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Abstract: This work proposes a novel adaptive hybrid controller based on the sliding mode 

controller and H-infinity control technique, and its effectiveness is verified by implementing it in 

vibration control of a vehicle seat suspension featuring a magneto-rheological damper. As a first 

step, a sliding surface of the sliding mode controller is established and used as a bridge to formulate 

the proposed controller. In this process, two matrices such as Hurwitz constants matrix are used as 

components of the sliding surface and H-infinity technique are adopted to achieve robust stability. 

Secondly, a fuzzy logic model based on the interval type 2 fuzzy model which is featured by online 

clustering is established and integrated to take account for external disturbances. Subsequently, a 

new adaptive hybrid controller is formulated with a solid proof of the robust stability. Then, the 

effectiveness is demonstrated by implementing the proposed hybrid controller on the vibration 

control of a vehicle seat suspension associated with a controllable damper. Vibration control 

performances are evaluated on bump and random road profiles by presenting both displacement 

and acceleration on the seat and the driver positions. In addition, a comparative study between the 

proposed and one of existing controllers is undertaken to highlight some benefits of the hybrid 

adaptive controller developed in this work. 

Keywords: hybrid controller; H-infinity control; interval type 2 fuzzy control; sliding mode control; 

vibration control; magneto-rheological (MR) damper 

 

1. Introduction 

Recently, many studies on the formulation of various hybrid control schemes using 

classical/modern controllers and intelligent control techniques have been undertaken. In the 

formulation of the hybrid controllers, PID (proportional-integral-derivative) controller, LQG (linear 

quadratic Gaussian) optimal controller, H-infinity controller, and sliding mode controller are 

frequently adopted as a classical/modern controller, while the fuzzy logic controller, neural network 

controller, and neural network-fuzzy controller are often used as intelligent controllers. One of main 

reasons to develop hybrid controllers is to enhance control performance as well as achieve control 

robustness against parameter variations and external disturbances. In addition, during realization of 

the hybrid controllers, the salient features of each controller are kept and hence one can achieve more 

precise and better control performance than the use of a single controller only. Therefore, in general, 

the hybrid controller is well suitable to many dynamic systems subjected to uncertainties and 

disturbances. For the last decade, among intelligent controllers the fuzzy control method is most 

frequently used to formulate a new hybrid controller. Normally, the fuzzy control method is divided 



Appl. Sci. 2017, 7, 1055 2 of 22 

into two types; type 1 fuzzy model and interval type 2 fuzzy model. A hybrid adaptive fuzzy 

controller based on H-infinity technique was presented in [1]. In this controller, adaptation laws were 

developed by using parameters of Riccati-like equation and non-derivative functions. To guarantee 

control robustness, error dynamics were proposed and combined with the laws. The H-infinity 

technique was also used to design a hybrid adaptive controller in [2]. The H-infinity tracking 

inequality function was modified following the sum of values of adaptive function at zero. The sum 

function was less than the prescribed value which was defined in the adaptation law. A similar hybrid 

controller was also proposed in [3] and the combination of the fuzzy-neural networks model and H-

infinity technique was presented in [4]. In this work, the Riccati-like equation was modified, and then 

the modified parameters were used as a robust control function. On the other hand, a different type 

of hybrid controller using several control strategies such as H-infinity technique, sliding mode 

control, and fuzzy model were suggested in [5]. The H-infinity inequality function was modified 

following the sum and integration of the prescribed attenuation value, and control robustness was 

derived from the simplified inequality function of the Riccati-like equation. The disadvantage of this 

hybrid controller is slow response (or heavy calculation) because of the complicated functions. A 

similar hybrid controller was also presented in [6]. It should be noted here that the hybrid controllers 

formulated in previous studies mostly featured the type 1 fuzzy model. 

A hybrid adaptive controller utilizing the interval type 2 fuzzy model was proposed in [7,8]. In 

these works, a hybrid controller was formulated by combining several control methodologies such 

as sliding mode function, H infinity technique, and the type 2 fuzzy model. In this case, adaptation 

laws and inequality functions should be determined considering the inherent properties of each 

controller. The design method of this type of hybrid controller was also described in [9–13]. It is noted 

that the recursive method for design of an adaptive controller has been introduced in [11] and the 

direct adaptive control method has been used to formulate a hybrid controller [8]. Another method 

for the design of adaptive controller is to combine the fuzzy model and H-infinity approach by 

considering the back-stepping method [14]. In this case, the adaptation law was a sum function of 

parameters of the fuzzy output and calculated factors of the back-stepping function. The model of 

interval type 2 fuzzy model was used and combined with a new sigmoid function of the sliding mode 

control to design a hybrid controller [15]. A similar adaptive fuzzy H-infinity controller was also 

studied by considering the linear matrix inequality approach [16]. A new hybrid controller with a 

special exponential function was developed by combining the fuzzy model, the sliding surface, and  

H-infinity technique [17]. Recently, the development of a new adaptive controller integrated with a 

PI controller was also undertaken [18]. It is noted here that, in order to develop an effective hybrid 

controller, the property of uncertain (indefinite) systems should be removed. One of solutions is to 

use the interval type 2 fuzzy (IT2F in short) model. However, prior to applying the IT2F, the 

clustering method for finding the feature of the uncertain system needs to be clearly expressed  

[19–21]. Basic theory and mathematical algorithm for IT2F should especially be analyzed in detail 

[22–30]. In these references, the calculation of the centroid and fast algorithm for the output of the 

fuzzy variables have been well described to improve the IT2F model. As surveyed from above 

literature, the design freedom to formulate new hybrid controllers which can significantly enhance 

control performance compared with the use of single controller is limitless. It is vital that an advanced 

hybrid controller needs to be developed for control systems subjected to uncertainties and external 

disturbances to guarantee robust and high control performance. 

Consequently, the main technical contributions of this work can be summarized as follows:  

(i) the design of new hybrid controller whose structure is relatively simple compared with existing 

hybrid controller; (ii) the proof of robust stability of the proposed hybrid controller consisting of the 

H-infinity control and sliding mode control methods based on the type 2 fuzzy model; and (iii) the 

experimental verification of enhanced robust control performances with an application to a semi-

active vehicle seat suspension system subjected to parameter uncertainties and road disturbances. 
In order to accomplish these contributions, the design concept to formulate a new hybrid 

controller is chosen as two aspects; simple structure and excellent control performances in the 

presence of both the uncertainties and external disturbances. Therefore, as a first step, a new hybrid 
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controller is formulated by adopting the H-infinity control and sliding mode control methods based 

on the type 2 fuzzy model. Then, the stability of control system is solidly proven through Lyapunov 

stability criterion. Subsequently, in order to demonstrate some benefits of the proposed hybrid 

controller, a seat suspension system for commercial bus which is controlled by a magneto-rheological 

(MR) damper (MR seat suspension system in short) is established. Both computer simulation and 

experimental results such as acceleration on the seat position are presented in the time domain. In 

addition, the results obtained from the proposed hybrid controller are compared with the results 

achieved from the hybrid controller developed in [5] showing displacement and acceleration on the 

seat and driver. It is noted that the hybrid controller developed in [5] is adopted as a comparative 

one since this hybrid controller combines same control strategies of H-infinity control, fuzzy logic, 

and sliding mode control, as those used for the hybrid controller proposed in this current work. 

2. New Adaptive Hybrid Controller 

As mentioned above, the proposed control is established based on the fuzzy model, H infinity 

technique, and PID control. The combination of these controls relies on the advantages of each 

controller; the fuzzy model is used for the formulation of the dynamic model associated with the 

uncertainty, the PID controller is used to adaptively adjust control gains, and the H infinity technique 

connected with the PID controller is used to guarantee the robustness to uncertainties such as 

parameter variations and external disturbance. By combining several control algorithms, the stability 

of the control system subjected to heavy uncertainties can be improved and control performance can 

be easily tuned by adjusting control gains of each control logic. 

2.1. Online Interval Type 2 Fuzzy Neural Network Model 

Since the fuzzy model is used for the formulation of the dynamic model, the inherent features 

of the fuzzy rule are introduced before designing the control system. These features are the basis for 

establishing the fuzzy models of dynamic parameters. The salient points of this method are given as 

follows. There is no constraint of the feature in inputs and the most effective feature is determined 

through calculation process. In addition, from this method the fuzzy model can be exactly 

determined, and hence the error caused from the designer in choosing fuzzy models can be reduced. 

Based on the feature cluster of the granular clustering method, the initial fuzzy rules are established. 

These rules support the control system in the first time, and provide online fuzzy rules in the next 

step. The result of the granular clustering method is a part of an online interval type 2 fuzzy neural 

networks (OIT2FNN in short) model [18]. The output of OIT2FNN follows the Takagi–Sugeno–Kang 

type (TSK in short). The rule base of OIT2FNN can be expressed as [18,20] 

and  and is then iIf s si


1 0
1

:            
n

j j j

f f n f i i
i

gR h h a a hj j

n
H H…

1
 (1) 

where,  1, ...,  ; 1,  ...,  
f

i n j m 
j

i
H  are fuzzy sets, m  is the number of rules, and 

j
ia  are interval 

sets. The calculation process of OIT2FNN is clearly depicted in [17,18]. The defuzzified output is then 

determined by 

2 2

f fT T

l r l l r r
f

g g
g

 
 

θ ξ θ ξ
 (2) 

In the above, 
1 2 3
  ...T l l l l

l n
w w w w   θ  and 

1 2 3
  ...T r r r r

r n
w w w w   θ  are the weighting vectors, 

which symbolize the relation of the rule layer and type-reduction, and the weighted firing strength 

vectors are given by 
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2.2. Adaptive Hybrid Control 

In this study, the nth-order nonlinear system is used to define a new proposed controller. Its 

equation is expressed by 

       u t t  x f x g x d  (3) 

The above equation strictly follows the assumption given below. 

Assumption 1. In Equation (3), the functions   nf Rx and   nRg x  are two unknown non-linear 

function vectors,   1u t R  is the control function,   nt Rd  is the external disturbance vector,  t d δd  

where nRδd  is the upper bound of  td , and 1        , , , , , ,
T

(n ) n

1 2 n 1 1 1
x  x  ...  x x  x  ...  x Rx  is the 

state vector of the system. 

The system (3) can be rewritten as 

     u t tx f (x) g (x) D
0 0

 (4) 

where,     ( )t u t t  D δf δg d  denotes the uncertain disturbances which can be redefined by  

   0
0, 0, , 

T
... DD ,      2 0

, , , 
T

n
x ... x f

0
f x ,      0

0, , 0, 
T

... g
0

g x ,    0
0, 0, , 

T
... fδf ,

   0
0, 0, , 

T
... gδg . It is noted that δf  and δg  are two positive vectors. Based on Equation (2), 

the relationship between system (4) and OIT2FNN is determined as 

    f f f
g 

00 0
f x f x θ ξ  (5) 

    f g g
g 

00 0
g x g x θ ξ  (6) 

In the above,  
 

T
l u

f f f
θ θ ,θ , 

T
l u

g g g
 
 

θ θ ,θ  and 
f g l u

    ξ ξ ξ ,ξ . Note that f g
θ ,θ  are the 

centroid of consequent vectors.  fξ , gξ  
are consequent membership vectors of ,  f g , respectively. 

The sliding surface s
s  of the sliding mode control is defined as 

1 1 2 2 3 3
1

n

s n n i i
i

s k x k x k x ... k x k x


       (7) 

where, 
 

   11 2 1
,  ,  ,  ,  

n n n
k k k ... kK is defined as the coefficients such that all of the roots of the 

polynomial 1 2

1 2 1

n n n

n n
k k ... k   

 
     are in the open left-half complex plane. It is noted that 

1nk  in this analysis. The sliding surface in Equation (7) is rewritten using the state variables as 
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1 1 2 2 3 3 1 1n n n s
x k x k x k x ... k x s

 
        (8) 

A new vector x  is defined by 
1 2 3 1

T

n
x  x  x  ... x


   x , and thus the system (4) is rewritten as 

1 2

T
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s x S x S  (9) 
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1
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The derivative of Equation (7) yields the equation 

   1 1 2 2 3 3 1 1s n n 0 0
s k x k x k x ... k x f (x) g (x)u t D t

 
         (10) 

To simplify the control, the lumped uncertainty is defined by 

l f f g g
w u D       (11) 

where,    0 00f
f x f x   ,    0 00

*

g
g x g x   . Substituting Equation (11) into Equation (10) yields 

the equation 
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*
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Then, Equation (12) can be written by substituting values of OIT2FNN as 

lggff

n

i

iis wuxks 




  **
1

1

1  (13) 

where,     xfxfxxf ff 00
* supminarg    ,     xgxgxxg gg 00

* supminarg    , 

 ,  n

f f f fR       ,  ,  n

g g g gR       ,  ,  n

xx x R x     . 

In the above, xgf   ,  ,  are constant boundaries. An equivalent control of the system is derived 

from Equation (13) based on assumption of 0lw  














 





 ff

n

i
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xku 
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11  (14) 

The equivalent control 1u  cannot control the system because it cannot compensate the error 

from the fuzzy approximation. To guarantee the robustness and stability in control, a robust control 

part 2u  should be added as 

 

1
2 2 2

2 2 21
1

1 1

2

n
T Ts

i s fz P s I s D sn i
ig g

s de
u P x s K s e K s edt K s

ˆ dt


 






 
        

 
 xPS S Px  (15) 

where, xxe d   is tracking error and dx  is the desired value. The control 2u  is the combination 

of the sliding surface of ss , H-infinity controller and PID controller. The value   is the adaptive 

parameter where its boundary is given by    


      , ,
fz

R   , and   is constant 

boundary. The matrix 0T P P  in which its result is a solution of Riccati-like equation given by 
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0
s fz

s       T T T

1 1 2 2 2 2
PS S P Q PS S P PS S P  (16) 

Besides, the boundaries of PK , IK , and DK  are determined as  ,  P P P KPK K R K    

,  ,  I I I KIK K R K     ,  ,  D D D KDK K R K     . In these boundaries, KP , KI  

and KD  are constant. Finally, the control u  of the system is determined as 

21 uuu   (17) 

Remark 1. To evaluate the stability and robustness of the system, Lyapunov function of the system (3) is 

suggested as 

2 2 2 2 2 2 2

1 2 3 4 5 6

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2
T

s f g P I D
V s K K K 

     
        xPx  (18) 

Based on the evaluation, six adaptation laws are found as 

psf s  1
~   (19) 

12
~ us qsg    (20) 

3

T

s fz
s    T

2 2
xPS S Px  (21) 

esK fzsP  2
4  (22) 

dtesK fzsI   2
5

  (23) 

dt

de
sK fzsD  2

6  (24) 

Now, the adaptation laws of the proposed hybrid adaptive controller can be summarized in the 

following theorem. 

Theorem 1. The adjusted adaptation laws of the proposed hybrid controller given by Equations (19)–(24) are 

modified to satisfy Lyapunov stability as 
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1 1 2
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s f f f f f s f f
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where, 1 , 2 , 3 , 4 , 5 , 6  are choosing parameters related boundaries of  xf ,  xg ,  , PK , 

IK , and DK . 

Proof. The derivative function of the sliding surface is rewritten by substituting Equation (17) into (13) as 
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where fff  ˆ~ *  , ggg  ˆ~ *  . From the Equation of Lyapunov (18), the derivative is obtained as 
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 (32) 

The equivalence function of Equation (16) is written by 
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s fz
s       T T T

1 1 2 2 2 2
PS S P Q PS S P PS S P  (33) 

From Equations (32) and (33), the derivative function of Lyapunov can be obtained as 
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Using the Equations (11) and (33), and the adaptation laws (19)–(24), Equation (34) is rewritten by 
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Now the integrating of Equation (35) from t = 0 to t = T yields the equation 
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where, 
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. It is noted that the value   0TV , and thus Equation (36) can be written as 

  2

0 0

1
0 0

2

T T
T

l
V w dt dt    x Qx  (37) 

□ 

This result verifies that the stability of the system is guaranteed, and thus the proof of the 

adaptation laws is completed. It is noted here that in order to utilize the states of the system, the 

Luenberger observer [31] is used in this work. The closed-loop block-diagram of the proposed control 

system is shown in Figure 1. In the first process of control, the granular clustering module will find 

the feature of the system based on the standard data. The data includes two main parameters which 

are correlative with the desired fuzzy models. Hence, the results of the first process are the input of 

OIT2FNN module to find fuzzified value for calculating both adaptation laws and adaptive hybrid 

controller. In addition, the adaptation laws and adaptive hybrid controller are also used for the values 

of the sliding surface, ss , in calculation process. The calculated control, u , of the hybrid adaptive 

controller is the input of both plant and observer. The results of the plant will be continuously 

updated to the granular clustering module, OIT2FNN module and the sliding surface. 
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Figure 1. A closed-loop of the proposed hybrid controller. 

3. Application to Vibration Control 

3.1. Seat Suspension Model 

In this work, a model of vehicle MR seat suspension system used in [17] is adopted to 

demonstrate control effectiveness of the proposed hybrid adaptive controller. The practical 

photograph and corresponding mechanical model are shown in Figure 2a,b, respectively. 

 
(a) 
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(b) 

Figure 2. Seat suspension with MR damper for a commercial bus: (a) practical model (photograph); 

(b) mechanical model. 

The governing equations of the MR seat suspension system are derived as 
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The above equations can be rewritten using the state variables as 
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where, 
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Remark 2. The system (4) has two degrees of freedom. This model is derived from the experimental model 

shown in Figure 2a. It is remarked that the yaw and roll motions in the practical model are limited by the design 

of the seat. Hence, these motions can be neglected in the experiment. The objective of the control of vibration of 

the seat is vertical axis. 

Now, in order to determine control gains, the relationship between the damping force and 

dynamic parameters must be determined. Then, the control gains are changed to the input voltage to 

be applied to MR damper. The damping force of the MR damper can be determined as [32] 

       babaMR xxkxxccF  113302244  (41) 

where,    224422442244 xxxxxx   . Using Equation (41), the voltage to be applied 

to MR damper  is found as 

    
  




bb

aaMR

xxc

xxkxxcF






2244

113302244  (42) 
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The voltage  will be changed to the applied current, and then this current use for the electric 

coil of the MR damper. 

Remark 3. Parameters written in Equation (42), which are shown in [32], include the hysteretic model. Hence, 

this equation can be applied to any MR actuators and there is no need to survey hysteresis model of the damper. 

3.2. Simulation Results and Discussions 

In this study, vibration control performance and characteristics of the proposed hybrid controller 

are firstly investigated through computer simulations prior to implementing the controller on the 

real system. In the computer simulations, the MR seat suspension system is excited by three different 

road profiles as shown in Figure 3: random bump, regular bump, and random step wave bump. 

These signals are collected from the practical conditions of the roads and the equation as shown in 

[32]. The parameters of the seat suspension and MR damper are listed in Tables 1 and 2. The applied 

current (42) is calculated using the dynamic parameters shown in Table 3. The maximal damping 

force of the manufactured MR damper is 1000 N (±5%), and the maximal applied current is 2 A. As 

mentioned above, the fuzzy model for variables of the system is established based on the online 

model. These models include displacement and acceleration values of the MR seat suspension 

system. It is remarked that these values are extracted from the experiment results obtained at applied 

current 2 A. The outputs of these fuzzy models are shown in Table 4. It is noted that it includes six 

clusters, and then the output of fuzzy rules is also six results. The sigma value for Gaussian function 

of the fuzzy model is chosen as 0.4 [27]. The constant values of the sliding surface  1 2,  k k  are chosen 

as 0 3 1. ,   . The initial value   of the Riccati-like equation is chosen by 200. Besides, the matrix Q of 

the Riccati-like equation is chosen as 2 0 0 2    ;        Q  [33], and the value   is 0.02. The 

constants      
1 2 3 4 5 6
, , , , ,      of adaptation laws are chosen as 700 for all. The values of 

     


, , , , ,
f g KP KI KD

      of the expanded adaptation laws are chosen by 10 for all. The values of 

     
1 2 3 4 5 6
, , , , ,      are chosen by 0.05 for all. It is noteworthy that the constants of sliding surface 

and the adaptation laws are found by trial-and-error method. In this simulation, the initial states are 

used as 0 01 2 5. .    for the dynamic states, 0 06 0.   for the observer states, and 3.5 m/s2 for the 

initial acceleration, respectively. 

  
(a) (b) 
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(c) 

Figure 3. Excitation signals: (a) random-bump road; (b) regular-bump road; (c) random step wave road. 

Table 1. Parameters of seat suspension system. 

Parameter Value 

Mass of seat sm  27 kg 

Mass of driver 1m  77 kg 

Stiffness coefficient of seat sk  17,830 N/m 

Stiffness coefficient of torso 1k  49,340 N/m 

Damping coefficient of seat sc  1500 Ns/m 

Damping coefficient of torso 1c  2475 Ns/m 

Table 2. Parameters of MR damper. 

Parameter Value 

Stiffness of gas chamber ek  94.6166 N/m 

Damping coefficient ec  794.4681 Ns/m 

Piston area pA  0.00113354 m2 

Piston rod area rA  0.0000785 m2 

Gap of magnetic pole h  0.01 m 

Length of magnetic pole L  0.05 m 

MR inherent coefficient 1  26.77185 

MR inherent coefficient 2  0.60444 

Table 3. Parameters to calculate the applied current of MR damper. 

Parameter Value 

Linear spring stiffness 0k  0 N/m 

Viscous damping coefficient ac  990 Ns/m 

Viscous damping coefficient influenced by  : bc  3095 Ns/m V 

Stiffness of  : a  545 N/m 

Stiffness of   influenced by  : b  620 N/mV 

Positive parameter of hysteresis loop   4 

Positive parameter of hysteresis loop   48 

Positive parameter of hysteresis loop   48 

Table 4. Centroid vectors of fuzzy rules using Gaussian model. 

Data 
Centroid Vector 

Displacement (×10−2 m) Acceleration (m/s2) 

Random bump [−5.428 −0.178 −0.098 0.182 0.253 5.598] [−6.433 −0.651 −0.128 0.698 1.140 7.185] 

Regular bump [−5.428 −0.178 −0.098 0.182 0.253 5.598] [−6.433 −0.651 −0.128 0.698 1.140 7.185] 

Random step wave [−8.926 −0.018 −0.007 0.004 0.026 6.017] [−11.250 −1.355 −0.520 0.085 0.906 7.661] 
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In order to investigate inherent characteristics of the proposed hybrid controller, three different 

excitation signals are applied to MR seat suspension system as shown in Figure 3. From the values of 

these signals, the proposed control scheme calculates and finds the optimal values. The 

displacements of the seat are presented in Figure 4. It is clearly observed that the displacements after 

applying the proposed controller are always less than the initial values. It is clearly also seen that that 

the proposed controller agrees well to the response of the observer which directly indicates assured 

stability of the proposed control system. From Figure 4(a1,a2), the maximal value of the 

displacements before controlling is approximately 0.08 m, and then after controlling, this value is less 

than 0.003 m. It is also identified from Figure 4(b1,b2), the maximal values of the displacement before and 

after controlling are 0.06 and 0.002 m, respectively. Similarly, from the results shown in Figure 4(c1,c2), 

the maximal values are identified by 0.06 and 0.005 m before and after controlling, respectively. From 

these results, it is understood that the vibrations caused from random road profiles are substantially 

reduced. This is one of excellent benefits of the proposed hybrid controller designed to take account 

of system uncertainties and external disturbances. It is remarked here that the initial constants are 

required for any simulation of control system. These constants are chosen by the designer. There are 

two ways for applying these constants. The first way is to use the initial constant as the dominant 

vibration, and then evaluate the control responses. The second way is to use both the initial constants 

and the vibration together. This approach can clearly show full view of responses of the control 

system. Hence, the controller can be evaluated exactly compared with the first way. Therefore, the 

second way is chosen in this work. On the other hand, the vibrations at the position of the driver are 

evaluated and presented in Figure 5. The vibration control performances at the driver position are 

similar to the results shown in Figure 4. This point is clearly expressed in Equation (40). It is noted 

here that the sliding surfaces subjected to two different road profiles go to zero during control action. 

This is possible since when the sliding mode converges zero, the control u given in Equation (17) is 

not zero because of the control u1 given in Equation (14). The control u1 belongs to the fuzzy neural 

networks model which determines the fuzzified values for the control force. This energy from the 

control u and the semi-active control of MR damper acts on the system. Thus, the control input always 

exists although the sliding surface converges to zero. 

  
(a1) (a2) 

  
(b1) (b2) 
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(c1) (c2) 

Figure 4. Simulation results of the displacement xs of the seat: (a1,a2) random-bump road; (b1,b2) 

regular-bump road; (c1,c2) random step wave road. 

  
(a1) (a2) 

  
(b1) (b2) 

  
(c1) (c2) 

Figure 5. Simulation results of the displacement x1 of the driver: (a1,a2) random-bump road; (b1,b2) 

regular-bump road; (c1,c2) random step wave road. 
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Remark 4. As mentioned above, the practical values shown in Figure 3 are used in experiment. However, they 

must be calibrated to fix the system for preventing a breakdown or dangerous accident. Hence, the results of 

experiment are different a little from the simulation results. This does not alter the objective of the proposed 

control system. It is noted that the data sample time for simulation is 30 s. In the experiment, the sample time 

is chosen to meet the operation of the seat′s suspension system (capacity of the hydraulic system). In this 

experiment, the sample time is 3 s for regular bump excitation, and 5 s for random step wave excitation. Because 

of the difference, it is hard to plot both the simulation and the experiment results in one figure. However, the 

effectiveness of the proposed controller is similar in both the simulation and experiment. 

Remark 5. In this study, three road profiles are used in order to simulate the input signals. The road profiles 

shown in Figure 5a,c are collected from the real roads. The road profile shown in Figure 5b is generated from 

the Equation (40) given in [32]. These road profiles are used to investigate the vibrations transferred from 

wheels of the vehicles installed with MR dampers. Hence, these profiles can be adopted for experimental testing 

to emulate the practical road conditions as shown in Figure 6. It is noted that the design of vehicle suspension 

systems has been improved over the past decades, but this does not contribute vibration control of the seat 

position. Therefore, an effective seat suspension system is required to suppress the acceleration/displacement at 

the base of the seats. In this work, a semi-active seat suspension featuring MR damper is proposed and controlled 

to reduce unwanted vibrations at the seat and driver’s position. 

 

Figure 6. Experiment setup for vibration control of MR seat suspension system. 

4. Experimental Results and Discussions 

An experimental apparatus for the evaluation of the proposed hybrid controller is established 

as shown in Figure 6. It is remarked that the equipment used for this experiment is similarly to the 

devices used in [17]. The signal from the sensors such as linear variable differential transformer 

(LVDT) transducer, accelerometers at the seat and driver are used as feedback signals to the 

controller. For the information about sensor characteristics, the production makers and the specific 

model of each sensor are given as follows: (i) a linear variable differential transformer sensor 

(Honeywell, type JEC-AG-DC-DC, Honeywell Inc., Morris Plains, NJ, USA) is used to measure the 

displacement of seat, (ii) an accelerometer (CLX Xbow MEMSIC-IMU440, MEMSIC Inc., San Jose, 

CA, USA) is used for measurement of the acceleration of the mass (i.e human) on the seat, (iii) an 

accelerometer (Crossbow, type CXL04M1Z, Sumitomo Precision Products Co., Ltd., Amagasaki 

Hyogo, Japan) is used for measurement of the acceleration at the seat. The controller designed in [5] 

is used in this experimental evaluation as a comparative controller. This comparative controller is a 

kind of complicated hybrid controller whose adaptation laws are designed from the governing 

equation and sliding surface. In addition, the robustness function in [5] is built from the sliding mode 

motion and the Riccati-like equation. In this experiment, two exciting signals of the random step wave 
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and the random regular bump are imposed via the hydraulic shaker system. Figures 7 and 8 present 

control results obtained from the realization of the controllers using the microprocessor which 

consists of signal converters and controller chips. Vibration control results under the regular bump 

excitation are shown in Figure 7. Based on the values of the measured results, the maximum values 

of dynamic parameters such as displacement, velocity and acceleration can be found. The maximum 

displacement at the seat shown in Figure 7(a1,a2) is identified by 0.02118 and 0.03503 m for the 

proposed control and the control of [5], respectively. The maximum velocity at the seat is found from 

Figure 7(b1,b2) and the values are 0.25930 and 0.61020 m/s for the proposed control and the control 

of [5], respectively. The maximum acceleration at the seat is identified from Figure 7(c1,c2) and the 

values are 1.80093 and 2.31462 m/s2 for the proposed control and the control of [5], respectively. The 

maximum acceleration at the driver position is evaluated from Figure 7(d1,d2) and the values are 

1.03392 and 2.05639 m/s2 for the proposed control and the control of [5], respectively. It is noted that 

the maximal values of the sinusoidal bump obtained from the proposed controller are smaller than 

those achieved form the controller in [5]. This is attributed to the fact that, in the proposed controller, 

the fuzzy neural network model is applied in which the centroid vectors are properly determined as 

given in Table 4. Figure 8 presents vibration control performance of MR seat suspension system 

subjected to the random-step-wave excitation. Similar to the previous case, the maximum values of 

the displacement, velocity, and acceleration of dynamic parameters at the seat and driver position 

can be identified from the results. The maximum displacement at the seat is found from Figure 

8(a1,a2) and the values are 0.02009 and 0.04944 m for the proposed control and the control of [5], 

respectively. The maximum velocity at the seat is identified from Figure 8(b1,b2) and the values are 

0.29681 and 0.71328 m/s for the proposed control and the control of [5], respectively. The maximum 

acceleration at the seat is evaluated from Figure (8c1,c2) and the values are 2.16084 and 3.16171 m/s2 

for the proposed control and the control of [5], respectively. The maximum acceleration at the driver 

position is found from Figure (8d1,d2) and the values are 1.67057 and 2.22271 m/s2 for the proposed 

control and the control of [5], respectively. 

  

(a1) (a2) 

  
(b1) (b2) 
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(c1) (c2) 

  
(d1) (d2) 

Figure 7. Experiment results under regular bump excitation: (a1) displacement; (a2) enlarged view of 

the displacement; (b1) velocity; (b2) enlarged view of the velocity; (c1) acceleration at the seat; (c2) 

enlarged view of acceleration at the seat; (d1) acceleration of the driver; (d2) enlarged view of the 

acceleration of the driver. 

  

(a1) (a2) 
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(b1) (b2) 

  

(c1) (c2) 

  

(d1) (d2) 

Figure 8. Experiment results under random-step-wave excitation: (a1) displacement; (a2) enlarged 

view of the displacement; (b1) velocity; (b2) enlarged view of the velocity; (c1) acceleration at the seat; 

(c2) enlarged view of the acceleration at the seat; (d1) acceleration of the driver; (d2) enlarged view of 

the acceleration of the driver. 

From these results obtained via experimental implementation, it is clear that the proposed 

controller provides the better vibration control performances than the comparative controller under 

two different road profiles. The comparative control results are also good performances, but the 

performance degree is less than the proposed controller. This indicates that the proposed controller 

has a higher robustness under uncertain operating conditions of the control system. The proposed 

controller proves that the combination of two or more control logics can bring better control 

responses since the inherent advantages of each controller are retained to guarantee robust stability 
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against any disturbance and the uncertainty of the system. It is noted here that according to the 

standard ISO 2631-1, the acceleration at the driver position should be less than 2.5 m/s2 [17]. From the 

results presented in Figures 7 and 8, the accelerations of the proposed controller shown in Figures 

7(d1,d2) and 8(d1,d2), are always less than the standard value of ISO 2631-1. The applied current for 

regular bump excitation and random-step-wave excitation is shown in Figure 9. The maximum 

applied currents of regular bump excitation are 1.487 A and 1.494 A for the proposed control and the 

control in [5], respectively. The maximum applied currents of random-step-wave excitation are 1.4908 

and 1.492 A for the proposed control and the control in [5], respectively. 

  
(a1) (a2) 

  
(b1) (b2) 

Figure 9. Applied control current: (a1,a2) regular bump excitation; (b1,b2) random-step-wave excitation. 

In order to evaluate vibration control performance, two standard factors are used in this study: 

ToD (Transmissibility of Displacement) and ToA (Transmissibility of Acceleration) values. The ToD 

values mean the ratio of the input weighted displacement to the seat frame′s weighted displacement. 

The floor and seat frame displacement signals are analyzed to find the vibration transmissibility 

response of the seat suspension. Similarly, the ToA value means the ratio of the input weighted 

acceleration to the seat frame′s weighted acceleration. The floor and seat frame acceleration signals 

are analyzed to find the vibration transmissibility response of the seat suspension. The ToD and ToA 

values are expressed as 
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It is noted that the ToD and ToA values are calculated based on the root mean square equation 

as given in seatd , floord , seata  and floora . It has been identified that the ToD values of the regular 

bump excitation are 0.262262, 0.289031, and 0.274320 for the proposed control, the comparative 

control in [5], and the control in [17], respectively. Similarly, the ToD values of the random step wave 

excitation are 0.349026, 0.586984 and 0.398267 for the proposed control, the comparative control in [5], 

and the control in [17], respectively. Similarly, from the acceleration responses, the ToA values of 

random step wave excitation are 0.585122, 0.732741, 0.608735 for the proposed control, the 

comparative control in [5], and the control in [17], respectively. The ToA values of the regular bump 

excitation are 0.579926, 0.699909 and 0.58324 for the proposed control, the comparative control in [5], 

and the control in [17], respectively. These results are summarized in Table 5. It is therefore concluded 

that the proposed hybrid adaptive controller implemented to MR seat suspension system can 

enhance ride comfort of the driver of commercial vehicles such as bus and truck table. 

Table 5. Evaluation values of ToD and ToA. 

Index 
Bump Regular Excitation 

Proposed Control Control [5] Control [17] 

ToD 0.262262 0.289031 0.274320 

ToA 0.579926 0.699909 0.583241 

Index 
Random Step Wave Excitation 

Proposed control Control [5] Control [17] 

ToD 0.349026 0.586984 0.398267 

ToA 0.585122 0.732741 0.608735 

5. Conclusions 

In this work, a new adaptive hybrid controller based on the H-infinity control technique, sliding 

mode controller and PID controller was formulated and applied to vibration control of an MR seat 

suspension system to demonstrate its effectiveness. In the formulation of the hybrid controller, the 

online interval type 2 fuzzy and the Riccati-like equation were also used for combining three 

controllers. The parameters of the Riccati-like equation were determined to follow the change of 

system based on the fuzzy model and sliding surface of the sliding mode controller. The stability of 

the proposed hybrid adaptive controller was then solidly proven by adopting Lyapunov stability 

criterion. Subsequently, the proposed controller was applied to vibration control of MR seat 

suspension system of commercial vehicles such as bus and truck. Control performances were 

evaluated through both computer simulations and experimental realization by integrating the 

microprocessor. In order to validate robust stability of the proposed control system, three different 

road profiles were adopted and used for the excitations; random bump excitation, regular bump 

excitation, and random-step-wave excitation. After showing the effectiveness and characteristics of 

the proposed controller using computer simulations, experimental tests were undertaken to achieve 

control results for the excited vibrations. It has been shown from experimental realization that the 

proposed controller can reduce unwanted vibrations at the seat and the driver position satisfying the 

regulation of the ISO 2631-1. The results presented in this work are quite self-explanatory, justifying 

that an appropriate hybrid controller which consists of several classical/modern controllers and 

intelligent controllers can significantly improve the effectiveness of control performances much better 

than the implementation of a single controller. Notably, the control effectiveness of the hybrid controller 

is highlighted for complicated systems subjected to parameter variations and external disturbances. 
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Nomenclature 

 1 1
f

i ,...,n; j ,...,m 
j

i
H  Fuzzy sets 

m  Number of rules 
j
ia  Interval sets 

1 2 3

T l l l l

l n
w  w  w ...w 
 

θ , 
1 2 3

T r r r r

r n
w  w  w ...w 
 

θ  Weighting vectors 

 r
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l
ii www ,  Consequent interval weighting 

i
f , 

i
f  Upper and lower firing strength 

  nRf x ,   nRg x  Two unknown non-linear function vectors 

  1Rtu   Control function 

  nt Rd  An external disturbance vector 

T
(n 1) n

1 2 n 1 1 1
x ,x ,...,x x ,x ,...,x R       

x  The state vector of the system 

f g
θ ,θ  The centroid of consequent vectors of ,f  g  

 fξ , gξ  Consequent membership vectors of ,f  g  

ss  Switching surface 

11 2 1n n n
k ,k ,k ,...,k

 
   K  The chosen coefficients of sliding surface 

, ,  f g x    Constant boundaries of f ,g,x  

  An adaptive parameter 

KDKIKP  ,,  Constant boundaries of PK , IK , DK  

     
1 2 3 4 5 6
, , , , ,  

Choosing parameters related boundaries of 

 xf ,  xg ,  , PK , IK , DK  
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