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Abstract: For the hydraulic drive unit (HDU) on the joints of bionic legged robots, this paper 
proposes the position-based impedance control method. Then, the impedance control performance 
is tested by a HDU performance test platform. Further, the method of first-order sensitivity matrix 
is proposed to analyze the dynamic sensitivity of four main control parameters under four working 
conditions. To research the parameter sensitivity quantificationally, two sensitivity indexes are 
defined, and the sensitivity analysis results are verified by experiments. The results of the 
experiments show that, when combined with corresponding optimization strategies, the dynamic 
compliance composition theory and the results from sensitivity analysis can compensate for the 
control parameters and optimize the control performance in different working conditions. 
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1. Introduction 

Bionic legged robots are better at adapting to unknown and unstructured environments. Their 
unique advantages, such as overcoming obstacles and executing tasks in the wild, have made them 
a major focus of research in the robotic domain [1–4]. For the hydraulic drive robot, the highly 
integrated valve-controlled cylinder composes the drive component, which is called the hydraulic 
drive unit (HDU) [5,6]. During the robotic motion process, the robotic feet interact with the ground 
frequently. This means that the demand for HDU not only includes characteristics of response ability 
and high control accuracy, but also dynamic compliance. Thus, the impact on the hydraulic system 
can be obviously reduced, which can protect the mechanical structure and components, and improve 
the moving stability of the robots. 

The selection of control methods directly affects the compliance of the HDU. As a commonly 
used control method for compliance, the impedance control method has been widely applied to 
motor-driving legged robots such as the Tekken [7], Scout [8] and MIT cheetah robot [9]. In recent 
years, as the hydraulic-driven legged robot became the focus of increased research, impedance 
control was also applied to this kind of robot, as exemplified by robots such as Bigdog [10], HyQ [11], 
and Scalf-1 [12]. Force-based and position-based impedance control methods are often used for 
dynamic compliance control. Their basic principle can be expressed as follows. Firstly, the hydraulic 
control system is taken as the control inner loop, and a dynamic control outer loop is attached to the 
system. When an external disturbance acts on the system, the input signal of the control inner loop 
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can be changed through the control outer loop. Thus, the system is able to possess the desired 
dynamic compliance. 

In this paper, position-based impedance control is the focus of research. There are many 
parameters in hydraulic systems, such as structure parameters, working parameters, and control 
parameters. Considering the uncertainty of the parameter variation, the system cannot reach the ideal 
performance, which involves the effects of parameter variation on robot’s overall compliance. So, in 
order to optimize the system more efficiently, it is necessary to know how greatly the parameters, 
particularly the main control parameters, influence the impedance control performance. The 
parameters that affect the system more should be compensated and optimized emphatically, while 
the ones that affect system less can be ignored. Thus, the effect of parameter variation on system 
dynamic characteristics can be quantificationally analyzed, and the analysis results can be used to 
optimize the robot’s compliance performance. Sensitivity analysis is used to analyze the effect of 
parameter variation on system characteristics for both linear and nonlinear systems. By computing 
methods, sensitivity analysis methods can be classified into the trajectory sensitivity method, output 
sensitivity method, matrix sensitivity method, comparison sensitivity method, characteristic root 
sensitivity method, etc. By computing accuracy, sensitivity analysis methods can be classified into 
ties of first-order sensitivity method, second-order sensitivity method, or high-order sensitivity 
method. These methods have different characteristics in computing; they differ from each other in 
aspects such as computing accuracy, computing mode, and computing complexity. These differences 
give each method unique advantages and application ranges. In recent years, sensitivity analysis 
methods have been commonly used in many fields, but only a few have been applied to hydraulic 
systems. Vilenus et al. [13] is the first scholar to apply first-order sensitivity analysis to hydraulic 
systems. For the position control system of valve-controlled cylinders, the sensitivity of 10 main 
parameters when they changed 1% in a single working condition is researched. Farasat et al. [14] built 
a fourth-order linear mathematical model for the position control system of valve-controlled 
cylinders. In the model, the valve’s pressure-flow nonlinearity is partly linearized. Based on Vilenus’s 
research, he showed the first-order sensitivity analysis results of an extra seven parameters, and 
proposed four assessment methods to quantify the sensitivity of state variables when parameters 
changed by 1%. Kong et al. [15] built a fifth-order linear mathematical model for the position-based 
control system, and studied the effect on system output when 14 system parameters changed by 1%. 
Based on the first-order trajectory sensitivity, Kong et al. [16] deduced the method of second-order 
trajectory sensitivity and analyzed the effect on system output when 14 system parameters changed 
from 1% to 20%. Moreover, experiments are also conducted to verify the effect. 

In the position-based impedance control system, the above achievements adopted first-order 
and second-order sensitivity analysis methods to study the effect on control characteristics when 
parameters change. However, the above papers didn’t analyze the impedance control methods on 
HDU. In addition, the trajectory sensitivity analysis methods they used, particularly the second-order 
trajectory sensitivity analysis method, are very difficult to compute. To solve the two problems, this 
paper is organized as follows. First, based on the mathematical model of HDU position control 
system, the method of position-based impedance control is deduced and tested by experiments. Then, 
to solve the difficulties in sensitivity computing, matrix sensitivity analysis, an easier method, is 
adopted to analyze the sensitivity of four main control parameters. Further, to obtain the optimal 
method, the results from matrix sensitivity analysis are compared with the results from trajectory 
sensitivity analysis. Moreover, the quantificational analysis results of the four main parameters are 
shown in this paper. Finally, the sensitivity analysis results are verified by experiments. 

2. Introduction of the HDU and Its Performance Test Platform 

As the driver of the leg joint on bionic legged robots, the HDU is a highly integrated system of 
servo valve-controlled symmetrical cylinder. The author’s institute participates in the design of the 
hydraulic quadruped robot. The quadruped robot prototype, single leg, and HDU performance test 
platform are shown in Figure 1a–c, respectively. 
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(a) (b) (c) 

Figure 1. The quadruped robot prototype, single leg and hydraulic drive unit (HDU) performance 
test platform. (a) Quadruped robot prototype; (b) Single leg; (c) HDU. 

The performance of the HDU directly affects the performance of the whole robot. Thus, a special 
performance test platform is built to study the methods for HDU. The schematic of the test platform 
is shown in Figure 2. 
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Figure 2. Schematic of HDU performance test platform. 

The principle of the electro-hydraulic load simulator in Figure 2 is widely used in many fields 
such as aviation, aerospace, and vessel and construction machining [5]. In Figure 2, the left part is a 
HDU-adopted position closed-loop control that contains a small servo valve, servo cylinder, position 
sensor, and force sensor. The right part is another HDU-adopted force closed-loop control that 
contains the same type of servo valve and servo cylinder. Two parts’ cylinder rods are jointed rigidly 
by the thread of a force sensor. The HDU performance test platform is showed in Figure 3a. The 
controller adopted is dSPACE, a semi-physical simulation platform, which is showed in Figure 3b. 
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Figure 3. Composition of HDU performance test platform. (a) HDU performance test platform; (b) 
dSPACE controller. 
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3. HDU Position-Based Impedance Control 

3.1. Mathematic Model of HDU Position-Based Impedance Control 

Impedance control is one type of active compliance control. In particular, it refers to an active 
compliance control that applies the system equivalent to the second-order mass-spring-damping 
system. By adopting impedance control, a system can be equipped with the dynamic compliance of 
a second-order mass-spring-damping system when a disturbance force is applied to the system.  

The impedance control is composed by an impedance control inner loop and impedance control 
outer loop. The impedance control inner loop refers to the closed-loop control, which is realized in 
the inner loop of the hydraulic position closed-loop control system during the impedance control. In 
the position-based impedance control of this paper, the impedance control inner loop refers to the 
position closed-loop control. The impedance control outer loop refers to the open-loop control where 
the external disturbance signal is transferred to the input signal of impedance control inner loop 
during the impedance control.  

3.1.1. Principles of Impedance Control 

The inner loop of the position-based impedance control is a closed-loop control. When the inner 
loop is affected by a disturbance force, the impedance control outer loop should be added to the 
system to equip the system with impedance control characteristics. The function of this outer loop is 
to transform the disturbance force into position error. Then, the desired stiffness DK  can be obtained, 
which causes an elastic force. In the same way, desired damping DC  and desired mass Dm  are 
obtained, which can cause viscous force and inertia force, respectively. The HDU force schematics 
with impedance control outer loop are shown respectively in Figures 4 and 5.  

During the robot’s walking process, the load, such as grounds and steps, provides the 
disturbance force to the HDU, because the force sensor is mounted on the piston end of the HDU. In 
this paper, the force control system of the simulated load provides the disturbance force to the 
performance test platform.  

 
2pB

K

 2tm

2fF

bFΔ  

XΔ

LF

 

Figure 4. Force schematic of the load. 

As it is shown in Figure 4, the load is pressed to position XΔ , 2pB  refers to damping coefficient 
at load, 2tm  refers to equivalent mass at load, and 2fF  refers to friction at load. The force acting on 
the piston, which is provided by the sensor, is the disturbance force of the HDU position control 
system, and is defined as Δ aF . Further, the force acting on the load, which is provided by the sensor, 
is defined as Δ bF . The force balance relation in Figure 4 can be expressed as follows:  

2 2 2Δ Δ Δ Δb L t p fF F m X B X K X F= − − − −   (1) 

Third, the force schematic of the HDU is showed in Figure 5. 
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Figure 5. Force schematic of HDU. 

Where 1pB  refers to the viscous damping coefficient, 1tm  refers to the equivalent mass at 
piston, and 1fF  refers to friction in the cylinder. The position error can be expressed as follows: 

1

2
1 1

Δ
Δ

( ) ( )
a f

t D p D D

F F
X

m m s B C s K
−

=
+ + + +

 (2) 

Based on the theoretical analysis above, the schematic of the position-based impedance control 
is shown in Figure 6. 
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Figure 6. Position-based impedance control schematic. 

As can be seen in Figure 6, when the disturbance force tested by the force sensor acts on the 
HDU, the impedance control outer loop generates a corresponding calculated position that disturbs 
the input position. Then, the new input to the position control system is formed. Thus, the final input 
signal enters the position control inner loop, and a new output position is formed to equip the system 
with impedance characteristics. 

3.1.2. The Block Diagram and State Space Presentation of Impedance Control System 

The block diagram of HDU position-based impedance control is shown in Figure 7, where the 
detailed deduction and performance analysis of the inner loop is presented in previous research 
[5,15]. 

In Figure 7, tm  is conversion mass (including the piston, the displacement sensor, the force 

sensor, the connecting pipe, and the oil in the servo cylinder), rX  is input position, xK  is position 

sensor gain, PIDK  is proportion-integration-differentiation (PID) controller gain including 

proportional gain PK , integral gain IK  and differential gain DK , K  is load stiffness, pB  is load 

damping, LF  is load force, vX  is servo valve spool displacement, pX  is servo cylinder piston 

displacement, g1V  is volume of input oil pipe, g 2V  is volume of output oil pipe, fF  is friction, rU  

is input voltage, gU  is controller output voltage, 1Q  is inlet oil flow, and 2Q  is outlet oil flow. 
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Figure 7. Block diagram of HDU position-based impedance control. 
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(3) 

where servoK  is the transfer function of the servo valve, ω  is the natural frequency of the servo 
valve, ζ  is the damping ratio of the servo valve, and axvK  is the servo valve gain. 
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1 1
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2 2
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    + − +    = + − 
    

(4) 

( ) ( ) ( )0
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2 2
v s v
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x P x P
K K x P

 − − −       = + + 
    

(5) 

where, 1K  and 2K  express the transfer function of nonlinear pressure flow, 2 /d dK C W ρ=  ( dK  is 
defined as conversion coefficient in this paper), dC  is the orifice flow coefficient of the spool valve, 
W  is the area gradient of the spool valve, ρ  is the density of hydraulic oil, sp  is the system 
supply’s oil pressure, 1p  is the left cavity pressure of the servo cylinder, 2p  is the right cavity 
pressure of the servo cylinder, and 0p  is the system return oil pressure. 

3
1 0

1

g p p p
ip ep

e

K V A L A X
C C s

β

=
+ +

+ +
 

(6) 

( )4
2 0

1

g p p p
ip ep

e

K
V A L L A X

C C s
β

=
+ − −

− − −
 

(7) 

where, 3K  and 4K  express the transfer function of flow continuity, L  represents the total piston 
stroke of the servo cylinder, 0L  is the initial piston position of the servo cylinder, ipC  is the internal 
leakage coefficient of the servo cylinder, epC  is the external leakage coefficient of the servo cylinder, 

pA  is the effective piston area of the servo cylinder, and eβ  is the effective bulk modulus.  
The state variables in Figure 7 are expressed as follows: 

1 px x= , 2 px x=  , 3 vx x= , 4 vx x=  , 2
5 1v x axv Px x K K Kω μ= − , 6 1x P= , 7 2x p= , 8 ex x=  

where the input variables are expressed as follows: 
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1 ru x= , 2 L fu F F= +  

Disturbance variables are expressed as follows: 

1 L fw F F= +  

The state space of the system can be expressed as follows: 
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(8) 

1 01 1 0p p g p p pV V A x V A L A x= + = + +  (9) 

2 02 2 2 0( )p g p p pV V A x V A L L A x= − = + − −  (10) 

The physical meanings and initial values of the parameters in the control system block diagram 
are shown in Table 1. 

Table 1. Parameters and initial values of the simulation model.  

Parameter Initial Value 

Gain of servo valve axvK / (m/ V)  0.0225 

Natural frequency of servo valve ω / (rad/s)  628 
Damping ratio of servo valve ζ  0.77 

Effective piston area Ap/m2 3.368 × 10−4 
Volume of inlet chamber

1gV /m3 6.2 × 10−7 
Volume of outlet chamber

2gV /m3 8.6 × 10−7 
Piston stroke L/m 0.05 

Initial position of piston L0/m 0.025 
Supply pressure Ps/Pa 1 × 10−7 
Tank pressure P0/Pa 0.5 × 106 

Gain of position sensor xK /( V/m ) 54.9 × 10−3 
Outer linkage coefficient of servo valve epC /(m3/(s·Pa)) 0 
Inner linkage coefficient of servo valve ipC /(m3/(s·Pa)) 2.38 × 10−13 

Equivalent mass mt/kg 1.1315 
Effective bulk modulus βe/Pa 8 × 108 

Conversion coefficient Kd 1.248 × 10−4 
Load stiffness K/(N/m) 0 

Viscous damping coefficient Bp/( N s / m⋅ ) 54.9 × 10−3 

proportional gain pK  30 

differential gain iK  10 

Desired stiffness DK /( N/ m ) 1 × 106 

Desired damp DC /( N s / m⋅ ) 5 × 104 

Desired mass DM /kg 0 

3.2. Experiment of Position-Based Impedance Control 

As a typical signal, the sinusoidal response is able to evaluate the impedance control 
performance under the input of different frequencies and amplitudes. In this paper, a sinusoidal 
signal is adopted to analyze the system performance and the sensitivity of the main parameters. To 
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study their variation patterns in different conditions, four working conditions are tested in this paper. 
The details of the working conditions are shown in Table 2. 

Table 2. Four working conditions researched in this paper. 

No. 
Working Conditions

Frequency f  (Hz) Bias, Amplitude A  (N) 

1 1 1500, 1000 
2 2 1500, 1000 
3 1 2500, 2000 
4 2 2500, 2000 

In a position-based impedance control system, the load acts as an external disturbance force that 
is simulated by the force-based control system. Thus, the desired position can be defined as the ratio 
of the actual force to the desired impedance characteristic DZ , i.e., the ratio of the value of the force 

sensor to DZ . The actual position is the output of the system to be tested, i.e., the value of the position 
sensor. The experimental and simulation curves of the sinusoidal response are shown in Figures 8–
11 in sequence of working conditions [17]. 
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Figure 8. Experimental and simulation curves of sinusoidal response (frequency: 1 Hz, bias: 1500 N, 
amplitude: 1000 N). (a) Experimental curves; (b) Simulation curves. 
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Figure 9. Experimental and simulation curves of sinusoidal response (frequency: 1 Hz, bias: 2500 N, 
amplitude: 2000 N). (a) Experimental curves; (b) Simulation curves. 
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Figure 10. Experimental and simulation curves of sinusoidal response (frequency: 2 Hz, bias: 1500 N, 
amplitude: 1000 N). (a) Experimental curves; (b) Simulation curves. 
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Figure 11. Experimental and simulation curves of sinusoidal response (frequency: 2 Hz, bias: 2500 N, 
amplitude: 2000 N). (a) Experimental curves; (b) Simulation curves. 

The mean values of performance indexes in different conditions are shown in Table 3. 

Table 3. Mean values of performance indexes in different conditions. 

Performance Index 
No. 

1 2 3 4 
Amplitude 

reduction (mm) 
Experimental −0.05 −0.09 −0.06 −0.11 

Simulation  −0.03 −0.06 −0.03 −0.06 
Phase angle 

delay (°) 
Experimental 7.8 6.7 8.9 9.4 

Simulation  5.2 5.3 7.1 7.5 

As it can be seen in Table 3, the values of the two performance indexes are close in experiment 
and simulation, which indicates that the experimental curves fit the simulation curves well. As the 
position-based impedance control theory in Figure 8 shows, the actual position is greater than the 
desired one. Thus, the amplitude attenuation is a negative value. It increases with the increase of the 
disturbance force’s amplitude, but has few relationships with the frequency. In contrast, the phase 
angle delay increases with the frequency, but has few relationships with the amplitude. 
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4. Methods of Sensitivity Analysis 

4.1. Contrast between First-Order and Second-Order Sensitivity Analysis 

Desired stiffness DK  and desired damping CD  are control parameters of the impedance control 

outer loop. Proportional gain PK  and integral gain iK  are control parameters of the position 
control inner loop. They affect the impedance control performance in different ways. So, in this paper, 
the system output position is mainly discussed, which is influenced by the variation of the four 
parameters. Because of space limitations, only one working condition (bias: 1500 N, amplitude: 1000 
N, frequency: 2 Hz) is studied. The first-order and second-order trajectory sensitivity analysis 
methods researched in our previous works [15,16] are adopted to analyze the position variation when 
the four parameters increase 10% to 20%. The contrast curves are shown in Figures 12–15. 
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Figure 12. Position variation resulting from DK  variation. (a) Four parameters increase 10%; (b) Four 
parameters increase 20%. 
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Figure 13. Position variation resulting from CD  variation. (a) Four parameters increase 10%; (b) Four 
parameters increase 20%. 
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Figure 14. Position variation resulting from PK  variation. (a) Four parameters increase 10%; (b) Four 
parameters increase 20%. 
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Figure 15. Position variation resulting from iK  variation. (a) Four parameters increase 10%; (b) Four 
parameters increase 20%. 

The following conclusions can be reached from the four sets of curves. There is little difference 
between the first-order position variation and the second-order variation when the values of the four 
parameters increases 10%. Specifically, the curves of desired damping CD  and integral gain iK  
almost overlap. In the other two sets, the maximum error is no more than 10% of the amplitude. When 
the values of the four parameters increase 20%, the variations of first-order and second-order are still 
close, although there is some increase of their error. Specifically, for desired damping CD  and 
integral gain iK , the variation curves of first-order and second-order are still close. As for the 
proportional gain PK , its maximum error is no more than 10% of the amplitude. When it comes to 
the desired stiffness DK , its maximum error is no more than 20% of the amplitude. 

The method of second-order trajectory sensitivity analysis has a very high accuracy, while its 
calculation is complicated and demands a lot of hard work. Particularly in this paper, when the four 
parameters increase less than 20%, the corresponding results of the first-order and second order 
sensitivity analysis method are close. So, in order to ensure the simplicity of calculation and 
application, the method of first-order sensitivity analysis is adopted to analyze the sensitivity of the 
four parameters under different working conditions. 

The method studied previously can precisely analyze the sensitivity of the parameters. 
Compared with the second-order method, the calculation has been largely simplified under the 
method of first-order trajectory sensitivity analysis, but it also requires solving first-order linear non-
homogeneous differential equations with time-varying factors, which makes the program 
complicated. So, in order to ensure high solving accuracy, a new method with an easier calculation 
is proposed. That is the first-order matrix sensitivity analysis. 

4.2. Deduction of First-Order Matrix Sensitivity Analysis Theory 

Combined with the position-based impedance control method, the equation of the HDU system 
can be expressed as follows: 

( , , , ) 0t =g x u α  (11) 

where x  is m−dimensional state vector, u  is r−dimensional vector unrelated to α , α  is 
p−dimensional vector, and t is time. 

The initial value of the state vector 0x  can be obtained by giving the initial value of the input 
vector 0u  and the initial value of parameter vector 0α , and the initial state of the equations is:  

0 0 0( , , , )t =g x u α 0  (12) 

where the variation of parameter vector Δα  and input vector Δu  can change the value of Δx , the 
error of the state variable x , which is expressed as follows: 
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0 0 0( Δ , Δ , Δ , )t+ + + =g x x u u α α 0  (13) 

Expanded in the form of the first-order Taylor Series, Equation (9) can be expressed as follows: 

0 0 0 0 0 0( Δ , Δ , Δ , ) ( , , , ) Δ Δ Δx ut t α+ + + = + ⋅ + ⋅ + ⋅ =g x x u u α α g x u α g x g u g α 0  (14) 

If we bring Equation (12) into Equation (14) and ignore the higher-order terms, then we can get: 

Δ Δ Δx u α⋅ + ⋅ + ⋅ =g x g u g α 0  (15) 

Equation (15) can also be expressed as follows: 
1 1

x u x α
− −Δ = − ⋅ ⋅ Δ − ⋅ ⋅Δx g g u g g α  (16) 

In Equation (17), supposing:  
1

u x u
−= ⋅S g g  (17) 

where uS  is m r×  order matrix, and the n-th line indicates the relation among the n-th state variable 
nx . 

In Equation (17), supposing:  
1

xα α
−= ⋅S g g  (18) 

where, αS  is the m p×  order matrix, the n-th line indicates the relation among the n-th state 
variable and p parameter vectors. Bring Equations (17) and (18) into Equation (16), then:  

u αΔ = − ⋅ Δ − ⋅ Δx S u S α  (19) 

Equation (19) is an approximate expression of Δx  resulted from the change of parameter vector 
Δα  and input vector Δu , in which αS  indicates an m p×  order parameter sensitivity matrix of 
parameter vector α  with time-varying factors. uS  indicates an m r×  order input sensitivity 
matrix of input vector u  with time-varying factors. 

When taking no account of the variation of input vector, Equation (19) can be simplified as 
follows:  

Δ Δα= − ⋅x S α  (20) 

The output equation of the system can be expressed as follows:  

Δ Δ Δα= ⋅ + = − ⋅ ⋅ +Y C x D C S α D  (21) 

where C  and D  are matrices of output equation factors. The change of output variable ΔY 
resulting from the parameter variation can be reached after solving parameter sensitivity matrix αS . 

5. Dynamic Sensitivity Analysis 

5.1. Contrast between Two Analysis Method of First-Order Sensitivity 

The state vectors’ initial values of the servo-cylinder’s position, velocity, and pressure of two 
chambers, the servo-valve’s position, velocity and acceleration are zero. So, the initial value of 

parameter sensitivity matrix αS  can be expressed as follows:  

0 m pα ×=S 0  (22) 

Solve the sensitivity matrices in MATLAB, and then compare the results from the trajectory 

sensitivity in Section 3.1 and α−S , the inverse value of the control parameter’s sensitivity matrix of 
the system output position. Due to space limitations, only one working condition (1500 N bias, 1000 
N amplitude, 2 Hz frequency) is shown. The curves of parameter dynamic sensitivity in this situation 
is shown in Figure 16. 
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Figure 16. The curves of dynamic sensitivity between two sensitivity methods. (a) First-order dynamic 
sensitivity of DK ; (b) First-order dynamic sensitivity of DC ; (c) First-order dynamic sensitivity of 

pK ; (d) First-order dynamic sensitivity of iK . 

It can be seen that the dynamic compliance curves of first-order matrix sensitivity deviate little 
from the curves of first-order trajectory sensitivity. Particularly, by comparing Figures 12–15 in 
Section 3.1, it can be found that the value calculated by first-order matrix sensitivity is more 
approximate to the result of second-order trajectory sensitivity and has higher precision than first-
order trajectory sensitivity. Moreover, only a two-dimension matrix calculation is needed, which 
avoids solving complicated differential equations with time-varying factors. So, in the research field 
of this paper, the first-order matrix sensitivity analysis method is more adapted than the first-order 
trajectory sensitivity analysis method. Whether calculating a high-order and multi-dimensional 
matrix is easier than solving differential equations with time-varying factors cannot be determined, 
so it requires further research to find which is better between the high-order matrix sensitivity 
analysis method and the high-order trajectory sensitivity analysis method. However, due to space 
constraints, this will not be discussed in this paper. 

5.2. Contrast of Dynamic Sensitivity Analysis in Each Working Condition 

For the convenience of contrast, the variation of system position response when each parameter 
increases 10% is calculated according to Equation (21). The curves of position variation with time is 
shown in Figure 17. 
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Figure 17. Variation of position response when each parameter increases 10%. (a) The first working 
condition; (b) The second working condition; (c) The third working condition; (d) The fourth working 
condition. 

As it can be seen in Figure 17: 

1. The variation of each parameter affects impedance control position output. The position varies 
periodically with the sinusoidal disturbance force. Among the parameters, the desired stiffness 

DK  affects the output position much more than the others. The influence from integral gain iK  
is the most irrelevant. Desired damping DC  and proportional gain pK  have similar influences 
on the output position. With the disturbance force in sinusoidal variation, DC  varies by 
following the curve of minus cosine, and pK  varies by following the curve of cosine.  

2. The order of magnitudes of output position increases with the increase of sinusoidal disturbance 
force. However, there isn’t an obvious relationship between the effects on output position and 
the frequency of the disturbance force.  

Using the method of dynamic sensitivity analysis, the qualitative effects on impedance control 
performance is analyzed. In order to analyze the effects on main system performance indexes and the 
varying patterns of parameter sensitivity under different working conditions, a quantificational 
analysis is needed. 

6. Sensitivity Quantitative Analysis  

6.1. Sensitivity Indexes 

Two measurement indexes are introduced to analyze the effects on main performance indexes 
resulting from the variation of parameters in different working conditions. 
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For sinusoidal response, in a stable sinusoidal period, the variation of parameters results in the 
change of the output position amplitude. The mean of amplitude attenuation is defined as the first 

sensitivity measurement index 1s , which is expressed as follows:  

1 1 2mean( )s = Φ + Φ  (23) 

where, 
1

1 1 1

1
1 1

[max( ) max( Δ )] [max( ) max( )]

max( ) max( Δ )

r e i r e

i

x x x α x x x
x x α

α

α

Φ = − − − ⋅ − − −

= − − ⋅

S

S  
(24) 

1
2 1 1

1
1 1

[min( ) min( )] [min( ) min( Δ )]

min( Δ ) min( )

r e r e i

i

x x x x x x α
x α x

α

α

Φ = − − − − − − ⋅

= − ⋅ −

S

S  
(25) 

Similarly, for phase angle delay, another important index, its mean is defined as the second 

sensitivity measurement index 2s , which is expressed as follows:  

2 mean( )s = Ψ  (26) 

where, 
1

1 1
1

11

Δ
[arcsin( ) arcsin( )] [arcsin( ) arcsin( )]

max( ) max( ) max( )max( Δ )
r e i r e

r e r ei

x x x α x x x
x x x x xx α

α

α

− − ⋅ −
Ψ = − − −

− −− ⋅
S

S  
(27) 

Using the above two indexes, 1s  and 2s , the effect on output position resulting from the 
variation of parameters can be quantificationally analyzed. 

6.2. Sensitivity Histograms in Different Working Conditions 

According to Equations (23)–(27), the two sensitivity histograms are shown in Figures 18–21, 
when the four control parameters increase 10% in four working conditions. 
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Figure 18. Sensitivity histogram in the first working condition. (a) Sensitivity index 1S ; (b) Sensitivity 
index 2S . 
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Figure 19. Sensitivity histogram in the second working condition. (a) Sensitivity index 1S ; (b) 
Sensitivity index 2S . 
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Figure 20. Sensitivity histogram in the third working condition. (a) Sensitivity index 1S ; (b) 
Sensitivity index 2S . 
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Figure 21. Sensitivity histogram in the four working conditions. (a) Sensitivity index 1S ; (b) 
Sensitivity index 2S . 
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As it can be seen in the above Figures 18–21: 

1. In all conditions, 1S  is a positive value, so the increase of the four parameters will result in the 
reduction of the position amplitude attenuation. The 1S  of desired stiffness DK  is much 
greater than the other parameters, which illustrates that the variation of DK  has a remarkable 
influence on output position amplitude attenuation, and more relation with disturbance force 
amplitude than the disturbance force frequency. Under the first working condition, amplitude 
attenuation reduced about 0.2 mm when DK  increased 10%. The 1S  of proportional gain pK  
is greater than that of DC  and iK . The 1S  of DK  and pK  have some correlation with 
disturbance force amplitude, but have little correlation with disturbance force frequency.  

2. The 2S  of the four control parameters has positive or negative values in different conditions. 
An increase of the parameters has different influences on the phase angle delay of the output 
position. Specifically, having more relation with disturbance force frequency than the amplitude, 
the 2S  of DK  and DC  have nearly the same absolute value, but an opposite sign. Their 
increase has totally different influences on phase angle delay. An approximate 10% increase of 
them generates about 0.18° of phase angle delay error. The 2S  of pK  has correlation with both 
disturbance force amplitude and frequency. The larger the frequency, the more remarkable the 
influence on phase delay. The 2S  of pK  is close to the 2S  of DK . The 2S  of iK  is about 
0.001° on magnitude order, much less than the other control parameters. 

7. Experiment  

Compared with structural parameters and some working parameters, control parameters can 
change and be measured during the working process. The two sensitivity indexes of four control 
parameters are studied by experiments in this section. The mean of several samples is included to 
ensure the accuracy of the experiment. By comparing the measured data and the simulation result of 
the first-order sensitivity matrix, the contrast histograms of experiment value and simulation value 
for the two sensitivity indexes when the four parameters increase 10% under four working conditions 
are shown in Figures 22–25. 
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Figure 22. Sensitivity index histograms of DK . (a) Sensitivity index 1S ; (b) Sensitivity index 2S . 
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Figure 23. Sensitivity index histograms of DC . (a) Sensitivity index 1S ; (b) Sensitivity index 2S . 
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Figure 24. Sensitivity index histograms of pK . (a) Sensitivity index 1S ; (b) Sensitivity index 2S . 

1S

2S

 

(a) (b)

Figure 25. Sensitivity index histograms of iK . (a) Sensitivity index 1S ; (b) Sensitivity index 2S . 

In Figures 22–25, the maximum and mean errors between the experimental value and the 
simulation value are shown in Table 4. 

Table 4. Maximum and mean errors between experimental value and simulation value. 

Parameters  1S  Max Error  1S Mean Error 2S Max Error 2S  Mean Error  

DK  19% 12% 20% 16% 

DC  11% 5% 18% 9% 

pK  31% 16% 15% 10% 

iK  35% 15% 21% 11% 
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According to Figures 22–25 and Table 4, the experimental value and simulation value have the 
same magnitude and similar variation patterns. Except that the maximum errors of 1S  of pK  and 

iK  are above 30%, the others are less than 20%. The mean errors of the four parameters are less than 

16%. For 2S , the maximum error is about 20%. Except that mean error of 2S  for DK  is 16%, the 
others’ mean errors are about 10%. 

8. Conclusions 

In this paper, a HDU position-based impedance control method is proposed. The method of 
sensitivity analysis is selected in research. Dynamic sensitivity analysis and quantificational 
sensitivity analysis are conducted to study the four main control parameters. The results from the 
research are verified by experiments. Here are the conclusions summarized in this paper:  

1. Sensitivity analysis method is used to analyze the four parameters, which are the proportional 
gain and integral gain of the inner loop PID controller, and the desired stiffness and desired 
damping of the impedance outer loop. The first-order and second-order effects on position are 
analyzed by the trajectory sensitivity analysis, when the four parameters increase no more than 
20%. In spite of its higher accuracy, the second-order sensitivity analysis requires a complex 
solving process with lots of hard work. Considering that the largest error between the first-order 
and second-order sensitivity analysis methods is below 20% of the amplitude, this paper 
proposed the easier first-order matrix sensitivity analysis method. Compared with first-order 
trajectory sensitivity, the first-order matrix sensitivity method is simpler and more accurate in 
computing. 

2. The effects of parameter variation on output position varies periodically with sinusoidal 
disturbance force. Among the parameters, desired stiffness affects the output position much 
more than the other parameters. The influence of integral gain is the least. Desired damping and 
proportional gain have a similar influence on the output position.  

3. The 1S  of each parameter is a positive value, which shows that the increase of the four 
parameters will result in the reduction of the position amplitude attenuation. The 2S  of each 
parameter has positive or negative values in different conditions. Their increase has different 
influences on the phase angle delay of output positions. 
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