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Abstract: The architecture, size and density of metal oxide field effect transistors (MOSFETs)
as unit bricks in integrated circuits (ICs) have constantly changed during the past five decades.
The driving force for such scientific and technological development is to reduce the production price,
power consumption and faster carrier transport in the transistor channel. Therefore, many challenges
and difficulties have been merged in the processing of transistors which have to be dealed and
solved. This article highlights the transition from 2D planar MOSFETs to 3D fin field effective
transistors (FinFETs) and then presents how the process flow faces different technological challenges.
The discussions contain nano-scaled patterning and process issues related to gate and (source/drain)
S/D formation as well as integration of III-V materials for high carrier mobility in channel for
future FinFETs.
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1. Introduction

Being followed by Moore’s law, the demands from micro-electronics industry drives more and
more powerful transistors with higher integrating density and lower power consumption in integrated
circuits (ICs). Because of such a high scaling, local electrical fields increase and many side effects,
e.g., short channel effects (SCEs) are created [1]. To minimize SCEs, not only device substrates were
changed from bulk silicon to silicon on insulator (SOI) [2], but the device structures transformed from
two dimensional (2D) planar ones to three dimensional (3D) devices. Through, this technological
evolution transistors e.g., fin field effective transistor (FinFET), gate all around devices and nanowire
or nanosheet were manufactured because of their excellent short-channel control [3–7]. Therefore,
unlike 2D devices, to implement such 3D devices needs more efforts on process technologies because
not only new structures are introduced, but also new materials are involved. Due to these developments
many challenges in processing also emerged when 2D to 3D transition occurred.

There are many articles dealing with technology of 2D planar transistors as well as 3D ones
but so far none has focused on the challenges in processing which appear due to this technology
transition. Therefore, this article presents the challenges and difficulties in complementary metal oxide
semiconductor (CMOS) process including advanced lithography for patterning nano-scaled transistors,
process integration, (wet and dry) etching, stress engineering with an emphasis on SiGe epitaxy for
source/drain (S/D), dopant implantation, gate formation including deposition of high-k material and
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metal gate using atomic layer deposition (ALD) technique, and III-V material for high carrier mobility
in channel for FinFETs. The discussions have a focus on 2D to 3D transition in FETs.

2. Lithography of Nano-Scaled Transistors

To create sharp patterns is the first priority for a state-of-art lithography. The most developed
technique for 20 nm and 14 nm node devices is 193 nm ArF immersion with multiple patterning [8].
For 7 nm node, 193 nm immersion with self-aligned double patterning (SADP) and self-aligned
quadruple patterning (SAQP) techniques will be used [9].

SADP is a technique which applied spacer transfer process for small pitch whereas SAQP is
used twice self-aligned double patterning to create the extremely narrow shapes and lines. There are
different challenges with multiple patterning, such as edge placement error, pitch walking and high
cost [10]. Therefore, for 7 nm devices, extreme ultraviolet (EUV) lithography and 193 nm immersion
with multi-patterning are predicted to be used in near future. The benefit to implement such expensive
lithography technique as EUV is to replace some of most complex multiple patterning layers but
it is expected that ArF immersion will still keep being used for some of the other critical layers.
There is a growing consensus that EUV introduction in volume manufacturing will take place starting
from 2018. Table 1 summarizes the layout to be used for the final steps in the roadmap, 10 nm and
7 nm nodes [11].

Table 1. Critical pitches in logic M1 (the first metal layer at back end of the line (BEOL), specially in
copper interconnect process) and possible patterning methods (LE: litho + Etch multiple exposures).

Node 10 nm Node 7 nm

Line Pitch 45 nm 32 nm
Hole Pitch 65 nm 45 nm

Single expose EUV 0.33 NA EUV 0.33 NA
Hybrid patterning SADP + EUV cuts SAQP + EUV cuts

ArF patterning SADP + ArF LELE SAQP + ArF LELELELE

2.1. Challenges in ArF lithography with Multi-Patterning [12]

2.1.1. Overlay

Multi-patterning lithography in 10 nm and 7 nm technology nodes has driven the allowed overlay
error down to extreme low values. In such cases, high order overlay correction schemes were needed
to control the process variability. Meanwhile, the increase of the number of split layers results in an
exponential increase of metrology complexity in the total overlay and alignment tree while the process
stack includes more hard-mask steps.

As a result, the set-up and the verification of overlay metrology recipe becomes more critical and
a holistic approach that addresses total overlay optimization from process design to process set-up
for volume manufacturing are required [13]. Therefore, overlay accuracy has to be improved in order
to increase pattern precision. There are some factors e.g., metrology, wafer and mask which impact
overlay accuracy. Table 2 presents different approaches to improve overlay accuracy.
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Table 2. Approaches to improve overlay accuracy.

Metrology Better overlay measurement
Better alignment measurement

Wafer

Reduce wafer warping from previous process steps
Reduce chucking induced wafer distortion

Reduce thermal distortion of wafer from exposure
Correct higher-order overlay errors

Eliminate mask contribution

Mask

Reduce pattern placement errors on mask
Reduce mask chucking unflatness in scanners

Reduce pellicle induced mask distortion
Eliminate mask all together

2.1.2. Mask with Reticle Enhancement Techniques (RETs)

In principle, down scaling the transistor dimensions results in more difficult mask making.
To deal with the diffraction issues, various RETs must be used on the mask. One RET with optical
proximity correction (OPC) is used to modify the mask patterns and to improve the printability on
the wafer. OPC makes the use of assist features, which they are getting smaller and more complex at
each technology node. More aggressive OPCs, e.g., inverse lithography techniques (ILT) or shapes
approaching ILT are needed to get the required process window. This makes the mask shapes more
complex and it requires finer geometries and spacing for the mask.

2.2. Challenges in EUV Lithography

EUV lithography (EUVL) enables to use only a single mask exposure instead of double or
quadruple exposure. There are still three issues to deal with this technique: power source, resists and
mask infrastructure [14,15].

The highest hurdle to implement EUV for mass production is to provide the light source 13.5-nm
that enables economical production capacity of the exposure tool. Recent publications show that
a power of ~200 W is needed for 125 wafers with 300-mm size per hour. Nowadays, the source issue is
considerably mature and several tools are now available from the vendors that provide >80 W at the
wafer level but this still is not enough for large scale manufacturing.

One of the critical technical issues of EUVL is the development of resist material which
has high resolution and high sensitivity as well as low line-edge roughness and low outgassing
simultaneously [16,17].

To improve throughput in high volume manufacturing, the resist sensitivity to the 13.54 nm
wavelength radiation of EUV needs to be improved, while the line-width roughness (LWR) specification
has to be held to low single-digit nm [18]. With a 250 W source and 25 mJ/cm2 resist sensitivity an EUV
stepper should be able to process ~100 wafer-per-hour (WPH). This allows an affordable use of EUVL
which matches with other lithography technologies.

Though resist line-edge roughness is generally governed by chemical processes (chemical shot
noise and acidic diffusion), but the replication of the mask pattern roughness and replicated surface
roughness or photon noise will still play a significant role when the pattern dimensions become
constantly smaller [19].

As EUVL continues to move towards high-volume manufacturing, the availability of defect-free
reflective mask has been one of the most critical challenges in EUVL [20].

EUV’s patterned masks work in reflective mode. These masks introduce new materials and
surfaces that may cause to particle adhesion and cleaning [5], therefore pellicle is needed to protect
the mask during use of EUV scanner to avoid the risk of particles adhesion. However, there are still
some remained issues for EUV mask with pellicle such as stress from pellicle mounting may cost
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overlay error and limit the mask inspection to actinic light in addition to the pellicle absorption which
attenuates the precious EUV power.

3. Process Integration of New Transistor Architecture

In process flow for FinFETs, dense fins are patterned by using self-aligned double patterning
(SADP), followed by oxide filling, planarization, and recessing to reveal the fin active region and
form shallow trench isolation (STI). Then the rest of the process flow proceeds in similar steps as for
the planar devices such as well doping, dummy gate deposition and patterning, spacer deposition
and etching, epitaxial source/drain (S/D) formation, inter layer dielectric zero(ILD0) and chemical
mechanical polish (CMP), dummy gate removal, high-k and metal-gate (HKMG) formation, self-aligned
contact (SAC) formation, local interconnects (LI), and finally back-end-of-line (BEOL) interconnect
construction [21,22].

Although the overall process sequence for FinFETs (as shown in Figure 1) does not differ much
from planar FETs, however the addition of fins adds many new challenges in fabrication, as shown
in Figure 2 [21–24]. These challenges relate to issues: precise and uniform fin formation, 3D gate
and spacer patterning, uniform junction formation in fin, and severer layout dependent effect (LDE)
on stress.
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3.1. Precise and Uniform Fin Formation

Electrical characteristics of FinFETs are closely correlated to the fin profile (width, height,
and verticality) [25]. To handle more current, longer fins are needed which results in more challenges
to manufacturing. Smaller fin width is favorable to channel electrostatic control, but this design cannot
go too far, because of mobility degradation, random doping fluctuation (RDF) from the S/D gradients,
and variation in off-state current.

Fins are usually defined by SADP [26]. Fin etching in bulk silicon has to be controlled by a timer
process. In the most cases, the fins at the edges of a cluster suffer a higher variability than those in the
middle. To achieve uniform fin width and height in a cluster, dummy fins are required [27]. Some dummy
fins need to be cut at the pitch. As fin pitch shrinks and approaches the overlay limit, cutting fins
becomes more difficult. Fin isolation by STI and channel-stopper doping step are also challenging,
because of the tighter pitch, difficulty to control on STI depth, and doping variation.

To preserve structural integrity of fins with a high aspect ratio is also another challenge. The Si
surface of narrow fins appears differently than Si bulk [28], and excessive Si loss was observed after
the usual wet cleaning. Thus, wet process needs optimization with a diluted concentration and a lower
temperature. Similarly, the oxidation is also faster at corner and tip of fins. Furthermore, the dry
etching of fins is more stringent due to the 3D topography, therefore, a plasma pulsing scheme may be
viable for minimizing Si loss [25]. The growth of defect-free alternated fin materials for high mobility
channel application is also a challenge due to differences in thermal budget and lattice matching [27].

3.2. 3D Gate and Spacer Patterning

To form long fins increases the complexity of integration of poly gate, spacer, and replacement
metal gate. For example, it is difficult to etch the poly gate with high aspect ratio and precise control of
dimensions [25]. Charging and micro-loading in etching lead to variable gate length (Lg). Significant
over-etch is required to clear the poly residual on the fin sidewalls, and significant over-etch is also
required to clear the offset spacers on the fin sidewalls for epitaxial S/D growth [28,29]. Both these
over etchings results in damages of the Si fins. Careful optimization of dry and wet etching is needed
to produce 3D gates with minimum Lg variation and fin loss.

The replacement metal gate module also poses challenges, as it requires two new steps which can
interact during the STI CMP. The control of gate height is essential in a replacement gate process. If the
gate is over-polished, the raised source-drain is exposed to the polish, resulting in external resistance
(Rext) and mobility variation. Meanwhile, when the gate is under-polished, the contact taper causes
Rext variation (in extreme case resulting in an open-contact yield issue). Therefore, more precise and
more controllable CMP process is required [30].

3.3. Uniform Junction Formation in Fin

One of the critical integration challenges for FinFETs lies with doping, which in fins is significantly
different than that in planar devices [31,32]. Three issues are included: (1) the need for conformal
doping in the S/D contact and extension regions so that the carrier conduction is uniform in the
fin-channel; (2) the tight pitch of the fins limits the beam incidence angles, then the shadowing from
neighboring fins has be avoided; (3) damage, accumulation and annealing in high-aspect ratio fins are
significantly different from those in planar junctions.

Uniformly doping with conventional ion implantations in the narrow and long fins with a shrunk
pitch is a difficult task (I/I) [33]. After conventional I/I, an amorphization of the Si fins occurs and
later poor re-crystallization is obtained during junction anneal which results in poor dopant activation
and defected fins [31]. The implant condition for fin doping can also impact the quality and the
growth rate of the S/D epitaxy, which will have implications on the S/D and contact resistance.
Hot I/I with increasing the Si wafer temperature during I/I up to a certain targeted value could be
an option to reduce the amorphous depth and fin damage [31,32]. Other innovative doping schemes
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e.g., solid-source doping, conformal plasma doping, and molecular monolayer doping can be also
applied to improve the doping profile. An extension less and I/I-free doping technique is preferably
required, which uses rapid thermal annealing (RTA) process to drive dopants from the in situ doped
epitaxial S/D regions, and to form a better controlled box-shaped profile.

3.4. Stress Engineering

Stress engineering is a crucial issue for Si MOSFETs. There are three commonly used methods for
stress engineering in nano-scaled transistors e.g., stress memorization technique (SMT), SiN contact etch
stop layers (CESL) stressors and epitaxy of SiGe on S/D regions are used to create stress in the channel
region. Among these methods SMT and CESL are less effective for FinFETs and nano-wire FETs.

SMT is grounded on growth of a highly tensile-stressed SiN followed by a thermal annealing
step >1000 ◦C. In this process, the SiN capping layer is deposited on the whole Si wafer and it is kept
on the n-type metal oxide semiconductor (nMOS) region while it is selectively removed from the
p-type metal oxide semiconductor (pMOS) area. Stress is mainly memorized during the anneal step
for activation step in S/D areas. A wet etching is applied after SMT process to remove the SiN layer
before silicide formation.

In SMT, the stress memorization is originated from compressive stress which is induced by the
n-type poly-Si gate under the SiN capping layer. The volume of polycrystalline material expands
during the annealing step and induces a tensile stress along the longitudinal direction, as shown
in Figure 3.
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(nMOS) with a stressor cap layer.

A more innovative way to induce stress in planar transistors is CESL. This technique consists of
a SiNx layer deposited around the gate stack as shown in Figure 4. By tuning the process parameters
the stress amount and its type: tensile or compressive can be determined [34].

The most effective method to induce stress in S/D is embedded SiGe (compressive stress for
pMOS), Si:C (tensile stress for nMOS) or trench contact, and in metal gate [34]. More aggressive scaled
nodes have tighter contacted poly pitch (CPP), resulting in less room for gate and S/D. Effectiveness of
the gate and S/D stressors depends on the trade-off between reducing stressor volume and enhancing
stressor proximity to channel [35].

To further enhance the channel mobility in planar MOSFETs, the Ge content in SiGe S/D has been
continuously increased from 17% to 40% in 90 nm to 22 nm node, respectively [36–40]. Further strain
could be induced when the shape of recessed S/D changed from a round shape to sigma (Σ) shape
where the SiGe layers locate deeper in the channel region as shown in Figure 5 [41–43].
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The epi-layers may suffer from several problems e.g., facet formation [44,45], defects, micro/loading,
non-uniform strain distribution, surface roughness and pattern dependency effect [46–50]. The pattern
dependency happens when the density and size of the transistor vary in a chip. The reason for the
pattern dependency of selective epitaxy is mainly non-uniform consumption of reactant gas molecules
when the exposed Si area varies in chip. This problem can be decreased by optimizing the growth
parameters (high HCl partial pressure, low total pressure and high hydrogen carrier gas pressure) and
by designing chip layouts where the exposed Si is uniformly distributed over the chip’s area to create
uniform gas consumption [50].

The evolution of Ge content in S/D and stress created in channel for different technology nodes is
shown in Figure 6. The 3D architecture was designed and manufactured for 22 nm node. SiGe layers
are selectively grown by reduced pressure chemical vapor deposition (RPCVD) technique by using
SiH2Cl2, GeH4 as Ge and Si precursor, respectively. During epitaxy, HCl gas is introduced for etching
the formed nuclei on the SiO2 surface to ensure the selectivity of the growth.

The big challenge when the planar transistors are redesigned to 3D is uniformity of strain and the
control of the defect density in the channel region. Figure 7 shows how the epitaxy occurs for planar and
3D transistors. The precursor molecules are piloted by hydrogen over the wafer and moves forwards
along the chemical vapor deposition (CVD) quartz. A gas boundary is established over the wafer
where the molecules may diffuse downwards (according to Fick’s diffusion equation). Later these
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molecules are attracted within a spherical volume towards the dangling bonds which are available
sites in the exposed Si areas of the chips.
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The total growth rate (RTot) consists of components from vertical (RV) and lateral (RLG gas flow,
as well as components from oxide surface around the transistor arrays (Rss) and oxide surface between
the transistor openings (RSC) for SiH2Cl2, GeH4 and HCl gases. Thus, RTot for SiGe growth in planar
transistors is written as [50]:

RTot = RV
Si + RLG

Si + RSS
Si + RSC

Si + RV
Ge + RLG

Ge + RSS
Ge + RSC

Ge − RV
E − RLG

E − RSS
E − RSC

E (1)

The above equation can be modified to estimate the growth rate of SiGe on Si fins in 3D FinFETs
(elevated S/D) when an extra component (RCO) is added. This component is rooted from the diffusion
of molecules on the surface of Si fins. Then Equation (1) is written as [51]:

RTot = RV
Si + RLG

Si + RSC
Si + RCO

Si + RSS
Si + RV

Ge + RLG
Ge + RSO

Ge + RCO
Ge + RSS

Ge − RV
HCl − RLG

HCl

−RSO
HCl − RCO

HCl − RSS
HCl

(2)

The RCO component makes a unique situation for the growth of 3D transistors when the molecules
can move from a fin to another one creating a more uniform growth.
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It is worth mentioning here that the components RSS and RSC are changed if the chip layout is
changed. These components which are layout-dependent are the cause for pattern dependency in
selective epitaxy growth.

3.5. Stress Measurements in Nano-Scaled Transistors

The stress in nano-scaled transistors can be measured by Nano-beam diffraction (NBD) technique
in high-resolution transmission electron microscope (HRTEM). The diffraction pattern from the selected
areas varies depending on the stress amount and the analysis can be performed in combination with
True Crystal program package. In NBD analysis, the interplanar distance of (220) planes is measured
and later compared by the calculated data. Afterwards, the stress amount (ε) is transformed into the
strain (σ) by using the relationship: ε = σ/E where E is Young’s Modulus.

As an example, Figure 8 illustrates the NBD images from a 22 nm planar transistor with
atomic layer deposition tungsten (ALD W) metal gate formed by B2H6 doping source. The analysis
was performed by a nano beam on the metal gate, channel and the body regions of a transistor.
The diffraction images from the metal gate materials illustrate a pattern with weak intensity which
is a sign of poor polycrystalline or likely an amorphous phase. The strain in the channel region is
estimated to ~0.5 GPa [52].Appl. Sci. 2017, 7, 1047 9 of 31 
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Figure 8. Nano-beam diffraction (NBD) micrographs from metal gate, channel and the body regions of
a 22 nm planar transistor [52].

It is important to note that a careful sample preparation is necessary since the stress may partially
relax during the ion milling or any other mechanical force. This problem becomes a real challenge to
prepare 3D FinFET samples for strain analysis by HRTEM.

Another method to measure stress (or strain) is X-ray diffraction (XRD). This technique applies
scanning of incident beam (ω angle) and the detector follows to detect the diffracted beam (angle 2θ)
in a configuration so called ω−2θ rocking curve (RC) scans. The Si substrate and SiGe layer satisfy the
Bragg law condition for a certainω and 2θ resulting in peaks [53]. The strain can be determined from
the split of the peaks. A more accurate strain measurement can be performed by using high-resolution
reciprocal lattice map (HRRLM) where the misfit in-parallel and perpendicular to the growth direction
(f // and f⊥, respectively) can be obtained. The position of Si and SiGe peaks in the reciprocal space
are the parameters which are obtained from HRRLMs and are used to calculate the misfit parameters.
Due to a limited X-ray spot size the strain measurements provide a mean value over an array of
transistors rather than individual transistor compared to HRTEM analysis [54].

HRRLMs have been widely used to determine the boron concentration in SiGe or Si as well as
strain relaxation in process line [54,55]. The analysis can reveal the formation of silicides in S/D regions
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(for the reducing contact resistance) results in strain relaxation in SiGe layers [56]. This is because
of the silicide formation generates significant amount of point defects during the consumption of
Si atoms. During the silicide formation, the Ge atoms diffuse out and create a SiGe layer with rich
Ge content beneath the silicide layer. As a consequence, the strain in SiGe beneath the silicide layer
partially relaxes. A remedy to this problem is the growth of a Si sacrificial layer [57].

As an example, Figure 9a–c show three HRRLMs around (113) reflection from chips containing
arrays of 22 nm planar transistors with intrinsic Si0.65Ge0.35, B-doped Si0.65Ge0.35 and B-doped
Si0.65Ge0.35/NiSiGe in S/D regions, respectively [49]. The silicide layer has been formed on a sacrificial
SiGe layer with lower Ge content (20%). In Figure 9a, both Si and SiGe peaks are aligned along K⊥
direction showing a minor strain relaxation in SiGe layer. Meanwhile, in Figure 9b, there is a shift of
B-doped SiGe peak compared to intrinsic ones in Figure 9a. This shift is due to strain compensation in
presence of B atoms in Si matrix and it corresponds to the number of substitutional boron concentration.
By applying the contraction coefficient of boron in Si ((6.3 ± 0.1) × 10−24 cm3/atom) and the amount
of the strain compensation, the boron concentration is estimated to 2 × 1020 cm−3.Appl. Sci. 2017, 7, 1047 10 of 31 
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Figure 9. high-resolution reciprocal lattice maps (HRRLMs) around (113) reflection from 22 nm metal
oxide field effect transistors (MOSFETs) with Si0.65Ge0.35 in S/D areas as follows (a) an intrinsic layer
and (b) B-doped layer (c) as previous sample but with a SiGe sacrificial layer which was consumed in
NiSiGe cap layer. Reproduced with permission from [54]. Copyright Journal of Applied Physics, 2013.

Further investigations about the effect of NiSiGe formation on the SiGe strain were performed.
In Figure 9c, the SiGe peak is at the same position as in Figure 4b indicating the strain in SiGe is
preserved during the Ni silicide formation process [49].

Although HRRLMs is a powerful technique for strain measurement and they can be easily
obtained by conventional high-resolution X-ray apparatus, they cannot measure strain in ultra-small
SiGe crystals grown on Si fins in 3D FinFETs due to the limited signal acquisition. Therefore, the strain
amount in the processed FinFET structures was determined by using X-ray beam in a Synchrotron
facility as shown in Figure 10 [50]. The high intensity beam offers the chance to determine the misfit
parameters and the strain relaxation condition for small SiGe crystals. In Figure 10, the SiGe peak is
aligned with Si peak along K⊥ indicating a small strain relaxation amount.
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Reproduced with permission from [50]. Copyright Solid-State Electron, 2016.

3.6. High-k Dielectric and Metal Gate (HKMG)

In order to satisfy the aggressive down-scaling of metal oxide semiconductor (MOS) transistors
a large effort was devoted to use new gate materials to solve the unendurable integrating problems
involved in producing chips [58–61]. Therefore, both new high-k gate dielectric and metal gate electrode
materials were sought. The exploration for new high-k dielectrics was focused on resolving boron
penetration and polysilicon depletion issues. The other important concern was also compatibility of
high-k dielectrics with new metal electrodes which were required to replace the traditional polysilicon
gate electrode used in nMOS and pMOS transistors [62–64].

In this part, the material choice of high-k dielectric and metal gate for different technology nodes
are presented and then atomic layer deposition (ALD) of metal gate, which is the main challenge
beyond 14 nm technology node due to the much high aspect ratio is discussed.

3.6.1. Evolution of HKMG

New high-k dielectric and metal gate were initially introduced into 45 nm technology node
MOSFET by Intel Corporation at 2007 [65]. Table 3 summarizes the evolution of high-k dielectric and
metal gate from 45 nm to 14 nm nodes. It can be seen that the HfO2 is used as gate dielectric for both
nMOS and pMOS. The HfO2 high-k dielectric has high permittivity (a dielectric constant about 25 and
a relatively large bandgap, 5.7 eV), large heat of formation (−271 kcal/mol, higher than that of SiO2:
−218 kcal/mol), good thermal and chemical stability on silicon, large barrier heights at interfaces
with Si, and adequate compatibility with n+ poly-silicon gate electrodes. At an operation voltage
of 1–1.5 V, the leakage current through HfO2 dielectric films was reported to be several orders of
magnitude lower than that of SiO2 with the same EOT (0.9–2 nm) [39,65]. One of the main challenges
of HfO2 application in CMOS technology is the thermal instability of HfO2/Si contact. There is an
inevitable interlayer such as SiOx between HfO2 and Si substrate [65–67], even though the HfO2/Si
is theoretically found to be thermodynamically stable [68]. Table 3 summarizes information about
different materials as high-k dielectric and metal gate from 45 nm to 14 nm technology node. The table
also shows that TiAlN and TiN are applied as metal gates for nMOS and pMOS, respectively.
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Table 3. Material selection of high-k dielectric and metal gate from 45 nm to 14 nm nodes.

Technology Nodes Device Structure
High-k Dielectric Metal Gate

nMOS pMOS nMOS pMOS

45 nm Planar HfO/ZrO HfO/ZrO TiAlN TiN
32 nm Planar HfO2 HfO2 TiAlN TiN
22 nm FinFET/Tri-gate HfO2 HfO2 TiAlN TiN
14 nm FinFET/Tri-gate HfO2 HfO2 TiAl TiN

The other important point is that the thickness of gate dielectrics is changed, although the same
dielectric materials are used. As shown in Table 4, the thickness of thermal oxide (SiOx) has been
reduced dramatically from ~1.2 nm in 45 nm node to ~0.7 nm in 14 nm node. In similar manner,
the high-k dielectric decreases from ~1.5 nm in 45 nm node to ~1.2 nm in 14 nm node. As a result,
the equivalent oxide thickness of gate dielectric has been decreased.

Table 4. Key parameters of high-k dielectric and metal gate from 45 nm to 14 nm nodes.

Technology Nodes
Film Thickness (nm)

Thermal Oxide High-k TiAl(N) TiN

45 nm ~1.2 ~1.5 ~2 ~2.1
32 nm ~1.2 ~1.1 ~1.7 ~2
22 nm ~1.1 ~1.0 ~1.2 ~1.4
14 nm ~0.6 ~1.2 ~3.7 NA

3.6.2. Atomic Layer Deposition of Metal Gate

Continued scaling down of CMOS devices requires high-k dielectrics and metal electrodes
to replace traditional SiO2 dielectrics and poly-silicon gate electrodes [69,70]. The replacement
of poly-silicon with metal gate is essential in order to prevent the Fermi level pinning effect and
poly-silicon depletion [71,72]. Intel introduced TiAlN and TiN are used as work function metals for
nMOS and pMOS, respectively for 45 nm and 32 nm node [39,40]. With further down scaling of the
CMOS device into 22 nm node and beyond, a three-dimensional FinFET structure was introduced into
the CMOS in order to suppress the short-channel effects [21]. In such transistors, the aspect ratio of the
replacement gate structure became larger, and this made it difficult to fill the trench.

Atomic layer deposition (ALD) is widely regarded as the best solution for metal gate deposition
because of its excellent conformal step coverage capability [73,74].

The metal gate materials such as TiN, TiAlN, HfAlC, TaN, HfN, AlN, TiCxNy, TiC-TiN have
effective work function of 4.6–5.0 eV, which can be used in pMOS or SOI device [75–78]. Jeon and Park
et al. synthesized a thermally stable triple Ti1−xAlxN metal gate and studied the effect of Al concentrations
in the atomic-layer-deposited Ti1−xAlxN layers on the effective work function. Tunable effective work
function of 4.86–5.04 eV was measured which could be implemented for pMOS [76]. Recently, the impact
of using ALD technique on the effective work function of carbon-containing TiN films (TiC–TiN) has
been presented. The results demonstrated that the bonding concentration of Ti–C increases at higher
deposition temperatures and in contrast the work function of the TiC–TiN metal gate decreases from
5.0 to 4.6 eV.

A high work function of 5.0 eV metal gate is suitable for a p-FET application while the midgap
work function 4.6 eV is suitable for a fully depleted silicon-on-insulator FET [75]. ALD HfxAlyCz

films using hafnium chloride and trimethylaluminum precursors were studied by Lee et al. [77].
The effective work function in metal–oxide–semiconductor capacitor devices with the HfxAlyCz layer
was quantified to be 4.6 eV which is compatible with an ALD HfO2 dielectric. Thus, HfxAlyCz is
a metal gate work function material that can be used for the tuning of device threshold voltages (Vth)
for anticipated multi-Vth IC devices [78].
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For nMOS, due to the lack of appropriate precursor, it is relatively difficult to acquire n-type
work function metal. Ragnarsson et al. applied a new ALD TiAl process to demonstrate conformal
low Vth bulk FinFET devices [79]. Cho et al. used tert-butylimido tri-diethylamido tantalum and
methane/hydrogen reactive gas mixture to obtain ALD TaCxNy films. By introducing of 1.5–2.5%
methane, the TaCxNy film with lower work function could be obtained. For these films, the lowest
effective work function of 4.37 eV could be achieved [80]. Triyoso et al. introduced TaCy film deposited by
plasma-enhanced ALD (PEALD) technique to extend the effective work function within 4.54–4.77 eV [81].

For the metal gate, the thermal ALD without plasma damage is more suitable. Chao et al.
developed TiAlX films as metal gate by thermal ALD technique using titanium tetrachloride (TiCl4),
trimethylaluminum (TMA) and NH3. It was demonstrated that NH3 presence in the TiCl4 and
TMA reaction resulted in the film more like TiAlN(C) while its absence made the film turn to TiAlC.
The TiAlC films have smaller effective work function than the TiAlN(C) films [82]. The effective work
function can be tunable from 4.49 eV to 4.79 eV by tuning growth temperature, TMA dose and film
thickness [83]. Further studies showed that the effective work function of TiAlC films can be decreased
by increasing Al concentration. Chao et al. introduced a new precursor triethylaluminum (TEA) to
react with TiCl4. TEA is a metal organic precursor with special β-hydrogen, which can lead to H2

elimination. The H2 elimination will generate Al intermediate, which can decompose more easily
at high temperatures and further enhance Al doping into the final product [84]. The effective work
function of the TiAlC with TEA as precursor can be tunable from 4.46 eV to 4.24 eV by adjusting
the growth temperature and the film thickness. TaAlC based on TMA and TEA has almost the same
effective work function as TiAlC based on TMA and TEA separately [85,86].

However, for filling metal in the transistor dummy gate trench, W metal using ALD has a good
capability of step coverage to instead traditional physical vapor deposition (PVD) Al materials applied
in the small pitch device. There are two types of ALD W films depending on SiH4 and B2H6 precursors.
The related research showed that the properties of the ALD W were precursor-dependent due to
crystalline quality and induced strain of the deposited films [87–89].

3.7. Additional Sources of Variation

Variability control is more critical and becomes increasingly challenging for FinFETs [90,91].
FinFET’s electrical variation is very sensitive to fin width and verticality variations. Fin height variation
comes from fin etching, STI deposition, STI CMP, and STI recessing.

In general, gate etching profile and Lg variation over fin topography are difficult to control.
S/D epitaxy is a sensitive process over fin topography [92] and the resistance and stress fluctuations
may be resulted if the fin shape is affected. Furthermore, in I/I process, the defected layers would
correspond to another source of variability [91]. In a fin with channel doping concentration of 6× 1017 cm−3,
about a third of the variability comes from random dopant fluctuation (RDF). While channel doping
can be avoided in FinFETs, RDF from S/D doping gradient appears when Lg < 10 nm [33,93]. Channel
interface and gate stack work function variations have remarkable negative effect on the transistor
performance. Double patterning raises concerns about the way in which individual polygons are split
across two masks. As overlay is not scaling as fast as minimum feature size, mask-alignment issues
introduce a new source of variability in the spacing between polygons [27].

3.8. Common Challenges: Less Lateral Space Left

Continuous scaling suggests endless reduction of CPP. This results in a trade-off between Lg,
S/D spacer thickness, and S/D contact area in a lateral device. Lg is limited by short-channel effects.
Minimum spacer thickness is defined by reliability requirements and/or by capacitance between gate
and S/D electrodes. Narrow S/D contacts result in high access resistance.

Gate-all-around (GAA) FETs offer the best potential solution to electrostatic control, and can
be implemented in a lateral (with one or more lateral wires which are vertically stacked) [94,95] or
a vertical configuration [96,97]. The lateral nanowire FETs are closer to FinFETs in terms of processing,
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circuit design, as well as footprint constraints. The vertical nanowire FETs are less constrained on
Lg, spacer thickness, and S/D contact area, as they are oriented vertically and thus should possess
even better scalability [96,97]. However, the move towards a vertical architecture will require more
disruptive technology and design changes to be considered and implemented.

Down scaling has always acted against wiring performance. At and below 22 nm, interconnect
resistance is set to rise dramatically. Besides the wire cross-section reduction, carrier scattering from the
boundaries of individual copper crystal grains, and interfaces with barrier layers are rapidly pushing up
interconnect resistivity and the resistance of individual wires. Double patterning also leads to routing
challenges, and the access to standard cell pins is more difficult because of constraints on interconnect
pitch. Interconnect resistance and capacitance (RC) starts to dominate the delay. The line/via resistance
and capacitance need to reduce, while reliability (electromigration (EM), time dependent dielectric
breakdown (TDDB), bias temperature instability (BTI) and hot carrier injection (HCI)) needs to be
maintained. Before these, defect-free metal filling is a prerequisite. However, reducing line resistance
needs enough space for actual wiring material, leaving less room for barrier and thus poor reliability
like EM. Lower via resistance needs thinner barrier at via bottom causing EM blocking boundary
insufficient [98].

4. Dopant Implantation in CMOS

For decades, Ion implantation has been a major doping strategy for a planar CMOS device in
S/D formation or threshold voltage adjustment. However, when the transistor dimension shrunk
below 100 nm the extended S/D implantation needed to be more aggressive to inhibit the short
channel effect [99]. In MOSFETs, shallow junction (USJ) was sought to follow the down-scaling
geometrical rules.

Initially, USJ was realized by low ion implant energy and followed by a traditional rapid thermal
process (RTP or spike annealing). A series of low energy high current ion implanter were also developed
to improve the throughput of the tools [100,101]. While the gate length was further scaled to 45 nm
node and beyond, the transient enhanced diffusion (TED) effect of the dopant was more and
more apparent and a desired junction depth (International Semiconductor Technology Development
Roadmap(ITRS) required) could not be achieved by just low energy implantation. Some novel solutions
e.g., co-implantation, cryogenic implantation or Cluster implant were developed to reduce the dopant’s
diffusion in the substrate during activation step [102–106]. For co-implantation, carbon was proved to
be an appropriate species with good control of dopant diffusion in both silicon or germanium based
transistors [107,108].

On the other hand, the annealing technology was also improved e.g., laser anneal and flash
anneal can activate the dopant within milliseconds [109,110]. These techniques can not only reduce
the thermal budget of the annealing process, but also improve the activation level of the dopant.
Nowadays, these techniques have been used as standard source/drain thermal treatment in CMOS
fabrication. In recent years, a new thermal treatment method so-called microwave annealing is found
to be useful for shallow junction formation. This technique offers the annealing process at rather low
temperatures with less dopant diffusion [107,111]. Since the temperature of activation is lower than
500 ◦C, it could be meaningful for Ge based devices in future.

4.1. Challenge of Ion Implantation in 3D Structure Devices

In 2012, 3D tri-gate transistors came into mass production by Intel on its 22 nm micro-processor.
Such a design brings a lower junction leakage and better short channel effect control compared to
traditional planar structure. However, in the meantime, the transformation from planar to 3D put
forward higher requirements for the fabrication process such as implantation, the conformal doping of
source/drain areas and lower fin damage by implantation [112].
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4.1.1. Conformal Doping

For 3D structure devices like FinFETs, the requirement for S/D extension is not limited for highly
dopant activation or less dopant diffusion and profile abruptness, but the conformal distribution
within the fins [112–114]. The non-conformal doping profile results in degradation of the drive current
of the transistor. Although large tilt beamline implantation could improve the conformality but there
is still a serious limitation on the tilt angle due to shadowing by the neighboring fins.

An alternative approach to improve conformality is using plasma doping [115–117]. The fins
were immersed into plasma where the top surface and sidewall of the fins could be conformally doped
by appropriate atoms. However, in order to prevent the dopants out-diffusion from the surface and
make a better doping uniformity, a capping layer is always deposited before activation annealing.

4.1.2. Damage Control

The damage control during doping is another key point to promote the performance of device.
In planar devices, low temperature cryogenic implant is used to eliminate the end of range defects,
while for 3D FinFET structure, the situation is quite different. It was found that a narrow fin which
is isolated from large crystal volume; surface proximity and the 3D structure make amorphous
silicon recrystallization problematic. If the fin is completely amorphized, only a very small seed for
recrystallization, which results in a defective growth, and it degrades the resistivity and drive current
of the transistors [118,119]. Therefore, for 3D transistors, it is necessary to reduce the amorphization
depth created by implantation as well as the annealing to minimize the fin damage.

Hot implantation is proved to be a solution for damage-free fin source and drain extension
(SDE) doping. By increasing the implantation temperature, damage accumulation could be mitigated,
thus the self-amorphization of implant can also be decreased. By using this method, B. Wood et al.
demonstrated a half magnitude improvement in fin line conductance and one magnitude in junction
leakage for n-type source and drain extension (NSDE) doping compared to a room-temperature
implant [120].

5. The Etching Challenges and Solution of 3D

5.1. Depth Loading Control of Fin Etching

Generally, only a small part of process gases is ionized into plasma under the radio frequency
power. Most of molecules exist in the chamber as neutrals, which induce deposition during etching
process. Neutrals are easy to stick on to the surfaces before entering trench bottom and they induce
taper profile that will block ions to reach to the bottom. On the other side, new stored ions are formed at
trench bottom to react upon the incoming ions. As a result, as etching reaction is on going and etching
depth increases, flux ratio of Ion/Neutral will decrease and etching bombardment is weakened as
shown in Figure 11a. Within CD sizes, smaller CD induced weaker bottom reaction. Therefore, the etching
depth depends on the opening CD size: bigger opening CD size induce deeper depth as shown in
Figure 11b.

It is possible to fine-tune the gas ratio and bias power to improve the Ion/Neutral flux ratio and
improve the CD size dependency to etch rate. However, this traditional tuning is less effective to
14 nm FinFET due to the extreme small size limit the function and cannot meet the requirement of 5 nm
depth loading. Using higher bias power will induce higher electron temperature that will damage
under layer in gate or spacer etching process. To solve this problem, the concept of bias pulsing can be
introduced. Since bias power is the main source to provide ion bombardment, bias pulsing can change
Ion/Neutral flux ratio momentarily as bias power turn on/off. However, the flux ratio at bias-on
is greater than that at bias-off. Figure 12a,b shows how the bias pulsing affects the etching process
during both bias-on and bias-off. When the bias power is on, plasma etching dominates the process.
While the neutral deposition dominates during the bias-off. In bias opening moments, ions may crush
the bottom of trench in a short time and react with silicon in the bottom. In this case, when the bias
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power is turned off suddenly, it will induce enough reacting before the back potential force forms.
This kind of time-split to bias on/off results smaller depth loading effect that are caused by different
opening CD size [122,123].
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For example, using bias power pulsing, the intra-cell loading can be reduced from 20 nm to 5 nm
under 5 nm CD difference structure as shown in Figure 13.
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5.2. Gate Etching Control

As new 3D structures are introduced, selective and residue-free etch processes will be even
more challenging. There are a few new process and materials challenges in processing FinFETs as
summarized below. Firstly, the Si surface of fins appears different than in bulk since an excessive Si
loss was observed after the usual pre-gate-oxide clean as shown in Figure 14a. Therefore, wet cleaning
was optimized with dilute concentration and lower temperatures. Similarly, the oxidation of fin is
also faster at corner and tip of fins. Furthermore, the dry etching on fins is more stringent due to
the 3D structures (Figure 14b) and a bias plasma pulsing scheme may be viable for minimizing Si
loss [124,125].
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Self-Aligned Contact (SAC) Etching Selectivity Control

In general, SAC is a necessary process for 3D transistor with gate length smaller than 14 nm.
It is required to etch the slit pattern of the fine SiO2 layer with ultra-high selectivity to SiN. In the
conventional etching methods which fluorocarbon (FC) gas is usually used, the selectivity is enhanced
by utilizing the etch rate difference of the protective film, which is caused by the composition difference
of SiO2 and SiN [126,127]. However, if the FC film thickness is increased in attempt to improve the
SiN selectivity, an excessive FC film is deposited on SiO2 and the slit opening is blocked by excess
deposition where finally it causes an etch-stop to occur. Therefore, a better trade-off between the fine
process control of the SiO2 layer and SiN selectivity can be reached by applying a new Quasi-Atomic
Layer Etch (ALE) technology [128].

Figure 15 shows the concept of Quasi-ALE. In the conventional method, radicals and ions in the
plasma are transported to the surface of wafer at the same time. In contrast, in Quasi-ALE, they are
separated as the radical flux and ion flux are performed independently in each step time. In this
scheme, it is possible to control the etching reaction more precisely.

Figure 16 shows the etching result of SAC structure by the conventional etch and optimized
Quasi-ALE. In the conventional etch, etch stop occurs at the fine slit while the amount of SiN loss is
large. In Quasi-ALE, the fine slit can be successfully etched while the SiN selectivity is highly preserved.
SEM image of Quasi-ALE shows when FC on the bottom of fine slit has been removed but the SiN
surface is still protected by FC layer. From the state of the FC layer formation, precise control ability of
the etching surface by Quasi-ALE is obtained. Thus, Quasi-ALE enables very sophisticated fabrication.
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5.3. STI Process for the Gate

The STI process of Si fins is described in Figure 17 [129]. One of the critical processes is to control
the fin height (Hfin) since it has influence on the electrical properties of transistors, e.g., the threshold
voltage (Vth) decreases as Hfin decreases . In order to etch silicon dioxide, hydrogen fluoride acid (HF)
based reagent is used. However, wet etching normally causes footing due to its isotropic etching nature
as shown Figure 18a,b [130]. In any case, high temperature annealing has to be avoided to prevent the
material inter-diffusion but low temperature processing leaves low quality of STI oxide [4,130].
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is reduced and recess control is improved due to digital nature of the etching. Reproduced with
permission from [130]. Copyright Solid-State Electronics, 2012.

In general, the lower quality of oxide, the higher etch rate (ER) is anticipated. The method to
moderate the elevated ER for better process control is to either reduce the concentration of the main
species or to decrease the etching time. Normally, the former has better process window compared to
the latter.

5.4. Gate Process

The replacement metal gate (RMG) was introduced by using poly-Si as dummy gate and SiO2

as dummy gate oxide [131] where eventually these layers are removed with wet process by means
of none metal alkaine solutions, as shown in Figure 19 [132–134]. One of benefits of RMG is to avoid
crystallization of the high-k dielectric during the rapid thermal annealing (RTA) process for dopants
activation [135]. The other important benefit is the chemical reaction between the metal gate and
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the high-k in RTA processes is also avoided otherwise the boron diffusion into high-k is inevitable.
As an example, the boron diffusion for HfO2 is significant higher than SiO2 [135,136].
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Compared to the 2D devices, the RMG for 3D structures are even more complicated as shown for
vertically stacked nanowire process in Figure 20. Firstly, poly-Si dummy gate has to be completely
removed without any residues in narrow and steep trenches [132–134], otherwise, due to chemical
nature of the HF-based wet etchant for the dummy gate oxide etching could not remove the poly-Si
without any oxidizer [137–139]. Therefore, the residues occupy the space where the high-k and
metal gates should be filled in, which might cause device failure. Besides this problem, a careful
selective etching process is required to create dangling structures, for example in the vertically stacked
nanowires [130]. In general, the wet processes use aqueous solutions which are using water as the
solvent, and the final rinses are using deionized water (DIW) or ultra-pure water (UPW) to clean away
the chemicals from wafer surfaces. However, it is well known that some defects can be generated due
to the surface tension of water. Normally, during the drying process, the high capillary force of water
could pull nearby structures to form permanent defects so called pattern collapse [140] or stiction [141]
in terms of micro electro-mechanical systems (MEMS) field. To avoid such defects, gas phase etching
(GPE) was carefully studied in the latest decades. In gas phase, the intermolecular force is not too
strong compared to the liquid phase, then there is no worry about any pattern collapse. Besides that,
the diffusivities in gases are 104 time greater than in a liquid. The commonly used GPE is a HF
vapor process. Recently, GAA transistors have been manufactured by using HCl vapor process as
well [130–142].

As mentioned before, the devices from 2D to 3D also introduced “new materials”. In many advanced
vertical transistor structures, multilayer of SiGe/Si is implemented. Since it is needed to selectively
etch either Si or SiGe layers, a lot of efforts were made to use HF:H2O2:CH3COOH mixtures to etch
SiGe selectively to Si [143–145] or to use tetramethylammonium hydroxide (TMAH) based to remove
Si from SiGe [146] and a formulated semi-aqueous reagent to selectively etch SiGe to Ge [147].

Among new materials for nano-scaled transistors have 2D crystals e.g., graphene, black phosphorous,
molybdenum disulfide etc. have also delivered exciting results. The main problem for integration of
2D crystal is lack of a reliable synthesis technique for mass production.
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anneal, (b) SiGe/Si/SiGe/Si epitaxy, (c) Low-temperature STI filling, (d) Embedded Si S/D epitaxy, (e) 
Si nanowire formation by SiGe etch, (f) Fill metal (W) deposition/CMP. Reprinted with permission 
from [4]. Copyright IEEE, 2016. 
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6. Challenges in Processing III-V 3D Transistor on Si

The historical down-scaling path for Si-based transistors may drive to integrate new materials in
the channel region with high carrier mobility property. In the latest years, III-V compound semiconductors
have emerged as a credible alternative. To achieve this technological point, fundamental technical
problems have to be solved where many challenges need to be addressed before the first non-Si CMOS
technology becomes a reality. Among these difficulties, contact resistance, off-state characteristics,
reliability and integration with Si remain serious problems [148]. Figure 21 shows the schematic view
of p-and n-FET and their process flow of planar III-V and SiGe-based transistors. There are a series
differences in the process, which make III-V compounds problematic with industrial application
in future.

The main problem with integration of III-V on Si is the difficulty of direct growth of these materials
with high epitaxial quality on Si. There are many methods to achieve this goal e.g., lateral growth,
wafer bonding and using advanced GeSnSi buffer layers prior to III-V growth. The best way to
manufacture 3D transistors is to grow III/V material in a trench when the Si of a Si-fin is etched and
refilled by the III-V material for 3D transistor structures.

The full process flow for an InGaAs FinFET is demonstrated in Figure 22. The lowest defect
density of 8 × 108 cm−2 was obtained on “V” shaped bottom trenches, where GaAs nucleation occurs
only on {111} Si planes, minimizing the interfacial energy and preventing the formation of anti-phase
boundaries. InAs and GaSb are thought to be promising candidates to replace Si in sub-7 nm CMOS
devices due to their respective high electron and hole mobility [149].

The deposition of III-V material was done by metal organic chemical vapor deposition (MOCVD)
on large CMOS compatible on-axis Si (001) substrates, using a thin buffer layer stack to manage thermal
mismatch. The growth rate on the different planes is manipulated by the chosen metal organic vapor phase
epitaxy (MOVPE) growth conditions. Parameters such as the growth temperature, reactor pressure,
partial pressure of the precursors, V/III ratio, pattern mask ratio as well as the effective SAG rate
have a strong impact on the surface reconstruction and on all kinetic processes (ad- and desorption of
precursors, decomposition, diffusion, incorporation etc.). The interplay of above parameters defines
the final growth rate hierarchy and hence the ridge formation [150].
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The replacement of Si fins has proven to be a very versatile technique, allowing for the fabrication
of FinFET, GAA and dual nanowire devices from the same basic flow. This process has enabled the first
demonstration of fully integrated III-V devices on 300 mm Si substrates in a very large scale integration
(VLSI) compatible flow. For the FinFET architecture, the unintentional background doping from the
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carbon inherent in the metal organic precursors requires development of a p-type doping solution to
suppress S/D leakage through the InP buffer layer. Mg doping was found to be effective to p-type
dope the InP grown on patterned substrates and consequently reduce the S/D leakage path. However,
introducing Mg to the heterostructure results in a significant decrease in mobility due to increased
coulombic scattering. By addressing the issue of the p-type doping degrading performance, the InP
buffer was removed to create GAA devices.

The GAA architecture has also the advantage of increased electrostatics over that of the FinFET.
The GAA transistors showed significant improvement in peak gm (1030 lS/lm vs. 588 lS/lm) as well as
in subthreshold swing when Vds = Vdd (SSSAT:125 mV/dec vs. 178 mV/dec) compared to the FinFETs.
The thermal budget for the gate stack was found to have a large impact on device performance.
A comparison of high-k first to high-k last processing using the FinFET showed that the high-k/III-V
interface degrades when exposed to >500 ◦C processing. This results also a significant decrease in the
peak gm and increase in SSSAT.

A dual nanowire structure with a diameter as small as 6 nm was successfully demonstrated in
a modified version of the GAA flow. The nanowire devices show excellent SSSAT values as low as
66 mV/dec despite having the same gate stack as the larger GAA devices. While many challenges
still remain for 300 mm wafer based III-V devices to achieve the potential lattice matched substrates,
these results are significant step towards the ultimate realization of III-V VLSI technology [151].
The TEM cross sectional images of different fabricated device structures using the dummy fin removed
process are showed in Figure 23.
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7. Challenges in Circuit Design

In order to continue the “Moore’s law”, the circuit designs are becoming more and more important.
When the critical dimensions (CD) of the IC move to almost atomic size, the simple down scaling cannot
be further continued. In circuit design, many issues e.g., leakage increase, gain decrease, and the
sensitivity and tolerance of process in the manufacturing need to be pre-consider and calculated.
Although many technical challenges may come forward and it is difficult to achieve the CD limit (3 nm),
but the circuit designs are still able to evolve novel solutions to address many of these challenges.
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8. Conclusions

This article has highlighted and compared the process of planar (2D) and 3D FETs. An overall
view over the process flow of 2D and 3D FETs shows many similarities steps except the formation
of fins cause new challenges in the fabrication. These challenges are addressed to the issues e.g.,
gate and spacer patterning, forming uniform fins and the growth of SiGe stressor material on
source/drain regions.

At first, a state-of-art lithography to form the nano-scale patterns is required. Nowadays, 193 nm
ArF immersion with self-aligned double patterning and self-aligned quadruple patterning techniques
are used for lithography of 22 nm node and beyond.

Extreme ultraviolet lithography is a promising technique as well, but the high cost of this technique
requires a second thought for implementing it for mass production.

In planar transistors, SiO2 layer as gate oxide was abandoned already in 45 nm technology node
and HfO2 was introduced instead due to its high dielectric constant and a relatively large bandgap.
However, one of the main challenges of HfO2 integration in nano transistors is the thermal instability
of HfO2/Si contact. There is usually a SiOx interlayer between HfO2 and Si substrate. The thickness of
SiOx interlayer as well as the high-k dielectric have been constantly decreased leading to a decrease of
the equivalent oxide thickness of gate dielectric.

The traditional Si polycrystalline as gate material was also replaced with a metal gate e.g., TiAlN
and TiN in a gate-last approach to avoid crystallizaitons of the high-k dielectric during the thermal
treatment for dopants activation.

To have a full control to form a Si fin with defined dimensions is a difficult task. It is especially
critical to define the fin’s height by etching the shallow trench isolation oxide. The variation in fin
height influences electrical properties of transistors, e.g., the threshold voltage. This indicates (dry or
wet) etching step needs more attention to be paid for 3D transistors compared to the planar ones.

Dopant implantation of the fins requires a profile with conformal distribution otherwise the drive
current of the transistors is degraded. To implant the fins in an array is a difficult task due to the
shadowing caused by the neighboring fins. An alternative technique is using plasma doping with
optimized process parameters.

SiGe layers are grown selectively in source/drain areas to create strain in the channel region.
The selective epitaxy in the planar transistor is performed in the recessed areas while for 3D FETs is
intended to elevate in the source/drain. The epi-layers on 3D FETs may involve in several problems
e.g., strain relaxation on the fins’ faceted shape leading to higher defect density and pattern dependency
effect due to different transistor architecture and their density in the chip.

In final, most of the presented process challenges in this article are undergoing developments
or have partially solved. However, the most critical issue of future downscaling of transistors is the
dramatic increase of manufacturing cost due to the use of innovative techniques e.g., EUVL. One way
to reach a solution is the increase of wafer diameter from present 300 mm to 450 mm. However, there is
a big skepticism to use such big wafers due to their heavy weight totally new mechanical robot systems
have to be developed. Furthermore, the process time will remarkably increase in terms of low rate of
warming and cooling of such big wafers.

There is a better solution to overcome these difficulties by using 3D structures instead of
continuously downscaling the transistors. This effort would extend our research for many years in
future to integrate many layers or devices vertically in the chip.
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