model uses a
simple algorithm that just calculates the travel time of the straight-line distance between the start and
end nodes. The accuracy of this simple algorithm is lower than that of the Dijkstra algorithm, though
its calculation speed is much faster than that of the Dijkstra algorith.

We measured the execution time and ε for 2000 input events, as shown in Table 2. The simulation
of the low-fidelity model was approximately seven times faster than the case of the high-fidelity model;
however, ε for the low-fidelity model was 0.21 higher than that of the high-fidelity model. ε, which
was measured in these two simple examples, is a theoretical measurement focusing on the target model
itself, not the overall simulation model. Because the target model is a sub-model of the whole model,
we will evaluate the simulation accuracy from the view of the overall simulation objective in Section 5.

Appl. Sci. 2017, 7, 1056 11 of 23
Appl. Sci. 2017, 7, 1056 11 of 24

Figure 8. High- and low-fidelity model design for the discrete event system: Example of an urban
transportation vehicle (UTV) routing simulation.

Table 2. Execution times and errors of high- and low-fidelity models for the urban transportation
vehicle (UTV) routing simulation.

Evaluation Index High-Fidelity
Model

Low-Fidelity
Model

Execution time (s) 1 2.79 0.41 ϵ 2 0 0.21
1,2 The execution time and ϵ are measured based on 2000 random input events.

4.3. Multi-Fidelity Model Composition and Target Model Substitution

After the development of lower-fidelity models for the target model, we needed to composite a
multi-fidelity model (MFM). For composition, the formal structure of the MFM is illustrated in
Figure 9. The MFM consists of two types of models: internal target models and a selection model.
The original target model and its derived models with lower-fidelity correspond to the internal
target models. A selection model determines an appropriate internal model for each predefined
region, which implies that, among the several internal models, only one model is activated for each
simulation time.

Figure 9. General structure of the multi-fidelity model.

To be specific, the selection model has two important roles. When the selection model receives
an input (Xin in Figure 9) from outside of the MFM, it decides whether the current internal model

Figure 8. High- and low-fidelity model design for the discrete event system: Example of an urban
transportation vehicle (UTV) routing simulation.

Table 2. Execution times and errors of high- and low-fidelity models for the urban transportation
vehicle (UTV) routing simulation.

Evaluation Index High-Fidelity Model Low-Fidelity Model

Execution time (s) 1 2.79 0.41
ε 2 0 0.21

1,2 The execution time and ε are measured based on 2000 random input events.

4.3. Multi-Fidelity Model Composition and Target Model Substitution

After the development of lower-fidelity models for the target model, we needed to composite a
multi-fidelity model (MFM). For composition, the formal structure of the MFM is illustrated in Figure 9.
The MFM consists of two types of models: internal target models and a selection model. The original
target model and its derived models with lower-fidelity correspond to the internal target models.
A selection model determines an appropriate internal model for each predefined region, which implies
that, among the several internal models, only one model is activated for each simulation time.

Appl. Sci. 2017, 7, 1056 11 of 24

Figure 8. High- and low-fidelity model design for the discrete event system: Example of an urban
transportation vehicle (UTV) routing simulation.

Table 2. Execution times and errors of high- and low-fidelity models for the urban transportation
vehicle (UTV) routing simulation.

Evaluation Index High-Fidelity
Model

Low-Fidelity
Model

Execution time (s) 1 2.79 0.41 ϵ 2 0 0.21
1,2 The execution time and ϵ are measured based on 2000 random input events.

4.3. Multi-Fidelity Model Composition and Target Model Substitution

After the development of lower-fidelity models for the target model, we needed to composite a
multi-fidelity model (MFM). For composition, the formal structure of the MFM is illustrated in
Figure 9. The MFM consists of two types of models: internal target models and a selection model.
The original target model and its derived models with lower-fidelity correspond to the internal
target models. A selection model determines an appropriate internal model for each predefined
region, which implies that, among the several internal models, only one model is activated for each
simulation time.

Figure 9. General structure of the multi-fidelity model.

To be specific, the selection model has two important roles. When the selection model receives
an input (Xin in Figure 9) from outside of the MFM, it decides whether the current internal model

Figure 9. General structure of the multi-fidelity model.

Appl. Sci. 2017, 7, 1056 12 of 23

To be specific, the selection model has two important roles. When the selection model receives an
input (Xin in Figure 9) from outside of the MFM, it decides whether the current internal model needs
to be changed based on the FCC. First, if the model requires no change, the selection model sends the
input to the model. The internal model carries out its own actions and generates two outputs: an actual
model result for the input (Yout) and its current state. The current state is transferred to the selection
model. These are the cases of the input bypassing and the state copy, as shown in Figure 9. Otherwise,
if a model change is required, the selection model activates the other model by sending the input Xin
with the copied state for continued simulation. This is relevant to the model activation in Figure 9.
In this way, the selection model will manage the trade-off between the computational resources and the
accuracy of the simulation results. Specifically, it will decrease the computational burden in noncritical
regions while increasing the simulation accuracy in critical regions. The specification for the MFM is
described as follows.

MFM = 〈X, Y, {Mi}, SM, MCS〉

X = {Xin} is the set of inputs;
Y = {Yout} is the set of outputs;
{Mi} = {M1, · · · , Mn} is the set of models with variable fidelities;
SM is the selection model;
MCS ⊆ EIC ∪ EOC ∪ IC is the model coupling scheme;

EIC ⊆ X× SM.X is the external input coupling;
EOC ⊆ Un

i=1Mi.Y×Y is the external output coupling;
IC ⊆ (SM.Y×Un

i=1Mi.X) ∪ (Un
i=1Mi.Y× SM.X) is the internal coupling.

4.3.1. Multi-Fidelity Model Composition for Dynamic System

Figure 10 shows the structure of the multi-fidelity model of the dynamic system. The internal
models (i.e., M1 to Mn) are expressed with the DTSS formalism mentioned in Section 2; the SMDS has a
similar form to the DTSS so that overall models can be simulated with the existing simulation engine.

Appl. Sci. 2017, 7, 1056 12 of 24

needs to be changed based on the FCC. First, if the model requires no change, the selection model
sends the input to the model. The internal model carries out its own actions and generates two
outputs: an actual model result for the input (Yout) and its current state. The current state is
transferred to the selection model. These are the cases of the input bypassing and the state copy, as
shown in Figure 9. Otherwise, if a model change is required, the selection model activates the other
model by sending the input Xin with the copied state for continued simulation. This is relevant to
the model activation in Figure 9. In this way, the selection model will manage the trade-off between
the computational resources and the accuracy of the simulation results. Specifically, it will decrease
the computational burden in noncritical regions while increasing the simulation accuracy in critical
regions. The specification for the MFM is described as follows. ܯܨܯ = 〈ܺ, ܻ, ሼܯ௜ሽ, ܺ 〈ܵܥܯ,ܯܵ = ሼ ௜ܺ௡ሽ is the set of inputs; ܻ = ሼ ௢ܻ௨௧ሽ is the set of outputs; ሼܯ௜ሽ = ሼܯଵ,⋯ ܵܥܯ ;is the selection model ܯܵ ;௡ሽ is the set of models with variable fidelitiesܯ, ⊆ ܥܫܧ ∪ ܥܱܧ ∪ ܥܫܧ ;is the model coupling scheme ܥܫ ⊆ 	ܺ × .ܯܵ ܺ is the external input coupling; ܥܱܧ ⊆ 	⋃ .௜ܯ ܻ௡௜ୀଵ × ܻ is the external output coupling; ܥܫ ⊆ .ܯܵ) ܻ × ⋃ .௜ܯ ܺ௡௜ୀଵ) ∪ (⋃ .௜ܯ ܻ௡௜ୀଵ × .ܯܵ ܺ) is the internal coupling.

4.3.1. Multi-Fidelity Model Composition for Dynamic System

Figure 10 shows the structure of the multi-fidelity model of the dynamic system. The internal
models (i.e., M1 to Mn) are expressed with the DTSS formalism mentioned in Section 2; the SMDS has
a similar form to the DTSS so that overall models can be simulated with the existing simulation
engine.

Figure 10. An example of the multi-fidelity model’s structure for a dynamic system:
Fidelity-unchanged and fidelity-changed cases.
Figure 10. An example of the multi-fidelity model’s structure for a dynamic system: Fidelity-unchanged
and fidelity-changed cases.

Appl. Sci. 2017, 7, 1056 13 of 23

SMDS = 〈X, Y, S, FCC, s f , o f 〉

X = {Xin} ∪ {Un
i=1Mi.State} is the set of inputs;

Mi.State is the current state input of internal model Mi;
Y = {Un

i=1Mi.Xin} ∪ {Un
i=1Mi.Activate} is the set of outputs;

Mi.Xin is the set of bypassing outputs to Mi;
Mi.Activate is the set of activating outputs to Mi;

S = {(Mi, State, bChange)|Mi ∈ {Mi}, State ∈ Mi.S, bChange ∈ {True, False}}
is the set of internal model states;

FCC = {(v, r)|v ∈ IRV, r ∈ R} is the set of fidelity change conditions;
s f : X× S× C → S is the selection function;
o f : X× S→ Y is the output function.

The specification of the SMDS is given after Figure 10. The SMDS has two types of input sets:
an external input set from outside of the MFMDS and a state input set. The two types of output sets for
input bypassing and model activation are allowed by the SMDS. Fundamentally, the SMDS receives
the external input Xin, and sends it to a current internal model Mi in the form of the output Mi.Xin.
The SMDS receives the state input Xi.State from the Mi and checks whether a model change is needed.
If a change is required, the SMDS sends the output for model activation Mj.Activate to the altered model
Mj. The SMDS has two sets of states: (1) a set of internal model states including the current internal
model, the state variable of the model, and the Boolean variable to check whether there has been a
model change; and (2) a set of fidelity change conditions. Finally, the SMDS employs two functions:
a selection function sf and an output function of. The sf, which is mapped to the state transition
function of the DTSS model, decides whether the current internal model is changed with the FCC when
the SMDS receives an external input. If the current internal model does not need to be changed, the of
sends the external input to the model. Otherwise, the of sends the state of the current internal model
and the external input to the altered internal model (blue fonts are relevant to the fidelity-unchanged
case and red ones correspond to the fidelity-changed case in Figure 10).

4.3.2. Multi-Fidelity Model Composition for Discrete Event System

The structure of the multi-fidelity model of the discrete event system is shown in Figure 11. All the
models in the MFMDES are designed with the DEVS formalism [18]. Unlike the DTSS model, the DEVS
model can be executed regardless of whether it receives an input event or not. Thus, the MFMDES
has an additional output event Mi.Stop to stop the execution of the current internal model Mi when
another internal model needs to be activated. If the current model receives the input event Mi.Stop,
it enters the STOP state, which is an additional state in which the state time is infinite, and waits for
the next activation. When the Mi receives the activate event afterward Mi.Activate, the Mi returns to
the previous state before it is deactivated StateOrigin. The specification is a formal representation of the
selection model SMDES.

SMDES = 〈X, Y, S, FCC, s f , δext, δint, λ, ta〉

X = {Xin} ∪ {Un
i=1Mi.State} is the set of inputs;

Mi.State is the current state input of internal model Mi;
Y = {Un

i=1Mi.Xin} ∪ {Un
i=1Mi.Activate} ∪ {Un

i=1Mi.Stop} is the set of outputs;
Mi.Xin is the bypassing output of Mi;
Mi.Activate is the activate output of Mi;
Mi.Stop is the stop output of Mi.

S = {Un
i=1Mi.WAIT} ∪ {Un

i=1Mi.CHECK} ∪ {Un
i=1Mi.ACTIVATE} ∪ {Un

i=1Mi.CHANGE}

Appl. Sci. 2017, 7, 1056 14 of 23

FCC = {(v, r) | v ∈ IRV, r ∈ R} is the set of fidelity change conditions.
s f : (Mi.CHECK, FCC)→ Mi.WAIT ;

(Mi.CHECK, FCC)→ Mi.ACTIVATE ;
δext : (Xin, Mi.WAIT)→ Mi.CHECK ;

(Mi.State, Mi.WAIT)→ Mi.WAIT ;
δint : Mi.ACTIVATE→ Mi.CHANGE ;

Mi.CHANGE→ Mi.WAIT ;
λ : Mi.ACTIVATE→ Mi.Activate ;

Mi.CHANGE→ Mi.Xin ;
Mi.CHECK → Mi.Xin ;
Mi.CHECK → Mi.Stop ;

ta : Mi.WAIT → ∞ ;
{Mi.CHECK, Mi.ACTIVATE, Mi.CHANGE} → 0.

Appl. Sci. 2017, 7, 1056 14 of 24

ܵ = ሼ⋃ ௡௜ୀଵܶܫܣܹ.௜ܯ ሽ ∪ ሼ⋃ .௜ܯ ௡௜ୀଵܭܥܧܪܥ ሽ ∪ ሼ⋃ .௜ܯ ௡௜ୀଵܧܶܣܸܫܶܥܣ ሽ ∪ ሼ⋃ .௜ܯ ௡௜ୀଵܧܩܰܣܪܥ ሽ ܥܥܨ = ሼ(ݒ, ݒ	|	(ݎ ∈ ,ܸܴܫ ݎ ∈ ܴሽ is the set of fidelity change conditions. ݂ݏ ∶ .௜ܯ) ,ܭܥܧܪܥ (ܥܥܨ → .௜ܯ) ;ܶܫܣܹ.௜ܯ ,ܭܥܧܪܥ (ܥܥܨ → .௜ܯ ௘௫௧ߜ ;ܧܶܣܸܫܶܥܣ ∶ (௜ܺ௡,ܯ௜.ܹܶܫܣ) → .௜ܯ .௜ܯ) ;ܭܥܧܪܥ (ܶܫܣܹ.௜ܯ,݁ݐܽݐܵ → ௜௡௧ߜ ;ܶܫܣܹ.௜ܯ ∶ .௜ܯ ܧܶܣܸܫܶܥܣ → .௜ܯ .௜ܯ ;ܧܩܰܣܪܥ ܧܩܰܣܪܥ → ߣ ;ܶܫܣܹ.௜ܯ ∶ .௜ܯ ܧܶܣܸܫܶܥܣ → .௜ܯ .௜ܯ ;݁ݐܽݒ݅ݐܿܣ ܧܩܰܣܪܥ → .௜ܯ ௜ܺ௡; ܯ௜. ܭܥܧܪܥ → .௜ܯ ௜ܺ௡; ܯ௜. ܭܥܧܪܥ → .௜ܯ ܽݐ ;݌݋ݐܵ ∶ ܶܫܣܹ.௜ܯ → ∞; ሼܯ௜. .௜ܯ,ܭܥܧܪܥ .௜ܯ,ܧܶܣܸܫܶܥܣ ሽܧܩܰܣܪܥ → 0.

Figure 11. An example of the multi-fidelity model’s structure for a discrete event system:
Fidelity-unchanged and fidelity-changed cases.

Except for the stop event, the input and output sets of the SMDES are identical to those of the
SMDS. The SMDES has two sets of states (i.e., FCC and S). The FCC is the same as that of SMDS,
whereas the S is slightly different. In the SMDES, the S is mapped to four phase sets—Mi.WAIT,
Mi.CHECK, Mi.ACTIVE, and Mi.CHANGE. Unlike the SMDS, two important roles of SMDES are
conducted by a series of phase transitions. The basic phase is Mi.WAIT, assuming that the current
internal model is Mi. When the SMDES receives the input event Xin from the Mi, it moves the phase
into Mi.CHECK and checks whether the activated model is changed to the Mj based on the sf and the
FCC. As in the first case, if the current internal model Mi needs to remain active, the SMDES changes

Figure 11. An example of the multi-fidelity model’s structure for a discrete event system:
Fidelity-unchanged and fidelity-changed cases.

Except for the stop event, the input and output sets of the SMDES are identical to those of the
SMDS. The SMDES has two sets of states (i.e., FCC and S). The FCC is the same as that of SMDS, whereas
the S is slightly different. In the SMDES, the S is mapped to four phase sets—Mi.WAIT, Mi.CHECK,
Mi.ACTIVE, and Mi.CHANGE. Unlike the SMDS, two important roles of SMDES are conducted by a
series of phase transitions. The basic phase is Mi.WAIT, assuming that the current internal model is
Mi. When the SMDES receives the input event Xin from the Mi, it moves the phase into Mi.CHECK
and checks whether the activated model is changed to the Mj based on the sf and the FCC. As in the
first case, if the current internal model Mi needs to remain active, the SMDES changes its phase to
Mi.WAIT and forwards the received input Xin to the Mi. In another case, if the Mi needs to be changed,
the SMDES moves the phase to Mj.ACTIVE—according to the next activation model, Mj—and sends the
stop event Mi.Stop to the Mi. Then, the SMDES moves the phase to Mj.CHANGE to send the activation
event Mj.Activate to the Mj. Finally, the phase of the SMDES changes to Mj.WAIT, and SMDES sends
the Xin to the current internal model Mj. In either case, the SMDES receives the state information from
the current activated model and waits until another input Xin arrives. A sequence of transitions of

Appl. Sci. 2017, 7, 1056 15 of 23

the phase, the input, and the output for input bypassing is as follows (parentheses contain the output
message, =⇒means the external transition, and −→means the internal transition):

Mi.WAIT =⇒ Mi.CHECK −→ (Mi.Xi) −→ Mi.WAIT.

Additionally, a series of phase transitions for the model change is as follows (inputs and outputs
in red fonts in Figure 11 are relevant to this sequence):

Mi.WAIT =⇒ Mi.CHECK −→ (Mi.Stop) −→ Mj.ACIVATE −→
(

Mj.Activate
)
−→ Mj.CHANGE

−→
(

Mj.Xin
)
−→ Mj.WAIT.

Finally, the MFM substitutes the target model with minimal modifications of the other models.
Small modifications used to add more messages—and the STOP state, in the case of the DEVS
model—are unrelated to model logic, as they are just subsidiary functions.

4.4. Evaluation Index for Simulation Speedup

The simulation speed improvement obtained by applying the proposed multi-fidelity framework
is defined as follows:

Speedup =
THigh f idelity

TMulti f idelity
=

1
1− ETR(1−OS ∑n

i=1 airi −OE)
(2)

ETR is the percentage of execution time of the target model in the overall simulation execution time.
OS and OE are the coefficients for the structure overhead and model exchange overhead in the selection
model, respectively. The value of OS is greater than 1, and OE has a value between 0 and 1. For each model
Mi in the multi-fidelity model, ai is the ratio of execution time of Mi to the execution time of the target
model, and ri is the percentage at which Mi is simulated in the entire simulation scenario (∑n

i=1 ri = 1).
That is, airi implies the actual ratio of execution time of Mi in the multi-fidelity model. When Mi is the
same as the target model, the value of ai is 1, and ri is the percentage of the interest region in the scenario.
Figure 12 illustrates the speedup of the proposed framework and the notations in (2). In order to apply the
proposed framework more effectively based on (2) (i.e., to maximize the speedup), we first have to select
a model with a large ETR as a target model. This corresponds to the second of the two prerequisites in
the first step of the target model selection in our framework. Using a variety of fidelity models through
appropriate scenario partitioning can minimize ∑n

i=1 airi, but can lead to increasing the structure overhead
OS; thus, we have to reduce the overhead by simplifying the selection function sf. In addition, minimizing
the frequency of model exchange can increase the speedup by reducing the overhead OE.Appl. Sci. 2017, 7, 1056 16 of 24

Figure 12. Simulation speedup using the proposed multi-fidelity modeling framework.

5. Applications

In this section, we discuss two case studies that were applied to the proposed modeling
framework: (1) UUV simulation for the dynamic system and (2) UTV simulation for the discrete
event system.

5.1. UUV Simulation

The objective of the UUV simulation is to evaluate the success rate for tracking and attacking a
real target [38,39]. Because this evaluation is done through a what-if analysis of various situations,
including UUV specifications and tactics for tracking and attacking, a large number of repeating
simulations are necessary; thus, for a more efficient analysis based on the simulation, we applied
the proposed modeling framework to improve simulation speed.

5.1.1. Target Tracking Scenario for UUV

Figure 13a represents a scenario of evaluating the success rate of UUV. A UUV, launched by
one vessel toward a warship (i.e., the true target), finds the warship based on its own search tactics.
When the UUV finds the warship, it chases the warship with the purpose of attacking it. On the
other hand, when the warship detects the approaching UUV, it drops several decoys (i.e., false
targets) and runs away. Depending on the specifications of UUV and the attacking tactics, the UUV
will either hit the warship by overcoming the disturbance caused by decoys, or fail to hit it and
eventually explode. The simulation model structure for this scenario is shown in Figure 13b. All
models were based on DTSS and implemented with C++ language.

Figure 12. Simulation speedup using the proposed multi-fidelity modeling framework.

Appl. Sci. 2017, 7, 1056 16 of 23

5. Applications

In this section, we discuss two case studies that were applied to the proposed modeling framework:
(1) UUV simulation for the dynamic system and (2) UTV simulation for the discrete event system.

5.1. UUV Simulation

The objective of the UUV simulation is to evaluate the success rate for tracking and attacking a
real target [38,39]. Because this evaluation is done through a what-if analysis of various situations,
including UUV specifications and tactics for tracking and attacking, a large number of repeating
simulations are necessary; thus, for a more efficient analysis based on the simulation, we applied the
proposed modeling framework to improve simulation speed.

5.1.1. Target Tracking Scenario for UUV

Figure 13a represents a scenario of evaluating the success rate of UUV. A UUV, launched by one
vessel toward a warship (i.e., the true target), finds the warship based on its own search tactics. When
the UUV finds the warship, it chases the warship with the purpose of attacking it. On the other hand,
when the warship detects the approaching UUV, it drops several decoys (i.e., false targets) and runs
away. Depending on the specifications of UUV and the attacking tactics, the UUV will either hit the
warship by overcoming the disturbance caused by decoys, or fail to hit it and eventually explode.
The simulation model structure for this scenario is shown in Figure 13b. All models were based on
DTSS and implemented with C++ language.Appl. Sci. 2017, 7, 1056 17 of 24

(a) (b)

Figure 13. Case study for the dynamic system model: (a) UUV attacking scenario; (b) model
structure of a UUV simulation.

5.1.2. Multi-Fidelity Modeling Process

As mentioned previously, the first step of our framework is selecting a target model for
multi-fidelity modeling. Depending on the two prerequisites for the selection, we chose the
maneuver sub-model of the UUV model as the target model, because it is modeled by the DTSS and
has the highest ETR: 0.51 (i.e., it requires high computational complexity to solve the six degrees of
freedom movement differential equation, and it is executed continuously over the entire simulation
time). As a second step of deciding the interest region, we used the state variable of “bDetect” in the
UUV model as the IRV. It is a Boolean variable that represents whether the UUV detects the target.
After its value has changed to true, the UUV traces the target to attack, and the movement of the
UUV (the output of the maneuver model) at this time greatly affects the success rate, the simulation
result; thus, the interest region of the maneuver model was defined when “bDetect” was true (see
Figure 4 in detail).

The third step is to develop a lower-fidelity model of the target model. The state transition
function of the target model uses differential equations to calculate the change amount of the state
variables while considering various physical effects: e.g., thrust force, gravity force, and drag force,
etc. [16]. We developed the low-fidelity maneuver model by simplifying this transition function
with the elimination and projection methods, as shown in Figure 14. Concretely, we eliminated
several terms related to ݌ ,ݒ, and ݓ that have little effect on the accuracy of the output of the
function, and projected ݍ ,ݑ, and ݎ to proportional values of ܴܲݏߜ ,ܯ, and ݎߜ.

The fourth step is to composite a multi-fidelity model based on the specifications in Section
4.3.1, as shown in Figure 14. The high-fidelity model ܯଵ is the existing maneuver model, and the
low-fidelity model ܯଶ is the developed lower-fidelity model in the previous step. According to the
interest region of the target model defined in the second step, FCC is composed with “bDetect” and
its value: true. The last step is to substitute the target model with the composed multi-fidelity model
without any modifications of the other models in the UUV simulation model.

Figure 13. Case study for the dynamic system model: (a) UUV attacking scenario; (b) model structure
of a UUV simulation.

5.1.2. Multi-Fidelity Modeling Process

As mentioned previously, the first step of our framework is selecting a target model for
multi-fidelity modeling. Depending on the two prerequisites for the selection, we chose the maneuver
sub-model of the UUV model as the target model, because it is modeled by the DTSS and has the
highest ETR: 0.51 (i.e., it requires high computational complexity to solve the six degrees of freedom
movement differential equation, and it is executed continuously over the entire simulation time). As a
second step of deciding the interest region, we used the state variable of “bDetect” in the UUV model as
the IRV. It is a Boolean variable that represents whether the UUV detects the target. After its value has
changed to true, the UUV traces the target to attack, and the movement of the UUV (the output of the
maneuver model) at this time greatly affects the success rate, the simulation result; thus, the interest
region of the maneuver model was defined when “bDetect” was true (see Figure 4 in detail).

The third step is to develop a lower-fidelity model of the target model. The state transition
function of the target model uses differential equations to calculate the change amount of the state
variables while considering various physical effects: e.g., thrust force, gravity force, and drag force,
etc. [16]. We developed the low-fidelity maneuver model by simplifying this transition function with

Appl. Sci. 2017, 7, 1056 17 of 23

the elimination and projection methods, as shown in Figure 14. Concretely, we eliminated several terms
related to v, p, and w that have little effect on the accuracy of the output of the function, and projected
u, q, and r to proportional values of RPM, δs, and δr.

The fourth step is to composite a multi-fidelity model based on the specifications in Section 4.3.1,
as shown in Figure 14. The high-fidelity model M1 is the existing maneuver model, and the low-fidelity
model M2 is the developed lower-fidelity model in the previous step. According to the interest region
of the target model defined in the second step, FCC is composed with “bDetect” and its value: true.
The last step is to substitute the target model with the composed multi-fidelity model without any
modifications of the other models in the UUV simulation model.
Appl. Sci. 2017, 7, 1056 18 of 24

Figure 14. The overall process of the multi-fidelity modeling framework: UUV tracking simulation as
an example of dynamic systems.

5.2.3. Simulation Results

The success rate of UUV can be evaluated in various situations; however, in this case study, we
evaluated this rate according to the various detection ranges of the warship. To demonstrate the
effectiveness of the proposed multi-fidelity framework, we compared the developed multi-fidelity
model with the existing UUV simulation model (i.e., the high-fidelity model) and the low-fidelity
model. The low-fidelity model is a simulation model in which the maneuver model is replaced with
the low-fidelity maneuver model. Figure 15 represents the success rate and execution time of the
UUV simulation models with different fidelities. To achieve a standard error within 0.031 and a
confidence level of 95%, the UUV success rate and the execution time were evaluated using 1,000
time-independent repeating simulations. As shown in Figure 15, the execution time of the
multi-fidelity model is lower than that of the high-fidelity model while the success rate of the
multi-fidelity model is almost the same as that of the high-fidelity model. On the other hand, the
execution time of the low-fidelity model is much lower than that of the high-fidelity model and
multi-fidelity model while its success rate is very different from the others. Based on the simulation
speedup defined in Section 4.4, applying the proposed framework increases the speed about 1.25
times without a significant loss in the accuracy of the success rate and without modifying the
simulation engine and the other existing models.

Figure 14. The overall process of the multi-fidelity modeling framework: UUV tracking simulation as
an example of dynamic systems.

5.1.3. Simulation Results

The success rate of UUV can be evaluated in various situations; however, in this case study,
we evaluated this rate according to the various detection ranges of the warship. To demonstrate the
effectiveness of the proposed multi-fidelity framework, we compared the developed multi-fidelity
model with the existing UUV simulation model (i.e., the high-fidelity model) and the low-fidelity
model. The low-fidelity model is a simulation model in which the maneuver model is replaced with
the low-fidelity maneuver model. Figure 15 represents the success rate and execution time of the UUV
simulation models with different fidelities. To achieve a standard error within 0.031 and a confidence
level of 95%, the UUV success rate and the execution time were evaluated using 1,000 time-independent
repeating simulations. As shown in Figure 15, the execution time of the multi-fidelity model is lower
than that of the high-fidelity model while the success rate of the multi-fidelity model is almost the
same as that of the high-fidelity model. On the other hand, the execution time of the low-fidelity model
is much lower than that of the high-fidelity model and multi-fidelity model while its success rate is
very different from the others. Based on the simulation speedup defined in Section 4.4, applying the
proposed framework increases the speed about 1.25 times without a significant loss in the accuracy of
the success rate and without modifying the simulation engine and the other existing models.

Appl. Sci. 2017, 7, 1056 18 of 23

Appl. Sci. 2017, 7, 1056 19 of 24

(a) (b)

Figure 15. Simulation results for the UUV simulation: (a) UUV success rate against the warship
detection range; (b) simulation execution time against the warship detection range.

5.2. UTV Simulation

The objective of the UTV simulation is to evaluate the average waiting time of passengers and
the average utilization rate of vehicles. To decide the optimal number of vehicles based on the UTV
simulation, we need to evaluate the waiting time and utilization rate through many iterative
simulations for various parameters, such as the organization of roads, the distribution of passengers,
the speed of vehicles, etc.; thus, we applied the proposed multi-fidelity modeling framework to
improve the UTV simulation speed.

5.2.1. UTV Simulation Model

Figure 16a represents a UTV simulation scenario. Roads and intersections are represented by
edges and vertices of the graph. Some vertices have vehicle stations. Passengers are randomly
generated at each vertex. If a station is near the vertex where a passenger is generated, the
passenger goes to the station and takes a vehicle in the station. Otherwise, the passenger calls a
vehicle, and the closest vehicle is allocated to the passenger. If no vehicles are in the station, the
passenger waits for a vehicle or calls a vehicle. When a vehicle picks up a passenger, the vehicle
goes to the passenger’s destination vertex. After dropping the passenger at the destination, the
vehicle goes to the nearest station and waits for passengers. The simulation model structure for this
UTV scenario is shown in Figure 16b. Each queue model and UTV model represents the station and
the vehicle. The UTV model is an agent model that decides and acts according to the several rules
described in the scenario. All models were based on DEVS and implemented with DEVSim++ [40].

(a) (b)

Figure 16. Case study for the discrete event system model: (a) UTV simulation scenario; (b) model
structure of a UTV simulation.

Figure 15. Simulation results for the UUV simulation: (a) UUV success rate against the warship
detection range; (b) simulation execution time against the warship detection range.

5.2. UTV Simulation

The objective of the UTV simulation is to evaluate the average waiting time of passengers and
the average utilization rate of vehicles. To decide the optimal number of vehicles based on the
UTV simulation, we need to evaluate the waiting time and utilization rate through many iterative
simulations for various parameters, such as the organization of roads, the distribution of passengers,
the speed of vehicles, etc.; thus, we applied the proposed multi-fidelity modeling framework to
improve the UTV simulation speed.

5.2.1. UTV Simulation Model

Figure 16a represents a UTV simulation scenario. Roads and intersections are represented by
edges and vertices of the graph. Some vertices have vehicle stations. Passengers are randomly
generated at each vertex. If a station is near the vertex where a passenger is generated, the passenger
goes to the station and takes a vehicle in the station. Otherwise, the passenger calls a vehicle, and the
closest vehicle is allocated to the passenger. If no vehicles are in the station, the passenger waits for
a vehicle or calls a vehicle. When a vehicle picks up a passenger, the vehicle goes to the passenger’s
destination vertex. After dropping the passenger at the destination, the vehicle goes to the nearest
station and waits for passengers. The simulation model structure for this UTV scenario is shown
in Figure 16b. Each queue model and UTV model represents the station and the vehicle. The UTV
model is an agent model that decides and acts according to the several rules described in the scenario.
All models were based on DEVS and implemented with DEVSim++ [40].

Appl. Sci. 2017, 7, 1056 19 of 24

(a) (b)

Figure 15. Simulation results for the UUV simulation: (a) UUV success rate against the warship
detection range; (b) simulation execution time against the warship detection range.

5.2. UTV Simulation

The objective of the UTV simulation is to evaluate the average waiting time of passengers and
the average utilization rate of vehicles. To decide the optimal number of vehicles based on the UTV
simulation, we need to evaluate the waiting time and utilization rate through many iterative
simulations for various parameters, such as the organization of roads, the distribution of passengers,
the speed of vehicles, etc.; thus, we applied the proposed multi-fidelity modeling framework to
improve the UTV simulation speed.

5.2.1. UTV Simulation Model

Figure 16a represents a UTV simulation scenario. Roads and intersections are represented by
edges and vertices of the graph. Some vertices have vehicle stations. Passengers are randomly
generated at each vertex. If a station is near the vertex where a passenger is generated, the
passenger goes to the station and takes a vehicle in the station. Otherwise, the passenger calls a
vehicle, and the closest vehicle is allocated to the passenger. If no vehicles are in the station, the
passenger waits for a vehicle or calls a vehicle. When a vehicle picks up a passenger, the vehicle
goes to the passenger’s destination vertex. After dropping the passenger at the destination, the
vehicle goes to the nearest station and waits for passengers. The simulation model structure for this
UTV scenario is shown in Figure 16b. Each queue model and UTV model represents the station and
the vehicle. The UTV model is an agent model that decides and acts according to the several rules
described in the scenario. All models were based on DEVS and implemented with DEVSim++ [40].

(a) (b)

Figure 16. Case study for the discrete event system model: (a) UTV simulation scenario; (b) model
structure of a UTV simulation.

Figure 16. Case study for the discrete event system model: (a) UTV simulation scenario; (b) model
structure of a UTV simulation.

Appl. Sci. 2017, 7, 1056 19 of 23

5.2.2. Multi-Fidelity Modeling Process

The first step is selecting a target model for multi-fidelity modeling. Based on the two prerequisites
for the selection, we chose the UTV model as the target model, because it is modeled by the DEVS
and has the highest ETR: 0.98 (i.e., it requires high computational complexity to find the shortest
path using the Dijkstra algorithm, and it is executed continuously over the entire simulation time).
To choose the interest region of the UTV model, we used the state variable of “Distance” as the IRV. It is
a positive number that represents the expected distance between a passenger’s departure vertex and
arrival vertex. In the UTV simulation, the shortest path of a vehicle has a great effect on the accuracy
of the simulation results. As the expected distance increases, the shortest path found by the Dijkstra
algorithm becomes more complex; thus, the interest region of the UTV model was defined when
“Distance” had a high value. However, the exact criteria for this high value can vary depending on
the low-fidelity model. In this case study, we decided this value experimentally with a consideration
of the trade-off relation between the execution time of the UTV simulation and the accuracy of the
simulation results (see the fourth step of the applied framework).

The third step is to develop a lower-fidelity model of the target model. We developed the low-fidelity
UTV model by simplifying the time advance function, as shown in Figure 8. The existing UTV model
(i.e., the high-fidelity model) calculates the state time of “BUSY_M” and “WAIT_M” using the shortest
path found by the Dijkstra algorithm, whereas the low-fidelity model simply uses the Euclidean distance
between the starting and ending vertex. The fourth step is to composite a multi-fidelity model based on the
specification in Section 4.3.2, as shown in Figure 17. The high-fidelity model M1 is the existing UTV model,
and the low-fidelity model M2 is the developed lower-fidelity model in the third step. As mentioned
previously, we have to decide the exact value that separates the interest region to determine the FCC.

Appl. Sci. 2017, 7, 1056 20 of 24

5.2.2. Multi-Fidelity Modeling Process

The first step is selecting a target model for multi-fidelity modeling. Based on the two
prerequisites for the selection, we chose the UTV model as the target model, because it is modeled
by the DEVS and has the highest ETR: 0.98 (i.e., it requires high computational complexity to find
the shortest path using the Dijkstra algorithm, and it is executed continuously over the entire
simulation time). To choose the interest region of the UTV model, we used the state variable of
“Distance” as the IRV. It is a positive number that represents the expected distance between a
passenger’s departure vertex and arrival vertex. In the UTV simulation, the shortest path of a vehicle
has a great effect on the accuracy of the simulation results. As the expected distance increases, the
shortest path found by the Dijkstra algorithm becomes more complex; thus, the interest region of the
UTV model was defined when “Distance” had a high value. However, the exact criteria for this high
value can vary depending on the low-fidelity model. In this case study, we decided this value
experimentally with a consideration of the trade-off relation between the execution time of the UTV
simulation and the accuracy of the simulation results (see the fourth step of the applied framework).

The third step is to develop a lower-fidelity model of the target model. We developed the
low-fidelity UTV model by simplifying the time advance function, as shown in Figure 8. The
existing UTV model (i.e., the high-fidelity model) calculates the state time of “BUSY_M” and
“WAIT_M” using the shortest path found by the Dijkstra algorithm, whereas the low-fidelity model
simply uses the Euclidean distance between the starting and ending vertex. The fourth step is to
composite a multi-fidelity model based on the specification in Section 4.3.2, as shown in Figure 17.
The high-fidelity model ܯଵ is the existing UTV model, and the low-fidelity model ܯଶ is the
developed lower-fidelity model in the third step. As mentioned previously, we have to decide the
exact value that separates the interest region to determine the FCC.

Figure 17. Overall process of the multi-fidelity modeling framework: UTV simulation as an example
of the discrete event system.

To this end, for the composited multi-fidelity model, we measured the simulation execution
time and the accuracy of the simulation results according to the various fidelity change values of
“Distance”, as shown in Figure 18. The accuracy here is the relative accuracy to the existing UTV
simulation model (i.e., the high-fidelity model). As the change value increases, the number of

Figure 17. Overall process of the multi-fidelity modeling framework: UTV simulation as an example
of the discrete event system.

To this end, for the composited multi-fidelity model, we measured the simulation execution time
and the accuracy of the simulation results according to the various fidelity change values of “Distance”,
as shown in Figure 18. The accuracy here is the relative accuracy to the existing UTV simulation model
(i.e., the high-fidelity model). As the change value increases, the number of executions of the low-fidelity
model increases in the multi-fidelity UTV model; thus, the execution time decreases, but the accuracy is
also lowered. Assuming that the permissible accuracy loss is under 0.05, the possible candidates for the

Appl. Sci. 2017, 7, 1056 20 of 23

change value are 1000, 1500, and 2000. To maximize the speedup of the multi-fidelity model, the change
value was decided as 2000 with the minimum execution time. As a result, the FCC was composed with
“Distance” and its value: 2000. The last step is to substitute the existing UTV model with the composed
multi-fidelity model without any modifications to the other models in the UTV simulation model.

Appl. Sci. 2017, 7, 1056 21 of 24

executions of the low-fidelity model increases in the multi-fidelity UTV model; thus, the execution
time decreases, but the accuracy is also lowered. Assuming that the permissible accuracy loss is
under 0.05, the possible candidates for the change value are 1000, 1500, and 2000. To maximize the
speedup of the multi-fidelity model, the change value was decided as 2000 with the minimum
execution time. As a result, the FCC was composed with “Distance” and its value: 2000. The last step
is to substitute the existing UTV model with the composed multi-fidelity model without any
modifications to the other models in the UTV simulation model.

(a) (b)

Figure 18. Simulation results to decide the fidelity change point of “Distance”: (a) Simulation
accuracy against the change point; (b) simulation execution time against the change point.

5.2.3. Simulation Results

In this case study, the parameters of the UTV simulation model were set based on real map
data and a domestic report to increase the reliability of the simulation results. According to the
various number of vehicles, Figure 19 represents the average waiting time of passengers, the
average utilization rate of vehicles, and the execution time of the UTV simulation models with
different fidelities. The meanings of the high-, low-, and multi-fidelity models are the same as those
in the previous case study. The results in Figure 19 demonstrate the effectiveness of the proposed
multi-fidelity framework. The execution time of the multi-fidelity model is lower than that of the
high-fidelity model while the average waiting time and the average utilization rate are almost the
same as those of the high-fidelity model. Based on the simulation speedup defined in Section 4.4,
applying the proposed framework increases the speed about 1.21 times. Meanwhile, the speedup is
lower than in the previous case study because the fidelity change frequency is high in the
multi-fidelity UTV model, as shown in Figure 19d (in the UUV simulation, the fidelity change
occurs only once). As mentioned previously in Section 4.4, this high frequency increases the
overhead for exchanging models and decreases the effectiveness of the framework. Nevertheless,
this case study demonstrates that the framework can increase the simulation speed without a
significant loss in accuracy and without modifying the simulation engine and other existing
models.

(a) (b)

Figure 18. Simulation results to decide the fidelity change point of “Distance”: (a) Simulation accuracy
against the change point; (b) simulation execution time against the change point.

5.2.3. Simulation Results

In this case study, the parameters of the UTV simulation model were set based on real map data and
a domestic report to increase the reliability of the simulation results. According to the various number
of vehicles, Figure 19 represents the average waiting time of passengers, the average utilization rate of
vehicles, and the execution time of the UTV simulation models with different fidelities. The meanings of
the high-, low-, and multi-fidelity models are the same as those in the previous case study. The results in
Figure 19 demonstrate the effectiveness of the proposed multi-fidelity framework. The execution time of
the multi-fidelity model is lower than that of the high-fidelity model while the average waiting time and
the average utilization rate are almost the same as those of the high-fidelity model.

Appl. Sci. 2017, 7, 1056 21 of 24

executions of the low-fidelity model increases in the multi-fidelity UTV model; thus, the execution
time decreases, but the accuracy is also lowered. Assuming that the permissible accuracy loss is
under 0.05, the possible candidates for the change value are 1000, 1500, and 2000. To maximize the
speedup of the multi-fidelity model, the change value was decided as 2000 with the minimum
execution time. As a result, the FCC was composed with “Distance” and its value: 2000. The last step
is to substitute the existing UTV model with the composed multi-fidelity model without any
modifications to the other models in the UTV simulation model.

(a) (b)

Figure 18. Simulation results to decide the fidelity change point of “Distance”: (a) Simulation
accuracy against the change point; (b) simulation execution time against the change point.

5.2.3. Simulation Results

In this case study, the parameters of the UTV simulation model were set based on real map
data and a domestic report to increase the reliability of the simulation results. According to the
various number of vehicles, Figure 19 represents the average waiting time of passengers, the
average utilization rate of vehicles, and the execution time of the UTV simulation models with
different fidelities. The meanings of the high-, low-, and multi-fidelity models are the same as those
in the previous case study. The results in Figure 19 demonstrate the effectiveness of the proposed
multi-fidelity framework. The execution time of the multi-fidelity model is lower than that of the
high-fidelity model while the average waiting time and the average utilization rate are almost the
same as those of the high-fidelity model. Based on the simulation speedup defined in Section 4.4,
applying the proposed framework increases the speed about 1.21 times. Meanwhile, the speedup is
lower than in the previous case study because the fidelity change frequency is high in the
multi-fidelity UTV model, as shown in Figure 19d (in the UUV simulation, the fidelity change
occurs only once). As mentioned previously in Section 4.4, this high frequency increases the
overhead for exchanging models and decreases the effectiveness of the framework. Nevertheless,
this case study demonstrates that the framework can increase the simulation speed without a
significant loss in accuracy and without modifying the simulation engine and other existing
models.

(a) (b)Appl. Sci. 2017, 7, 1056 22 of 24

(c) (d)

Figure 19. Simulation results for the UTV simulation: (a) average waiting time of passengers
according to the number of vehicles; (b) average utilization rate of vehicles according to the number
of vehicles; (c) simulation execution time according to the number of vehicles; (d) frequency of
fidelity exchange in the multi-fidelity UTV model.

6. Conclusions

In this paper, for a discrete event dynamic system, we proposed a multi-fidelity modeling
framework to increase the simulation speed without a significant loss in the accuracy of the
simulation results. To this end, we defined a concept of interest region and a fidelity change
condition. The proposed framework including the defined concepts consists of the following five
steps: (1) target model selection, (2) interest region definition, (3) lower-fidelity models design, (4)
multi-fidelity model composition, and (5) selected target model substitution. Because the
multi-fidelity model in the framework was designed with the DEVS and DTSS formalism, it can
substitute the selected target model without the modification of other models and the simulation
engine.

The two case studies demonstrated the effectiveness of the proposed framework. We applied
the framework to a UUV simulation for the dynamic system and a UTV simulation for the discrete
event system. As a result, the simulation speed of these simulations increased about 1.25 and 1.21
times, respectively, without a significant loss in the accuracy of the simulation results. We expect
that this framework will be effectively applied to various analyzes of discrete event dynamic
systems by increasing the simulation speed.

As discussed in Section 4.4, we theoretically explained several factors to improve the
performance of the framework. Above all, the most important point is how to develop good
lower-fidelity models from the high-fidelity models. The development of the lower-fidelity models
is dependent on the high-fidelity models. We proposed two transformation methods (i.e., the
elimination and projection) that were generalized from our years of M&S studies. Nevertheless, in
this paper, we centered on proposing the framework and discussed relatively little about the
development of the lower-fidelity models. Thus, the transformation methods could be open to
being more formalized, which will be our first focus in future work. Additionally, in many
engineering fields, practical lower-fidelity models have already been developed that are not based
on our formalism. To better utilize these existing models, we will extend our framework, which will
decrease the cost of the redundant development of the models.

Author Contributions: S.H.C. and K.M.S. designed the framework; S.H.C. performed the experiments and
analyzed the data; T.G.K. contributed the overall idea; K.M.S. and S.H.C. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, J.; Huang, E.; Chen, C.H.; Lee, L.H. Simulation optimization: A review and exploration in the new era
of cloud computing and big data. Asia Pac. J. Oper. Res. 2015, 32, doi:10.1142/S0217595915500190.

Figure 19. Simulation results for the UTV simulation: (a) average waiting time of passengers according
to the number of vehicles; (b) average utilization rate of vehicles according to the number of vehicles;
(c) simulation execution time according to the number of vehicles; (d) frequency of fidelity exchange in
the multi-fidelity UTV model.

Appl. Sci. 2017, 7, 1056 21 of 23

Based on the simulation speedup defined in Section 4.4, applying the proposed framework increases
the speed about 1.21 times. Meanwhile, the speedup is lower than in the previous case study because
the fidelity change frequency is high in the multi-fidelity UTV model, as shown in Figure 19d (in the
UUV simulation, the fidelity change occurs only once). As mentioned previously in Section 4.4, this high
frequency increases the overhead for exchanging models and decreases the effectiveness of the framework.
Nevertheless, this case study demonstrates that the framework can increase the simulation speed without
a significant loss in accuracy and without modifying the simulation engine and other existing models.

6. Conclusions

In this paper, for a discrete event dynamic system, we proposed a multi-fidelity modeling
framework to increase the simulation speed without a significant loss in the accuracy of the simulation
results. To this end, we defined a concept of interest region and a fidelity change condition.
The proposed framework including the defined concepts consists of the following five steps: (1) target
model selection, (2) interest region definition, (3) lower-fidelity models design, (4) multi-fidelity model
composition, and (5) selected target model substitution. Because the multi-fidelity model in the
framework was designed with the DEVS and DTSS formalism, it can substitute the selected target
model without the modification of other models and the simulation engine.

The two case studies demonstrated the effectiveness of the proposed framework. We applied
the framework to a UUV simulation for the dynamic system and a UTV simulation for the discrete
event system. As a result, the simulation speed of these simulations increased about 1.25 and 1.21
times, respectively, without a significant loss in the accuracy of the simulation results. We expect that
this framework will be effectively applied to various analyzes of discrete event dynamic systems by
increasing the simulation speed.

As discussed in Section 4.4, we theoretically explained several factors to improve the performance
of the framework. Above all, the most important point is how to develop good lower-fidelity models
from the high-fidelity models. The development of the lower-fidelity models is dependent on the
high-fidelity models. We proposed two transformation methods (i.e., the elimination and projection)
that were generalized from our years of M&S studies. Nevertheless, in this paper, we centered on
proposing the framework and discussed relatively little about the development of the lower-fidelity
models. Thus, the transformation methods could be open to being more formalized, which will be our
first focus in future work. Additionally, in many engineering fields, practical lower-fidelity models have
already been developed that are not based on our formalism. To better utilize these existing models, we
will extend our framework, which will decrease the cost of the redundant development of the models.

Author Contributions: S.H.C. and K.M.S. designed the framework; S.H.C. performed the experiments and
analyzed the data; T.G.K. contributed the overall idea; K.M.S. and S.H.C. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, J.; Huang, E.; Chen, C.H.; Lee, L.H. Simulation optimization: A review and exploration in the new era of
cloud computing and big data. Asia Pac. J. Oper. Res. 2015, 32. [CrossRef]

2. Seok, M.G.; Kim, T.G.; Choi, C.B.; Park, D. An HLA-based distributed cosimulation framework in
mixed-signal system-on-chip design. IEEE Trans. VLSI Syst. 2017, 25. [CrossRef]

3. Hu, M. A high-fidelity three-dimensional simulation method for evaluating passenger flow organization
and facility layout at metro stations. Simulation 2017, 93. [CrossRef]

4. Kim, B.S.; Kang, B.G.; Choi, S.H.; Kim, T.G. Data modeling versus simulation modeling in the big data era:
Case study of a greenhouse control system. Simulation 2017, 93. [CrossRef]

5. Montgomery, D.C. Design and Analysis of Experiment, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009;
pp. 8–36. ISBN 9781118097939.

6. Choi, C.; Seo, K.M.; Kim, T.G. DEXSim: An experimental environment for distributed execution of replicated
simulators using a concept of single simulation multiple scenarios. Simulation 2014, 90. [CrossRef]

http://dx.doi.org/10.1142/S0217595915500190
http://dx.doi.org/10.1109/TVLSI.2016.2594948
http://dx.doi.org/10.1177/0037549717715107
http://dx.doi.org/10.1177/0037549717692866
http://dx.doi.org/10.1177/0037549713520251

Appl. Sci. 2017, 7, 1056 22 of 23

7. Park, H.; Fishwick, P.A. A GPU-based application framework supporting fast discrete-event simulation.
Simulation 2010, 86. [CrossRef]

8. Bae, J.W.; Bae, S.W.; Moon, I.C.; Kim, T.G. Efficient flattening algorithm for hierarchical and dynamic structure
discrete event models. ACM Trans. Model. Comput. Simul. 2016, 26. [CrossRef]

9. Hong, J.H.; Seo, K.M.; Kim, T.G. Simulation-based optimization for design parameter exploration in hybrid
system: A defense system example. Simulation 2013, 89. [CrossRef]

10. Kim, H.; McGinnis, L.F.; Zhou, C. On fidelity and model selection for discrete event simulation. Simulation
2012, 88. [CrossRef]

11. Moon, I.C.; Hong, J.H. Theoretic interplay between abstraction, resolution, and fidelity in model information.
In Proceedings of the 2013 Winter Simulation Conference, Washington, DC, USA, 8–11 December 2013.

12. Choi, S.H.; Lee, S.J.; Kim, T.G. Multi-fidelity modeling & simulation methodology for simulation speed up.
In Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Denver,
CO, USA, 18–21 May 2014.

13. Casagrande, A.; Piazza, C.; Policriti, A. Discrete semantics for hybrid automata. Discrete Event Dyn. Syst.
2009, 19. [CrossRef]

14. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems; Academic Press: San Diego, CA, USA, 2000; pp. 37–75.
ISBN 0-12-778455-1.

15. Vitali, R.; Haftka, R.T.; Sankar, B.B. Multifidelity design of stiffened composite panel with a crack. Struct.
Multidiscip. Optim. 2002, 23. [CrossRef]

16. Molina-Cristobal, A.; Palmer, P.R.; Parks, G.T. Multi-fidelity Simulation modeling in optimization of a
hybrid submarine propulsion system. In Proceedings of the European Conference on Power Electronics and
Applications, Birmingham, UK, 30 August–1 September 2011.

17. Zhou, Z.; Ong, Y.S.; Nair, P.B.; Keane, A.J.; Lum, K.Y. Combining global and local surrogate models to
accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. C 2007, 37. [CrossRef]

18. Celik, N.; Lee, S.; Vasudevan, K.; Son, Y.J. DDDAS-based multi-fidelity simulation framework for supply
chain systems. IIE Trans. 2010, 42. [CrossRef]

19. Silva, M.; Júlvez, J.; Mahulea, C.; Vázquez, C.R. On fluidization of discrete event models: Observation and
control of continuous Petri nets. Discrete Event Dyn. Syst. 2011, 21. [CrossRef]

20. Hrúz, B.; Zhou, M. Modeling and Control of Discrete-Event Dynamic Systems: With Petri Nets and Other Tools;
Springer Science & Business Media: Berlin, Germany, 2007.

21. Huang, D.; Zhang, H.; Weng, S.; Su, M. Modeling and Simulation of IGCC Considering Pressure and Flow
Distribution of Gasifier. Appl. Sci. 2016, 6. [CrossRef]

22. Lao, M.; Tang, J. Cooperative Multi-UAV Collision Avoidance Based on Distributed Dynamic Optimization
and Causal Analysis. Appl. Sci. 2017, 7. [CrossRef]

23. Lim, S.Y.; Kim, T.G. Hybrid modeling and simulation methodology based on DEVS formalism.
In Proceedings of the Summer Computer Simulation Conference, Reno, NV, USA, 11–15 July 1998.

24. Alfian, G.; Rhee, J.; Ijaz, M.F.; Syafrudin, M.; Fitriyani, N.L. Performance Analysis of a Forecasting Relocation
Model for One-Way Carsharing. Appl. Sci. 2017, 7. [CrossRef]

25. Sung, C.; Kim, T.G. Collaborative modeling process for development of domain-specific discrete event
simulation systems. IEEE Trans. Syst. Man Cybern. C 2011, 42. [CrossRef]

26. Kammoun, M.A.; Ezzeddine, W.; Rezg, N.; Achour, Z. FMS Scheduling under Availability Constraint with
Supervisor Based on Timed Petri Nets. Appl. Sci. 2017, 7. [CrossRef]

27. An, Y.; Wu, N.; Hon, C.T.; Li, Z. Scheduling of Crude Oil Operations in Refinery without Sufficient Charging
Tanks Using Petri Nets. Appl. Sci. 2017, 7. [CrossRef]

28. Lu, X.; Zhou, M.; Ammari, A.C.; Ji, J. Hybrid Petri nets for modeling and analysis of microgrid systems.
IEEE/CAA J. Autom. Sin. 2016, 3, 349–356. [CrossRef]

29. Tolk, A. Engineering Principles of Combat Modeling and Distributed Simulation; John Wiley & Sons: Hoboken,
NJ, USA, 2012; pp. 79–95. ISBN 978-0-470-87429-5.

30. Viana, F.A.; Steffen, V.; Butkewitsch, S.; de Freitas Leal, M. Optimization of aircraft structural components by
using nature-inspired algorithms and multi-fidelity approximations. J. Glob. Optim. 2009, 45. [CrossRef]

http://dx.doi.org/10.1177/0037549709340781
http://dx.doi.org/10.1145/2875356
http://dx.doi.org/10.1177/0037549712466707
http://dx.doi.org/10.1177/0037549710371217
http://dx.doi.org/10.1007/s10626-009-0082-7
http://dx.doi.org/10.1007/s00158-002-0195-1
http://dx.doi.org/10.1109/TSMCC.2005.855506
http://dx.doi.org/10.1080/07408170903394306
http://dx.doi.org/10.1007/s10626-011-0116-9
http://dx.doi.org/10.3390/app6100292
http://dx.doi.org/10.3390/app7010083
http://dx.doi.org/10.3390/app7060598
http://dx.doi.org/10.1109/TSMCC.2011.2135850
http://dx.doi.org/10.3390/app7040399
http://dx.doi.org/10.3390/app7060564
http://dx.doi.org/10.1109/JAS.2016.7510070
http://dx.doi.org/10.1007/s10898-008-9383-x

Appl. Sci. 2017, 7, 1056 23 of 23

31. Zheng, J.; Qiu, H.; Feng, H. The variable fidelity optimization for simulation-based design: A review.
In Proceedings of the 2012 IEEE 16th international Conference on Computer Supported Cooperative Work in
Design, Wuhan, China, 23–25 May 2012.

32. Sun, G.; Li, G.; Stone, M.; Li, Q. A two-stage multi-fidelity optimization procedure for honeycomb-type
cellular materials. Comput. Mater. Sci. 2010, 49. [CrossRef]

33. Xu, J.; Zhang, S.; Huang, E.; Chen, C.H.; Lee, L.H.; Celik, N. MO2TOS: Multi-fidelity optimization with
ordinal transformation and optimal sampling. Asia Pac. J. Oper. Res. 2015, 33. [CrossRef]

34. Cassettari, L.; Mosca, R.; Revetria, R.; Tonelli, F. Discrete and stochastic simulation and response surface
methodology: An approach to a varying experimental error. In Proceedings of the 2007 Industrial Simulation
Conference, Nantes, France, 11–13 June 2007; pp. 40–48.

35. Williams, M.A.; Alleyne, A.G. Switched-fidelity modeling and optimization for multi-physics dynamical
systems. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014.
[CrossRef]

36. Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 1994.
37. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1. [CrossRef]
38. Seo, K.M.; Choi, C.; Kim, T.G.; Kim, J.H. DEVS-based combat modeling for engagement-level simulation.

Simulation 2014, 90. [CrossRef]
39. Seo, K.M.; Hong, W.; Kim, T.G. Enhancing model composability and reusability for entity-level combat

simulation: A conceptual modeling approach. Simulation 2017, 93. [CrossRef]
40. Kim, T.G.; Sung, C.H.; Hong, S.Y.; Hong, J.H.; Choi, C.B.; Kim, J.H.; Seo, K.M.; Bae, J.W. DEVSim++ toolset

for defense modeling and simulation and interoperation. J. Def. Model. Simul. 2011, 8. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.commatsci.2010.05.041
http://dx.doi.org/10.1142/S0217595916500172
http://dx.doi.org/10.1109/ACC.2014.6859124
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1177/0037549714532960
http://dx.doi.org/10.1177/0037549717699872
http://dx.doi.org/10.1177/1548512910389203
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Definition
	Target System
	Dynamic System
	Discrete Event System

	Model Fidelity
	Interest Region within a Single Simulation Scenario

	Literature Review
	Proposed Framework
	Target Model Selection and Interest Region Definition
	Lower-Fidelity Model Design
	Lower-Fidelity Models Design for the Dynamic System
	Lower-Fidelity Models Design for the Discrete Event System

	Multi-Fidelity Model Composition and Target Model Substitution
	Multi-Fidelity Model Composition for Dynamic System
	Multi-Fidelity Model Composition for Discrete Event System

	Evaluation Index for Simulation Speedup

	Applications
	UUV Simulation
	Target Tracking Scenario for UUV
	Multi-Fidelity Modeling Process
	Simulation Results

	UTV Simulation
	UTV Simulation Model
	Multi-Fidelity Modeling Process
	Simulation Results

	Conclusions

