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Abstract: Aimed at solving the problem of decreased filtering precision while maneuvering target
tracking caused by non-Gaussian distribution and sensor faults, we developed an efficient interacting
multiple model–unscented Kalman filter (IMM-UKF) algorithm. By dividing the IMM-UKF into two
links, the algorithm introduces the cubature principle to approximate the probability density of the
random variable, after the interaction, by considering the external link of IMM-UKF, which constitutes
the cubature-principle-assisted IMM method (CPIMM) for solving the non-Gaussian problem,
and leads to an adaptive matrix to balance the contribution of the state. The algorithm provides
filtering solutions by considering the internal link of IMM-UKF, which is called a new adaptive
UKF algorithm (NAUKF) to address sensor faults. The proposed CPIMM-NAUKF is evaluated in
a numerical simulation and two practical experiments including one navigation experiment and
one maneuvering target tracking experiment. The simulation and experiment results show that the
proposed CPIMM-NAUKF has greater filtering precision and faster convergence than the existing
IMM-UKF. The proposed algorithm achieves a very good tracking performance, and will be effective
and applicable in the field of maneuvering target tracking.

Keywords: maneuvering target tracking; interacting multiple model (IMM); unscented Kalman filter
(UKF); Gaussian distribution; sensor fault; cubature principle; adaptive matrix gene

1. Introduction

With the continuous development of space technology, maneuvering ability in real time is a key
factor in completing complicated space missions for maneuvering targets [1–4]. Performing accurate
maneuvering target tracking and precise locating are the core issues in the field of space target
surveillance [5–8].

For maneuvering target tracking, the single model filter produces large filtering errors, and it is not
appropriate for this application because the filtering algorithms highly depend on the motion model
of the targets. The interacting multiple model (IMM) method integrates a variety of models to describe
the motion rules of the targets, which improves the filtering precision. IMM was proposed by Blom
and Barshalom [9], and consists of three processes: interaction, filtering, and fusion. The interaction
process is the core difference between IMM and the first generation of multiple model filters, called
autonomous multiple model (AMM) filters [10], which connect all the single filters organically to allow
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the “soft switching” between models. Due to the ability to automatically adjust the bandwidth of the
filter, IMM has been widely used in navigation, positioning, signal processing, maneuvering target
tracking, and other fields [11,12].

Based on the standard IMM, increasingly improved IMM algorithms have been created to
further increase the filtering accuracy, including the Variable Structure Interactive Multiple Model
(VSIMM) [13], Adaptive Interactive Multiple Model (AIMM) [14], and the Adaptive Grid Fuzzy
Multiple Model (AGFIMM) [15]. After analysis, the above algorithms are common for all dynamic
adjustments of the multi-model set and for real-time conversions between multi-model sets, in order
to adapt to the real-time signal change and to improve the filter’s precision.

However, when interacting, the weighted sum of multiple random variables will lead to multiple
peaks in the probability density function of the system state, so the sum will not conform to the
pure Gaussian distribution [16,17]. As a result, the filtering precision is negatively influenced for the
non-Gaussian distribution. Two methods are used to address the problem. The Gaussian distribution
can be used to approximate the non-Gaussian distribution [18]. For example, Lainiotis uses the mean
square error (MSE) to estimate the error covariance of the interacting random variable [19], but the
estimated value is too conservative. Because the MSE estimation results are used in the filter iteration,
it artificially increases the system noise in the filtering process, which makes the calculation value of
gain matrix too large. Therefore, the filtering precision decreases, especially with a large measured
value of noise [20]. The second method is to filter the results of the interaction by using non-Gaussian
filters [21]. For instance, the IMM-PF filtering method [22,23] can be used, but the particle filter
(PF) causes problems, such as particle degradation and poor real-time performance, in engineering
applications [24,25].

The unscented Kalman filter (UKF) is the most widely used algorithm with a single filter in the
IMM [26–32], and has many advantages compared to the Kalman Filter (KF), Extended Kalman Filter
(EKF) [33,34], and PF. However, the tracking accuracy decreases significantly when sensor faults occur,
because model mismatches are produced when the sensor receives measurements with biases [35–37].
Generally, the sensor faults include four varieties: complete failure, fixed deviation, drift deviation,
and accuracy decrease. The second and third faults are considered in this research. The current existing
adaptive UKF has been proven to be effective in dealing with unknown noise, but no effective adaptive
UKF algorithms exist for sensor faults and model mismatches [38,39].

Recently, Arasaratnam et al. [40] proposed the cubature Kalman filter (CKF), based on the cubature
principle, and provided rigorous mathematical proof. The cubature principle is the basis of CKF,
and it computes the first and second order moments of the finite cubature points through nonlinear
propagation, and then estimates the posterior probability density of the nonlinear system. As a typical
deterministic sampling filtering algorithm, CKF has fewer sampling points and better numerical
stability [41]. As the mixed probability of IMM interaction varies with time, the interaction process is
described by nonlinear equations, and the cubature principle in CKF is used to estimate the probability
density function of a random variable after the interaction. To address the single model filtering
precision problem, a new adaptive matrix gene is used in UKF together with the IMM method,
to balance the contribution of the state and filtering results in the presence of sensor faults.

This paper develops a new efficient IMM-UKF algorithm for maneuvering target tracking, which
addresses the non-Gaussian distribution problem and sensor faults. The IMM-UKF filtering problem
is described for maneuvering target tracking with the occurrence of sensor faults. For IMM-UKF
external links, the cubature principle (CP) is introduced to IMM to approximate the probability
density of the random variable in the interaction, and the precision of the approximation is analyzed,
which contributes to CP-assisted IMM (CPIMM). For IMM-UKF internal links, an adaptive matrix gene
is integrated into traditional UKF to balance the contribution of the system state and provides filtering
solutions, which is called a new adaptive UKF (NAUKF). Simulation and experiment results showed
that the proposed cubature principle assisted IMM–adaptive UKF algorithm (CPIMM-NAUKF) has
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high filtering precision and fast convergence, and achieves better tracking performance than the
existing IMM-UKF.

The remainder of this paper is organized as follows. The IMM-UKF filtering problem is described
in Section 2. The CPIMM-NAUKF is developed in Section 3. Simulations and practical experiments
comparing performance are conducted in Section 4. Finally, the conclusions are provided in Section 5.

2. Description of the IMM-UKF Filtering Problem

2.1. Maneuvering Target Tracking Dynamic System

The general IMM-UKF structure diagram, including m models, is shown in Figure 1, where Z
represents the unit delay link. The IMM-UKF can be divided to two parts: the external link-IMM
structure and the internal link-UKF filter.
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Figure 1. General interacting multiple model-unscented Kalman filter (IMM-UKF) structure. 
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Figure 1. General interacting multiple model-unscented Kalman filter (IMM-UKF) structure.

In Figure 1, X̂i,k and Pi,k are the state estimation and covariance matrix, respectively, of the single
UKF filter i (i = 1, 2, . . . , m) at time step k; X̂i,k−1 and Pi,k−1 are the corresponding vector at time
step k− 1; X̂o

i,k−1 and Po
i,k−1 are the interaction result of X̂i,k−1 and Pi,k−1, and they are the inputs of

UKF filter i; X̂ f usion,k and P f usion,k are the final state estimation and covariance of the IMM-UKF filter,
respectively; and Zk denotes the measurement vector for the single UKF filter.

For single model i, the state and measurement equations of the maneuvering target are [1,4]{
Xk = f[Xk−1, k− 1] + Γk−1Wk−1

Zk = h[Xk, k] + Vk
(1)

where the subscript i is omitted for the sake of brevity.
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Similarly, the state and measurement equations of the maneuvering target in the presence of
sensor faults are [35,37] {

Xk = f[Xk−1, k− 1] + Γk−1Wk−1

Zk = h[Xk, k] + Vk + δhout,k
(2)

where f[•] and Γk−1 represent the state transfer function and interference transfer matrix, respectively;
Wk−1 and Vk denote the system and measurement noise, respectively, and they are both white Gaussian
noises and mutually uncorrelated; h[•] is a nonlinear coordinate transformation function; and δhout,k
denotes the model mismatches caused by sensor faults.

2.2. Standard IMM

From Figure 1, the standard IMM method can be described in the three following steps [11]:

Step 1: Model probability updating. The mixing probability is defined and calculated as

uij,k−1 =
1
cj

pijui,k−1, i, j = 1, 2, . . . , m (3)

where pij is the transition probability; ui,k−1 is the correct probability of model i, i = 1, 2, . . . , m at
time step k− 1; and cj is the prediction probability of model j, j = 1, 2, . . . , m from time step k− 1 to
time step k [11] which provides

cj =
m

∑
i=1

pijui,k−1, i, j = 1, 2, . . . , m. (4)

Therefore, we can obtain the updated model probability:

uj,k =
1
a

Λj,kcj (5)

where a =
m
∑

j=1
Λj,kcj; Λj,k = N(Z̃, PZ̃Z̃); Z̃ represents the innovation residual vector of UKF filter j;

and PZ̃Z̃ represents the covariance matrix of Z̃.

Step 2: Input interaction.

X̂o
j,k−1 =

m

∑
i=1

uij,k−1X̂i,k−1 (6)

Po
j,k−1 =

m

∑
i=1

uij,k−1[Pi,k−1 + X̃ij,k−1·X̃ij,k−1
T ] (7)

where X̃ij,k−1 = X̂i,k−1 − X̂o
j,k−1.

Step 3: Resultant mean and covariance matrix computation.

X̂ f usion,k =
m

∑
j=1

X̂j,kuj,k (8)

P f usion,k =
m

∑
j=1

uj,k

{
Pj,k +

[
X̂j,k − X̂k

][
X̂j,k − X̂k

]T
}

. (9)
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2.3. Non-Gaussian Distribution and Sensor Fault Problems for IMM-UKF

2.3.1. Non-Gaussian Distribution

For the external IMM-UKF links, X̂o
j,k is a weighted sum of m Gaussian random variables and no

longer obeys the pure Gaussian distribution because many peaks will exist in the probability density,
which is similar to the probability density of the mixed Gaussian distribution [19]. The case when X̂i,k−1
is scalar and ui,k−1 is constant is explained in this section. It is assumed that X̂o

j,k−1 is the weighted sum
of three Gaussian random variables with normal distribution, and So

j,k−1 is the square root of Po
j,k−1,

where [X̂1, X̂2, X̂3] = [−3, 0, 5], [S1, S2, S3] = [3, 2.25, 1.8], [u1, u2, u3] = [0.3, 0.4, 0.3]. The probability
density of the mixed Gaussian distribution is shown in Figure 2.
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In Figure 2, the thick line represents X̂o
j,k−1 and has multiple peaks; the mixture no longer follows

Gaussian distribution.
After the interaction, Lainiotis completes the approximation of the probability density through

the Gaussian distribution [19]:

Pr
(

X̂o
j,k−1

)
=

m

∑
i=1

ui,k−1N
{

X̂ : X̂i,k−1, Si,k−1(Si,k−1)
T
}

(10)

where Si,k−1 is the square root of Pi,k−1.
On the basis of the above distribution, MSE estimates the covariance matrix of the interacting

random variables, where the mean and covariance matrix are computed by [16]

X̂
o
j,k−1 =

∫
X̂o

j,k−1Pr
(

X̂o
j,k−1

)
dX̂o

j,k−1 =
m
∑

i=1
ui,k−1

∫
X̂o

j,k−1N
{

X̂ : X̂i,k−1, Si,k−1(Si,k−1)
T
}

dX̂o
j,k−1

=
m
∑

i=1
ui,k−1X̂i,k−1

(11)
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PMSE
j,k−1 =

m

∑
i=1

ui,k−1

(
Si,k−1ST

i,k−1 + (X̂i,k−1 − X̂
o
j,k−1)(X̂i,k−1 − X̂

o
j,k−1)

T
)

. (12)

From Equations (11) and (12), we know PMSE
j,k−1 is larger than the actual covariance of X̂o

j,k−1 (Pactual
j,k−1 ).

An example of the above one-dimensional case is available, and the Monte Carlo method (MC) is used
with 10,000 random sampling points to compute the mean and covariance transferred. The results are
shown in Table 1.

Table 1. Calculation results of the comparison of the mean and covariance matrix after interaction;
MSE: the mean square error; MC: Monte Carlo.

Method Mean Covariance

MSE 0.6000 3.9417
MC 0.5937 1.3906

From Table 1, PMSE
j,k−1 > Pactual

j,k−1 is verified. Because PMSE
j,k−1 will participate in the filtering iteration,

it is equivalent to an increase of the system noise in the process of filtering. Then, the gain matrix will
be larger, and the filtering effect declines, especially when the actual system noise is small and the
measurement noise is large.

Therefore, for the external IMM-UKF link, the filtering problem to be solved is how to make
a precise estimate of the mean and covariance matrix of the random variables after the interaction
for IMM.

2.3.2. Sensor Faults

When sensor faults exist, the third-order accuracy condition is no longer met for the standard
UKF [42]. Therefore, for the internal IMM-UKF link, the filtering problem to be solved is how to design an
effective adaptive UKF algorithm for systems given by Equation (2), when the sensor fault δhout,k exists.

3. Cubature-Principle-Assisted IMM-Adaptive UKF Algorithm (CPIMM-NAUKF)

By considering the internal and external link of IMM-UKF respectively, the cubature principle is
introduced to the standard IMM, and an adaptive gene matrix is brought into the standard UKF.

For IMM, the most important factor on influencing the filtering precision is the non-Gaussian
probability density function after the mixing interaction. It is the key to estimating the first moment
and second moment of the random variables with high accuracy.

For adaptive UKF, one effective method is to balance contribution to UKF filtering solutions of
the state information, measurement information, and innovation information.

3.1. CPIMM

3.1.1. Cubature Principle

Assuming that χ ∼ N
(

χ : χ̂, SST
)

, where the dimension of χ is l × 1, then the first moment and
second moment of any function y = f (χ) can be solved by the following integral form:

ŷ = E(y) =
∫
Rl

f (χ)N
(

χ : χ̂, SST
)

dχ

Py = D(y) =
∫
Rl

f (χ) f T(χ)N
(

χ : χ̂, SST
)

dχ.
(13)

Equation (13) is a multidimensional integral problem, and it is difficult to solve through analytic
methods. The cubature principle states that a cubature point with a weighted value can be chosen to
approximate the integral of the multidimensional function, and the method of choosing the cubature
point is:
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χ±r = χ̂± Sξr, r = 1, 2, . . . , l (14)

ξr =
√

ler, r = 1, 2, . . . , l (15)

where er is the rth column of the unit matrix Il×l .

3.1.2. Estimating the Interaction by Using CP

Since the mixing probability varies with time, the interactive process is abstracted as a nonlinear
function, and the cubature principle is used to approximate the probability distribution of the
interacting random variables.

Firstly, the nonlinear function is used to describe the interaction process. The augmented system
χ = [x1, . . . , xm]

T is constructed, where xi ∼ N
(

x : x̂i, SiST
i

)
, i = 1, . . . , m is a random variable with

the n × 1 dimension, and represents the state vector of the model i; l = m × n; χ̂ = [x̂1, . . . , x̂m]
T.

Assuming that xi is independent, and we have cov(x̂i, x̂j)i 6=j = 0, the square root of the covariance

matrix of χ is S = diag([S1, . . . , Sm]), and we have χ ∼ N
(

χ : χ̂, SST
)

.
The next step is choosing cubature points for nonlinear propagation. The cubature points are

selected by Equation (13), and S is rewritten as S = σrV, where V is the upper triangular matrix with
all the diagonal elements being 1; σr = S(r, r) is the value of the element on the diagonal of S, and the
cubature points can be written as

χ±r = χ̂±
√

lσrvr, r = 1, 2, . . . , l (16)

where vr is the rth column of V.
The cubature points are calculated after the interaction by

y±r = f (χ±r). (17)

Finally, according to the cubature principle, the mean and covariance matrix of y are obtained as

ŷ ≈
l

∑
r=−l

ωryr (18)

Py ≈
l

∑
r=−l

ωr

(
yr − ŷ)(yr − ŷ)T

)
(19)

where r 6= 0; ωr = 1/2l.
For the external IMM, X̂o

j,k−1 shown by Equation (6) can be recalculated by Equation (18),
and Po

j,k−1 shown by Equation (7) can be recalculated by Equation (19); then, the newly obtained

X̂o
j,k−1 and Po

j,k−1 are used in the iteration of the IMM filter, which leads to CP-IMM.

3.1.3. Accuracy Analysis of the CPIMM

In the literature [22], the approximate precision of the mean of the Gaussian random variable after
nonlinear propagation, by using the cubature principle, has been analyzed. In this section, the accuracy
of the covariance matrix of the cubature principle will be analyzed.

Assume that f (χ) ∈ Rn is the nonlinear mapping from Rl to Rn; χ ∼ N(χ : χ̂, P);
∆χ ∼ N(∆χ : 0, P). If the Taylor series expansion of y = f (χ) is carried out at χ̂ with two derivatives,
we have

y = f (χ̂ + ∆χ) = f (χ̂) + f ′(χ̂)∆χ +
1
2

[
∆χT f ′′i (χ̂)∆χ

]
i

(20)
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where f ′(χ̂) is the Jacobian matrix with a n× l dimension; f ′′ (χ̂) represents n matrixes with n× l
dimensions, which are called Hessian matrixes; f ′′i (χ̂) is the ith Hessian matrix. Thus, we have

f ′i (χ̂) =
[

∂ fi
∂x1

, .
∂ fi
∂x2

..,
∂ fi
∂xl

]
χ=χ̂

f ′′i (χ̂) =



∂2 fi
∂x1∂x1

∂2 fi
∂x1∂x2

. . .
∂2 fi

∂x1∂xl

∂2 fi
∂x2∂x1

∂2 fi
∂x2∂x2

. . .
∂2 fi

∂x2∂xl

. . . . . . . . . . . .

∂2 fi
∂xl∂x1

∂2 fi
∂xl∂x2

. . .
∂2 fi

∂xl∂xl


χ=χ̂

. (21)

Calculating the first and second moments of Equation (20), we obtain

E(y) = f (χ̂) + 1
2
[
tr( f ′′i (χ̂)P

]
i

D(y) = f ′(χ̂)P( f ′(χ̂))T + 1
2

[
tr( f ′′i (χ̂)P f ′′j (χ̂)P)

]
i,j

(22)

where tr(•) represents the trace of a matrix.
Equation (18) can be rewritten as

ŷ = f (χ̂) +
1
2l

l

∑
r=1

( f (χr)− 2 f (χ̂) + f (χ−r)). (23)

Substituting Equation (23) to (19), and assuming D =
l

∑
r=1

( f (χr)− 2 f (χ̂) + f (χ−r)), we have

Py = 1
2l

2l
∑
1
( f (χr)− f (χ̂))(·)T − 1

4l2

2l
∑
1
( f (χr)− f (χ̂))DT

− 1
4l2

2l
∑
1
( f (χr)− f (χ̂))TD + 1

4l2 DDT

= 1
2l

l
∑

r=−l
( f (χr)− f (χ̂))(·)T − 1

4l2 DDT .

(24)

When ∆χr =
√

lσrvr → 0 is correct by considering the selection process of cubature points shown
in Equation (17), we have

f (χr)− f (χ̂)√
lσr

→ f ′(χ̂)ur

f (χr)− 2 f (χ̂) + f (χr+l)

lσ2
r

→ [uT
r f ′′i (χ̂)ur]i .

(25)

Substituting Equation (25) into Equations (23) and (24), respectively, we obtain

ŷ→ f (χ̂) +
1
2
[
tr( f ′′i (χ̂)P

]
i

Py → f ′(χ̂)P( f ′(χ̂))T +
1
2

[
tr( f ′′i (χ̂)P f ′′j (χ̂)P)

]
i,j

.
(26)
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Equations (22) and (26) show that the mean and covariance estimates can achieve second-order
accuracy of a Taylor series expansion using the cubature point to create a random variable through the
nonlinear function. The one-dimensional case in Section 2.3 is used to illustrate that the mean value
obtained by the cubature principle is 0.6, and the covariance is 1.3826, which is much closer to the
results obtained by Monte Carlo method than the MSE method.

3.2. New Adaptive Unscented Kalman Filter (NAUKF)

Motivated by the proposed UKF algorithm, we propose a new adaptive UKF (NAUKF) consisting
of an adaptive matrix gene. Pk/k−1, P(XZ)k/k−1 and P(ZZ)k/k−1 represent the corresponding covariance
computed by the standard UKF, and they are changed into Pe

k/k−1, Pe
(XZ)k/k−1 and Pe

(ZZ)k/k−1 in
the NAUKF.

Theorem 1. On the basis of standard UKF, set up a new adaptive matrix gene∆k as

∆k =

{
P(Z̃Z̃)k/k−1 −

2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
}

Rk
−1. (27)

Let

P(ZZ)k/k−1 =
2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ ∆kRk (28)

where γ
(i)
k/k−1 is calculated from the Sigma points in the standard UKF; Ẑk/k−1 is the innovation; W(c)

i denotes
the weighted coefficient [3]; Z̃k/k−1 = Zk − Ẑk/k−1; and P(Z̃Z̃)k/k−1 is the covariance of Z̃k/k−1; Then the
NAUKF can address the filtering problem in the presence of sensor faults shown by Equation (2).

Proof. Because model mismatches exist in the system shown by Equation (2), based on Theorem 1,
the result is

Pe
k/k−1 = Pk/k−1 = P(X̃X̃)k/k−1 (29)

Pe
(XZ)k/k−1 = P(XZ)k/k−1 = P(X̃Z̃)k/k−1 (30)

where X̃k/k−1 = Xk − X̂k/k−1.
After setting up ∆k shown by Equation (27), we have

Pe
(ZZ)k/k−1

= P(ZZ)k/k−1 = P(Z̃Z̃)k/k−1. (31)

From Equations (29) to (31), we know that the third-order precision conditions can be satisfied,
which means that the NAUKF can be used for the system that has sensor faults. This completes
the proof.

To avoid the divergence problem of NAUKF, a covariance matching criterion is used:

tr(Z̃k/k−1Z̃k/k−1
T) ≤ Ψ · tr(P(ZZ)k/k−1) (32)

where Ψ (Ψ ≥ 1) is a preset adjustable coefficient.
If Equation (32) is satisfied, the NAUKF has been convergent; Pk/k−1 should be updated with an

adaptive weighted coefficient ζk by increasing the contribution of Zk on the filtering solutions.

Pk/k−1 = ζk

2n

∑
i=0

W(c)
i [χ

(i)
k/k−1 − X̂k/k−1][χ

(i)
k/k−1 − X̂k/k−1]

T
+ Qk−1 (33)

where ζk is set by
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ζk =

{
ζ0 ζ0 ≥ 1
1 ζ0 < 1

(34)

ζ0 =
tr(P(Z̃Z̃)k/k−1 −Rk)

tr(
2n
∑

i=0
W(c)

i [χ
(i)
k/k−1 − X̂k/k−1][χ

(i)
k/k−1 − X̂k/k−1]

T
)

. (35)

3.3. Implementation Steps of the CPIMM-NAUKF Algorithm

Based on Sections 3.1 and 3.2, the CPIMM-NAUKF structure is shown in Figure 3.
The implementation steps of the CPIMM-NAUKF are as follows.

Step 1: NAUKF filtering process.

First, calculate the covariance by setting X̂0 and P0 of the standard UKF, and compute
Pk/k−1, P(XZ)k/k−1, P(ZZ)k/k−1. Next, select the new adaptive gene selection by setting up ∆k through
Equation (27), and recalculate P(ZZ)k/k−1 with Equation (28)

P(ZZ)k/k−1 =
2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ ∆kRk. (36)
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To determine the convergence strategy, judge the divergence according to Equation (32). If it is
satisfied, go directly to the next step; otherwise, update Pk/k−1 by using Equations (33)–(35).

Next, to obtain the NUKF filtering results, use the following:

Kk = P(XZ)k/k−1(P(ZZ)k/k−1)
−1 (37)
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X̂k = X̂k/k−1 + Kk(Zk − Ẑk/k−1) (38)

Pk = Pk/k−1 −KkP(ZZ)k/k−1Kk
T (39)

From Equations (38) and (39), obtain the X̂1,k, P1,k, X̂2,k, P2,k, . . . , and X̂m,k, Pm,k for UKF filters 1
to m of IMM-UKF.

Step 2: The CPIMM filtering process.

First, compute the mixing probability. Calculate the mixing probability uij,k−1 according to
Equation (3). Next, determine the Interaction by using CP. After X̂1,k, P1,k, X̂2,k, P2,k, . . . , and X̂m,k, Pm,k
are obtained based on Step 1, calculate X̂o

j,k−1 and Po
j,k−1, respectively, with Equations (18) and (19).

Then update the model probability by calculating the mixing probability uj,k−1 according to Equation (5).
To complete the fusion, calculate resultant mean and covariance matrix with Equations (8) and (9).

4. Experimental Results and Discussion

To verify the effectiveness of the maneuvering target tracking of the proposed CPIMM-NAUKF,
numerical simulations and practical experiments are both conducted. For the numerical simulation,
two sets of experiments were simulated: (1) the standard IMM [9] and CPIMM algorithms; (2) the
IMM-UKF [43], IMM-NAUKF connecting the standard IMM with NAUKF, CPIMM-UKF connecting
the CPIMM with standard UKF, and CPIMM-NAUKF algorithms. The experimental environment
was set as Intel i7 computer with 4-core, 64-bit, 2.4 GHz, 8 GB RAM, and MATLAB R2013a software.
For the practical experiments, an integrated navigation system and a synthetic aperture radar (SAR)
tracking system using the CPIMM-NAUKF algorithm are, respectively, shown to test the proposed
method with real data.

4.1. Numerical Simulations and Analysis

To design the simulation scenarios, suppose that X = [x, y,
.
x,

.
y] represents the state of the

maneuvering target, including the position and velocity. The sensor is the radar, and its position is
fixed at the coordinate origin. Thus, the measurement equation is

Zk =

[
rk
θk

]
=

[ √
(xk

2 + yk
2)

tan−1(yk/xk)

]
+ Vk (40)

where rk and θk are the distance and angle measurement components of the radar, respectively.
The high-speed maneuvering target moves in a two-dimensional scenario with 100 s; the initial

position is [0 m, 400 m], and the initial velocity is [10 m/s, 40 m/s]; the target moves at a constant
velocity in a straight line from 0 s–20 s, with a constant right turn rate being −0.1 rad/s from 20 s–40 s,
constant velocity in a straight line at 40 s–60 s, constant left turn with the turn rate being 0.1 rad/s at
60 s–80 s, and a constant velocity in a straight line at 80 s–100 s. In a Cartesian coordinate system, the
true trajectory of the maneuvering target is depicted in Figure 4.
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Figure 4. True trajectory of the maneuvering target.

Both the IMM and CPIMM include three models: one Constant Velocity (CV) model [44] and two
Coordinated Turn (CT) models [44].

For the CV model, the state transition matrix is

FCV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (41)

where T is the sampling period, and T = 1 s.
The process noise is calculated with

VCV = N(.; 0; σCV
2) (42)

where σCV
2 denotes the covariance of the process noise, and σCV

2 = 5.
For the CT model, the state transition matrix is

FCT =


1 sin(ωT)

ω 0 − 1−cos(ωT)
ω

0 cos(ωT) 0 − sin(ωT)
0 1−cos(ωT)

ω 1 sin(ωT)
ω

0 sin(ωT) 0 cos(ωT)

 (43)

where ω is the turn rate.
The process noise meets with

VCT = N(.; 0; σCT
2) (44)

where σCT
2 denotes the covariance of the process noise, and σCT

2 = 20.
The two models use the following transition and mode probabilities.
The transition probability matrix is
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 0.99 0.005 0.005
0.005 0.99 0.005
0.005 0.005 0.99

.

The initial mode probability matrix is

[ 0.99 0.005 0.005].

The measurement covariance is R = diag
(
σ2

w, σ2
w
)
= diag(15, 15).

Case 1 is where the sensor has no faults and is in a normal work situation. Case 2 is when the
sensor has faults, and δhout,k = [δrk δθk]

T, where δrk and δθk represents the distance deviation within
[−5 m, 5 m] and the angle drift rate within [0 1.0× 10−2 rad/s], respectively.

Every simulation experiment is tested 100 times using Monte Carlo, and algorithms of two sets of
comparison simulations are evaluated by root mean square error (RMSE), which is computed through

E =

√√√√( 1
N

N

∑
i=1

(
X̂i −Xi) (X̂i −Xi

)T
)

(45)

where X̂i and Xi are the estimated and true state in the ith simulation, respectively; N is the number of
simulations; N = 100.

4.1.1. CPIMM Simulation

To validate the effectiveness of CPIMM, the first set of comparisons, including the standard IMM
and CPIMM, was simulated. We assumed there were no sensor faults, similar to the Simulation Case 1
in the scenario design section.

Figure 5 gives the true and estimated trajectories of the maneuvering target. As seen in Figure 5,
both CPIMM and IMM can track the trajectory of the target.
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The comparisons of the RMSE position and velocity curves of the two filtering algorithms are
shown in Figures 6 and 7, and the corresponding statistical data of RMSE are listed in Table 2.
The filtering precision of the IMM is lower than the CPIMM, although the IMM is not divergent.
The CPIMM greatly increases the filtering precision compared with IMM. In addition, this means that
the tracking performance of CPIMM is higher than that of the IMM, because the cubature principle is
used to increase the estimation values in the interaction process of the IMM.
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Table 2. Performance comparison of the algorithms for CPIMM for Case 1.

Algorithm
Position Error (m) Velocity Error (m/s)

Mean Standard Deviation Mean Standard Deviation

IMM 3.8245 2.0377 0.7102 0.6935
CPIMM 2.0630 1.1604 0.4596 0.4187

4.1.2. CPIMM-NAUKF Simulation

To validate the effectiveness of CPIMM-NAUKF, the second set of comparisons, including the
IMM-UKF, IMM-NAUKF, CPIMM-UKF, and CPIMM-NAUKF were simulated, assuming there are
sensor faults, similar to Simulation Case 2 in the scenario design section.

Figure 8 gives the true and estimated trajectories of the maneuvering target. Both CPIMM and
IMM can track the trajectory of the target, but the estimated trajectory of CPIMM-NAUKF was closest
to the true trajectory.Appl. Sci. 2017, 7, 1003  16 of 26 
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Figure 8. True and estimated trajectories of the maneuvering target for CPIMM-NAUKF for Case 2.

The comparisons of the RMSE position and velocity curves of four filtering algorithms are
shown in Figures 9 and 10, and the corresponding statistical data of RMSE are listed in Table 3.
The sensor faults negatively influenced the filtering precision of the UKF and the filtering error of
the standard IMM-UKF was the largest. The IMM-NAUKF has better filtering accuracy than the
IMM-UKF, because the internal link NAUKF effectively handled the sensor fault problem, but the
filtering convergence performance was poor. The CPIMM-UKF also has better filtering accuracy than
the IMM-UKF because the internal link CPIMM has a better effect for maneuvering target tracking
than IMM, but the filtering accuracy relationship between IMM-NAUKF and CPIMM-UKF does not
exist. Ultimately, CPIMM-NAUKF has the best filtering accuracy, since it significantly improves the
IMM-UKF through the external and internal links, which makes it extremely effective for maneuvering
target tracking when sensor faults occur.

In summary, as a combination of CPIMM and NAUKF, the CPIMM-NAUKF, compared with
the existing IMM-UKF, makes a greater contribution to filtering performance in terms of accuracy
and convergence speed. This is because it includes two important links, the external CPIMM and the
internal NAUKF, which work simultaneously and effectively.
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Table 3. Performance comparison for CPIMM-NAUKF for Case 2.

Algorithm
Position Error (m) Velocity Error (m/s)

Mean Standard Deviation Mean Standard Deviation

IMM-UKF 11.8533 4.3387 3.1026 1.9552
IMM-NAUKF 7.0473 2.9116 1.2143 1.0348
CPIMM-UKF 9.3558 3.0098 2.4961 1.2246

CPIMM-NAUKF 4.8671 0.9169 0.4294 0.3857
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4.2. Practical Experiments and Analysis

Furthermore, to demonstrate the effectiveness of the proposed CPIMM-NAUKF method for
real applications, two practical experiments were conducted. An unmanned aerial vehicle (UAV)
was loaded with an Inertial Navigation System (INS)/Global Positioning System (GPS) integrated
navigation system for its navigation and positioning, and equipped with an SAR tracking system to
track the maneuvering targets.

4.2.1. INS/GPS Integrated Navigation System

As shown in Figures 11 and 12, the vehicle loaded integrated navigation system included a
NV-IMU300 type INS, a JAVAD Lexon-GGD112T type GPS receiver, and a NovAtel DL-V3 GPS
receiver on the vehicle, and another NovAtel DL-V3 GPS receiver was located at the Earth Reference
Station. The working frequency of the GPS was 20 Hz. The maximum distance between the vehicle
and the Earth Reference Station had to be less than 60 km, which ensured that the positioning precision
of the vehicle was better than 0.1 m.

Let the geographic coordinate system be the navigation coordinate system with three directions
of East, North, Up. Define the system states as

X(t) =
[
ψ, θ, γ, vE, vN , vU , L, λ, h, εx, εy, εz,∇x,∇y,∇z

]T (46)

where ψ, θ, γ represent the heading angle, the pitch angle, and the roll angle of the vehicle, respectively;
vE, vN , vU are components of the velocity along the East, North, and Up directions, respectively;
L, λ, h are components of the position along the East, North, and Up directions, respectively; εx, εy, εz

represent the drift of the gyro; ∇x,∇y,∇z represent the bias of the accelerator.
The state space model is

.
X(t) == f[X(t)] + W(t) (47)

the concrete equations of which can be found in [45].
Select the velocity and position outputs of the GPS as the measurement variables:

Z = [vEG, vNG, vUG, LG, λG, hG]
T (48)

where vEG, vNG, vUG are components of the velocity measured via GPS along the East, North, and
Up directions, respectively; LG, λG, hG are components of the position measured via GPS along East,
North, and Up directions, respectively. The velocity and position information measured via GPS can
be used as a reference to confirm the position error of the INS/GPS.

The measurement equation is
Zk = HkXk + Vk (49)

where Hk = [O6×3, O6×6, O6×6].
In the experiment process, the initial position was as follows: East longitude 108.891227◦, North

latitude 34.286866◦, and an altitude of 437.92 m. Components of the velocity along the East, North,
and Up directions were, respectively, −8 m/s, −35 m/s, and 0 m/s; the drift of the gyro was 0.12◦/h,
and the white noise was 0.02◦/h; the bias of the accelerator was 10−3 g, and the white noise was
10−4 g; the positioning and position precision of the GPS were 5 m and 0.05 m/s; the other initial
parameters were the same as the those described in the simulation section. The experiment test time
was designed as 500 s with the sample period being 1 s, and the end point of the vehicle was East
longitude 108.995683◦, North latitude 34.285292◦, and an altitude of 438.01 m. The practical road
condition was the urban highway, and the real route of the vehicle is shown in Figure 13.
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Five filtering methods including standard EKF [33], CKF [40], standard UKF [27], existing adaptive
UKF (AUKF) [38], and NAUKF were used in the experiment, and these algorithms were evaluated by
the estimation error rather than RMSE, which is computed through

E = X̂−X (50)

The comparisons of the longitude and latitude error curves of five filtering algorithms are shown in
Figures 14 and 15, and the corresponding statistical data of the mean absolute error are listed in Table 4.
We can see that the EKF and CKF have almost the same filtering accuracy, although both EKF and
CKF can deal with the nonlinear filtering problems—they only have first order accuracy. The filtering
errors are, respectively, [−18.1025, 19.9471] m and [−17.5118, 18.4296] m of the longitude error ranging,
and [−20.1143, 16.2477] m and [−17.4154, 14.9953] m of the latitude error ranging. The standard UKF
has better filtering precision than does EKF and CKF, because UKF can reach third order accuracy, but it
still has substantial oscillation and error due to the longitude error ranging [−11.0549, 10.2178] m and
latitude error ranging [−9.1766, 9.9737] m. The AUKF has the adaptive ability of the imprecise noise in
the urban complex environment, so it has better filtering accuracy than the UKF with the longitude
error ranging [−5.8142, 6.0273] m and latitude error ranging [−8.1184, 6.4153] m. Ultimately, NAUKF
has the best filtering accuracy, with the longitude error ranging [−4.1109, 4.3804] m and latitude error
ranging [−6.1096, 4.7138] m, since it can not only adapt to the noise but also the sensor faults and
model mismatches.Appl. Sci. 2017, 7, 1003  20 of 26 
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Figure 14. Longitude error comparison for NAUKF in INS/GPS navigation system.
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Figure 15. Latitude error comparison for NAUKF in INS/GPS navigation system.

Table 4. Performance comparison for NAUKF in INS/GPS navigation system.

Algorithm
Mean Absolute Error of Longitude (m) Mean Absolute Error of Latitude (m)

Mean Standard Deviation Mean Standard Deviation

EKF 8.6533 7.9816 8.2107 7.0044
CKF 8.4154 7.5127 8.0109 6.8135
UKF 6.9018 6.5011 6.9271 6.6102

AUKF 4.4225 4.0118 4.8159 4.6825
NAUKF 3.0156 2.8105 2.8192 2.4947

In summary, UKF has better filtering precision than KF, EKF, and CKF, because UKF can reach
third order accuracy. The proposed NAUKF has the best filtering performance in terms of precision
and dynamic response for its adaptive ability to both imprecise noise and sensor faults, and it can
increase the precision and adaptability of the navigation system effectively.

4.2.2. SAR Tracking System

As shown in Figures 16 and 17, the UAV is equipped with one D3160 type SAR. The UAV is a
six-rotor UAV with mass being 20 kg and velocity range being 0 m/s–20 m/s. The D3160 type SAR is
a kind of micro-SAR system and the parameters are as follows: mass: 4 kg, operating frequency band:
X or Ku, detection range: 10 km, resolution: 0.3 m.
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The SAR can detect the pitch angle ϕ1, azimuth ϕ2 and distance d of the target vehicle relative to
the UAV, and the measurement equation is

Z =

 d
ϕ1

ϕ2

 =



√
(xU − xt)

2 + (yU − yt)
2 + (zU − zt)

2

arctan

 zU − zt√
(xU − xt)

2 + (yU − yt)
2


arctan

(
yU − yt

xU − xt

)


(51)

where [xU , yU , zU ]
T is the position of UAV; [xt, yt, zt]

T is the position of the target vehicle.
In the experiment process, both the pitch angle and azimuth measurement had the drift rate,

and the distance measurement had the deviation for the SAR, but the precise statistics about the sensor
faults and noises are still unknown. In Figure 18, the target vehicle is driving on the expressway,
and the initial position of the UAV and the target vehicle is, respectively, East longitude 108.933195◦,
North latitude 34.188183◦, and an altitude of 1.50 km and East longitude 108.938962◦, North latitude
34.187501◦, and an altitude of 436.05 m. The experiment test time is designed as 1000 s with the sample
period being 1 s, and the end point of the UAV and the target vehicle is, respectively, East longitude
109.130943◦, North latitude 34.245275◦, and an altitude of 1.50 km and East longitude 108.145231◦,
North latitude 34.239740◦, an altitude of 436.76 m.
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where T[ , , ]U U Ux y z  is the position of UAV; T[ , , ]t t tx y z  is the position of the target vehicle. 
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When the IMM and CPIMM methods are used, the target model description is the same as
the numerical simulation. Four filtering methods including IMM-UKF, IMM-NAUKF, CPIMM-UKF,
and CPIMM-NAUKF were used in the experiment, and these algorithms were evaluated by the
estimation error shown by Equation (50).

The comparisons of the longitude and latitude error curves of five filtering algorithms are shown
in Figures 19 and 20, and the corresponding statistical data of the mean absolute error are listed in
Table 5. We can see that the standard IMM-UKF has the biggest filtering error with the longitude error
ranging [−25.0223, 24.8762] m and latitude error ranging [−23.9917, 24.9834] m. The IMM-NAUKF
has better filtering precision than IMM-UKF because of the adaptive ability to the sensor faults with
the longitude error ranging [−16.1849, 14.0871] m and latitude error ranging [−13.8628, 14.0563] m.
The CPIMM-UKF has better filtering precision than IMM-UKF because of the adaptive ability to the
non-Gaussian distribution with the longitude error ranging [−10.0547, 14.2482] m and latitude error
ranging [−14.7196, 12.2544] m. The CPIMM-NAUKF has the best filtering accuracy, since it can not
only adapt to the non-Gaussian but also the sensor faults and model mismatches with the longitude
error ranging [−5.0018, 6.8623] m and latitude error ranging [−4.8007, 4.9106] m.

Table 5. Performance comparison for CPIMM-NAUKF in the SAR tracking system.

Algorithm
Mean Absolute Error of Longitude (m) Mean Absolute Error of Latitude (m)

Mean Standard Deviation Mean Standard Deviation

IMM-UKF 9.0125 8.2336 9.0058 8.1329
IMM-NAUKF 6.7243 6.0772 6.1174 5.9287
CPIMM-UKF 7.1588 7.0154 7.0542 6.8835

CPIMM-NAUKF 2.8514 2.2259 2.3417 2.0016
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Figure 20. Latitude error comparison for CPIMM-NAUKF in the synthetic aperture radar (SAR) tracking system.

In summary, the practical experiments results demonstrate that the proposed CPIMM-NAUKF is
obviously superior to the existing IMM and UKF algorithms in terms of filtering precision and dynamic
response for its adaptive ability to both non-Gaussian and sensor faults, and it can significantly improve
the precision and robustness of the maneuvering target tracking system.

5. Conclusions

Maneuvering target tracking is a key technology and research hotspot in the field of navigation,
guidance, and control. This paper proposes an efficient IMM-UKF, called CPIMM-NAUKF,
for maneuvering target tracking. In the external link of CPIMM-NAUKF, the mean and covariance
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matrix can be calculated with high estimation precision by introducing the cubature principle,
which solves the non-Gaussian problem. In the internal CPIMM-NAUKF link, the contribution
of system states and innovations on the filtering solution can be balanced by introducing an adaptive
matrix gene, which addresses the sensor faults. The proposed algorithm was evaluated in a classical
maneuvering target tracking numerical simulation and two practical experiments including one
navigation experiment with INS/GPS and one target tracking experiment with SAR. Simulation results
validate that the proposed CPIMM-NAUKF improves the filtering performance in terms of higher
accuracy and faster convergence, and tracks more effectively. In our future research, we will focus on
the difference between UKF and other nonlinear filtering algorithms of various noise strengths.
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