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Abstract: Sulfur-fumigated Chinese medicine is a common issue in the process of Chinese medicines.
Detection of sulfur dioxide (SO2) residual content in Fritillaria thunbergii Bulbus is important to
evaluate the degree of sulfur fumigation and its harms. It helps to control the use of sulfur
fumigation in Fritillaria thunbergii Bulbus. Near-infrared hyperspectral imaging (NIR-HSI) was
explored as a rapid, non-destructive, and accurate technique to detect SO2 residual contents in
Fritillaria thunbergii Bulbus. An HSI system covering the spectral range of 874–1734 nm was used.
Partial least squares regression (PLSR) was applied to build calibration models for SO2 residual
content detection. Successive projections algorithm (SPA), weighted regression coefficients (Bw),
random frog (RF), and competitive adaptive reweighted sampling (CARS) were used to select optimal
wavelengths. PLSR models using the full spectrum and the selected optimal wavelengths obtained
good performance. The Bw-PLSR model was applied on a hyperspectral image to form a prediction
map, and the results were satisfactory. The overall results in this study indicated that HSI could
be used as a promising technique for on-line visualization and monitoring of SO2 residual content
in Fritillaria thunbergii Bulbus. Detection and visualization of Chinese medicine quality by HSI
provided a new rapid and visual method for Chinese medicine monitoring, showing great potential
for real-world application.

Keywords: Fritillaria thunbergii Bulbus; sulfur dioxide residual; sulfur fumigation; optimal
wavelength selection; image visualization

1. Introduction

Fritillaria thunbergii Miq. is a kind of liliaceous plant available in China. Fritillaria thunbergii Miq.
is well known as an ornamental plant, and more importantly, a medicinal plant. Fritillaria thunbergii
Bulbus has been used as an important Chinese medicinal plant for over 2000 years. Fritillaria thunbergii
Bulbus shows special curative effect on clearing heat, resolving phlegm, relieving cough, detoxification,
and disperse abscesses and nodules by a sulfur-fumigated process using chromatographic
fingerprinting analysis [1]. Processing and trading of Fritillaria thunbergii Bulbus as a medicine
is popular, which has great economic value.

Fritillaria thunbergii Bulbus are dried to be stored, transported, and traded. Traditional methods to
dry Fritillaria thunbergii Bulbus are natural drying methods, drying instruments, and sulfur fumigation.
Sulfur fumigation (SF) is a traditional preservation method in Chinese traditional medicine [2].
Sulfur fumigation could be efficiently used to prolong the shelf life of Chinese traditional medicine.
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However, increasing concerns of SF in Chinese medicine have been discussed due to its uncertain safety.
Studies have been reported that SF could damage the bioactive compounds, change chemical profiles,
and generate detrimental exogenous materials of Chinese medicine [3–5]. The Chinese government
has set strict rules to end the use of SF in Chinese traditional medicine [6]. Unfortunately, the benefits
of SF, such as easy operation and high cost-effectiveness, drives the producers to use SF in Chinese
traditional medicine for seeking higher profits. Sulfur dioxide (SO2) residuals could be detected in the
SF-treated Chinese medicines, which is generally the index to detect SF-treated Chinese medicine.

The traditional methods to detect the SF-treated Chinese medicine are human eyes or
experience-based detection and laborious methods [6]. The accuracy of human eyes or experience-based
detection could not be guaranteed, due to the subjectiveness of the detection results. The laborious
methods are accurate and used as standard methods. However, these methods are time-consuming,
reagent consuming, expensive, and require complex sample preparation and operation. Thus, rapid
and accurate detection techniques are needed.

Near-infrared spectroscopy has been used as a non-destructive, rapid, and accurate technique
to detect SF-treated Chinese traditional medicines [7]. However, near-infrared spectra are acquired
from quite a small area of the sample. Hyperspectral imaging (HSI), integrating both spectroscopy
technique and imaging technique, provides spectral and spatial information simultaneously. In the
acquired hyperspectral images, there is a spectrum of each pixel, and there is a grey-scale image at
each wavelength. Hyperspectral images provides comprehensively external and internal information
related to quality parameters, and the advantage of hyperspectral images makes it feasible to predict
the quality parameters of each pixel to form a prediction map. The prediction map provides the direct
visual information distribution of the quality parameters. The use of HSI has been studied to identify
sulfur-fumigated Chinese medicines [8], but the studies of SO2 residual content detection by HSI are
rarely reported.

The main objective of this study was to detect and visualize SO2 residuals in SF-treated
Fritillaria thunbergii Bulbus using NIR-HSI combined with chemometric methods.

2. Materials and Methods

2.1. Sample Preparation

The fresh Fritillaria thunbergii Bulbus were collected from Pan’an, Zhejiang Province, China.
The Fritillaria thunbergii Bulbus were appraised by the director of the pharmacist of Zhejiang Academy
of Traditional Chinese Medicine before further analysis. The bulbs of Fritillaria thunbergii Miq. were
cleaned and placed in fumigation boxes, and 40 samples were used for each treatment. The samples of
each treatment were fumigated by 0 g, 10 g, 30 g, and 50 g of sulfur per 500 g sample. The fumigation
procedure lasted for 24 h, then the samples were dried to 15% water content in an oven at 60 ◦C.
The fumigated samples were then placed into sealed plastic bags and taken to the laboratories for
image acquisition. In total, 160 samples were collected.

2.2. Hyperspectral Image Acquisition

The samples fumigated by different amounts of sulfur were used for hyperspectral image
acquisition. The hyperspectral image acquisition was conducted on an assembled HSI system.
The system acquires hyperspectral images in the spectral range of 874–1734 nm with spectral resolution
of 5 nm for 256 wavebands. An imaging spectrograph (ImSpector N17E; Spectral Imaging Ltd., Oulu,
Finland) coupled with a 320 × 256 camera (Xeva 992; Xenics Infrared Solutions, Leuven, Belgium)
was used for hyperspectral images. The light illumination was provided by two symmetrically-placed
150 W tungsten halogen lamps (Fiber-Lite DC950 Illuminator; Dolan Jenner Industries Inc., Boxborough,
MA, USA). The HSI system conducted linear scanning with the movement of the samples driven by a
linear lead-screw drive stepper motor (Isuzu Optics Corp., Zhubei, Taiwan). For image acquisition, the
height between the sample and the lens, the moving speed of the sample, and the exposure time of the
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camera were adjusted before the image acquisition to 320 nm, 22.8 mm/s and 4 ms to acquire clear
and non-deformable images.

The acquired hyperspectral images by the system were raw images, and should be corrected to
reflectance images by the following equation:

IR =
Iraw − Idark

Iwhite − Idark
, (1)

where IR was the corrected reflectance image, Iwhite was the white reference image with nearly 100%
reflectance. Idark was the dark reference image with nearly 0% reflectance.

To extract spectral data, the entire sample region of each sample was defined as the region of
interest (ROI), and the average spectrum of each ROI was extracted as the sample spectrum. It was
impossible to measure SO2 residuals of each pixel, and the average value of SO2 residuals and the
corresponding spectrum of each sample were used for calibration.

2.3. Measurement of SO2 Residuals

The SO2 residuals in Fritillaria thunbergii Bulbus were measured by the acid-base titration method
introduced by China Pharmacopoeia [6]. Firstly, the samples were ground into powders, and 10 g
of powder of each sample was collected. The powders were added into a two-neck round bottom
flask, then 300–400 mL water was added into the flask. The switch of the reflux condensing tube was
open to supply water, and the reflux condensing tube was connected to a 100 mL Erlenmeyer flask
by a rubber catheter. Fifty milliliters of 3% hydrogen dioxide solution as absorbent was added to the
Erlenmeyer flask, and the rubber catheter port in the Erlenmeyer flask was buried into the solution.
Before measurement, three drops of 2.5 mg/mL methyl red-ethanol solution indicator were added into
the absorbent and the titration, by adding 0.01 mol/L NaOH into the absorbent, finished when the
color of the absorbent changed from red to yellow. Secondly, the flow of nitrogen is provided at the
speed of 0.2 L/min, and the piston of a separatory funnel was opened to let the HCl solution (6 mol/L)
pass into the two-neck round bottom flask. The solution in the two neck round bottom flask was then
heated to boiling, and the solution maintained at micro-boiling. After 1.5 h later, the heating procedure
was stopped, and then absorbent was cooled. The cool absorbent was then stirred by a magnetic stirrer
and the titration, by adding 0.01 mol/L NaOH into the absorbent, was conducted until the yellow
color of the solution could remain for more than 20 s. Eventually, the SO2 residuals could be calculated.

2.4. Multivariate Analysis

2.4.1. Spectral Preprocessing and Outlier Detection

The hyperspectral images contained random noises caused by the environment, the system,
and the sample status. The spectra were extracted from the pixels within each sample. Thus,
the pixel-wise spectra were preprocessed by wavelet transform (WT) with Daubechies 8 wavelet
function, decomposition level 3, and seven-point moving average smoothing (MAS).

2.4.2. Calibration Model

Partial least square regression (PLSR) is a widely-used chemometric method in spectral data
analysis [9,10]. PLSR is proved to be stable, accurate and highly predictive models. The advantage
of PLSR is that it could handle the large spectral data efficiently, and provide a detailed explanation
of the relationship between the spectral data and the quality features. PLSR linearly projects both X
and Y into new spaces, and explore the linear regression model between X and Y. The original X is
transformed into new variables, called latent variables (LV). The linear equation of the PLSR model
can be simply expressed as:

Y= BX+ b0 (2)
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where B is the regression coefficients matrix, X is the spectral data matrix, and b0 is the intercept.
The simple equation makes PLSR quite easy and fast to interpret and calculate. PLSR is also used to
conduct rapid calculations of each pixel within the hyperspectral images.

Before modelling using the spectral data and SO2 residual content, outliers were detected based
on the prediction residuals of SO2 residual content by the PLSR model using all samples.

2.4.3. Optimal Wavelength Selection Methods

HSI generated a large amount of data. How to deal with this data is an important issue.
The spectral data extracted from the hyperspectral images suffer from the risk of colinearity, redundant
and uninformative wavelengths, resulting in complex and unstable models. Optimal wavelength
selection aims at selecting a few wavelengths containing the most useful information from the full
spectrum for analysis instead of the full spectrum. The selection of optimal wavelengths could improve
the model performance and simplify the model. Selection of optimal wavelengths could significantly
reduce both the spectral and image data. In HSI, optimal wavelength selection could also make the
image visualization easy. Four different variable selection methods were used in this study, including
the successive projections algorithm (SPA) [11], weighted regression coefficient (Bw) [12], random frog
(RF) [13], and competitive adaptive reweighted sampling (CARS) [14].

SPA is a forward variable selection method. SPA projects one variable on the remaining variables,
and the variables with maximum projection are selected as candidate subset, when the selected
candidate variables reach the predefined number of variables. Then multiple linear regression (MLR)
models were built on different numbers of variables, and the variables corresponding to the minimum
root mean square error of cross-validation (RMSECV) of the MLR model are selected as the final
optimal wavelengths.

Weighted regression coefficient (Bw) is a variable selection method derived from PLSR. To acquire
Bw, the spectral data could be standardized to the same scale, and a new PLSR model is built on the
standardized spectrum. Then, Bw is acquired from the new PLSR model. The Bw values indicate the
relative importance of wavelengths. The peaks and valleys of the wavelength–Bw plot could then be
manually selected as the optimal wavelengths.

Random frog is an efficient variable selection method [13]. Random frog simply uses the random
frog algorithm to generate subsets, and then the PLSR models are used to evaluate the proposed
subsets. The basic procedure of RF is: (1) generate a variable subset as the initialized subset by
randomly selecting a predefined number of variables from the original variables; (2) generate a new
variable subset based on the initialized subset, and evaluate the initialized subset and the new subset
to determine if the initialized subset could be updated by the new subset with a certain probability;
and (3) after the predefined iterations of step 2, the probability of each variable selected in all iterations
are calculated to determine the optimal wavelengths.

CARS is also an efficient variable selection method based upon PLSR models. CARS uses
regression coefficients of PLSR models as variable importance indicators. In CARS, PLSR models are
built according to a predefined number of Monte Carlo sampling, and the weights of the absolute
regression coefficients of each variable are calculated and compared. The variables with smaller
weights of the absolute regression coefficients are eliminated based a predefined rule. For each
iteration, PLSR models are built using the selected variables, and until the iteration ends, the
variables corresponding to the minimum RMSECV of three-fold cross-validation are selected as
the optimal wavelengths.

2.4.4. Image Visualization

The advantage of HSI is to provide spectral and spatial information simultaneously, making
it feasible to apply the calibration models on the pixels within the hyperspectral image to form a
prediction map to visualize the distribution of the sample quality parameters. Generally, the predicted
maps are presented in color, and different colors represent predicted values. The basic procedure
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for image visualization is to build calibration models, then to apply the calibration models on the
hyperspectral images. It was noticed that the performance of the prediction maps depend significantly
on the model performance. It is a fact that hyperspectral images containing hundreds of wavebands
could reach to several hundreds of MBytes or more than one gigabyte. Applying the calibration models
using optimal wavelengths on the images at the optimal wavelengths could be easily and rapidly
achieved with simple computational tasks. On the other hand, the calibration models using optimal
wavelengths may achieve robust, accurate, and simple models compared with full spectra model.
Thus, the optimal PLSR model using optimal wavelengths are used for image visualization.

2.4.5. Software and Model

The resizing of hyperspectral images was conducted on ENVI 4.6 (ITT, Visual Information
Solutions, Boulder, CO, USA). The resizing was to cut the image with only samples and a single
background from the original hyperspectral images. The spectral data extraction was conducted on
Matlab R 2010b (The Math Works, Natick, MA, USA). PLSR was performed on Unscrambler® 10.1
(CAMO AS, Oslo, Norway). The optimal wavelength selection methods and the image visualization
were conducted on Matlab R 2010b (The Math Works, Natick, MA, USA).

The performances of the PLSR models using full spectra and the optimal wavelengths were
evaluated by correlation coefficients of the calibration set and the prediction set (rc and rp), and the
root mean square error of the calibration set and the prediction set (RMSEC and RMSEP). A better
model should have higher rc and rp, and lower RMSEC and RMSEP.

3. Results and Discussion

3.1. Spectral Profiles

Due to the noise caused by the detector, the head and the tail of the spectra contained obvious
noises, and only the spectrum in the range of 975.01–1611.96 nm was used for analysis. Figure 1a shows
the extracted spectra of the samples, and Figure 1b shows the average spectra of the four different
treatments. It was found that slight differences could be found from the average spectra of samples
under different treatments, and the sulfur fumigation showed influence on the samples. The average
spectrum, average spectrum minus standard deviation spectrum, and average spectrum plus standard
deviation spectra of a randomly-selected sample are shown in Figure 1c, and variances of the spectra
could be observed within a sample.
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3.2. Statistical Analysis of SO2 Residual Content

The samples which were treated by 0 g sulfur were measured as 0 g SO2 residuals. Before modelling
using the spectral data and SO2 residual content, 12 samples were removed as outliers. The remaining
148 samples were divided into the calibration set and the prediction set at the ratio of 3:1, 111 samples
were selected into the calibration set and 37 samples were selected into the prediction set. The statistical
analysis of SO2 residual content of samples in the calibration set and the prediction set is shown in
Table 1. It was noticed that the calibration set and the prediction set had similar weights.

Table 1. Statistical analysis of SO2 residual content in the calibration set and the prediction set.

Sample Set Number Range (g/kg) Means (g/kg) Standard Deviation (g/kg)

Calibration set 111 0–6.736 2.502 1.950
Prediction set 37 0–6.536 2.472 1.963

3.3. PLSR Model Using Full Spectra

PLSR is an efficient modelling method for spectral analysis due to its capability to deal with
the dataset with more variables for X than Y. The PLSR model was built using leave-one-out
cross-validation. The optimal PLSR model was obtained with 15 LVs. The results of the PLSR model
using the full spectrum are shown in Figure 2. The PLSR model using the full spectrum obtained good
performance with rc and rp over 0.9. The results indicated that it was feasible to use HSI to detect SO2

residual content in sulfur-fumigated Fritillaria thunbergii Bulbus.
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3.4. Optimal Wavelength Selection

SPA, Bw, random frog, and CARS were used in this study to select the optimal wavelengths.
To conduct SPA, the number of wavelengths to be selected was set as 5–30, and 15 optimal wavelengths
were selected. The peaks and valleys of the wavelength–Bw plot of the PLSR model were selected
as the optimal wavelengths, and 21 optimal wavelengths were selected. To conduct random frog,
according to [13], 10,000 iterations were sufficient. In all, 24 optimal wavelengths were selected by
random frog. To conduct CARS, the number of iterations was set as 10,000, the maximum components
were set to 20, and the ratio of samples used in each Monte Carlo sampling procedure was set as 0.9.
In all, 26 optimal wavelengths were selected by CARS. The selected optimal wavelengths are shown in
Figure 3 and Table 2.
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Table 2. Number of optimal wavelengths and optimal wavelengths selected by SPA, Bw, random frog,
and CARS.

Method Number Wavelength (nm)

SPA 15 1581.51, 1611.96, 1483.46, 1318.09, 1345.0601, 1281.01, 1372.05, 1213.65, 1159.8108,
1112.72, 1554.45, 1436.1801, 1237.22, 975.01, 1055.59

Bw 21
975.01, 995.15, 1018.65, 1028.72, 1052.23, 1075.75, 1106, 1173.26, 1210.29, 1233.85,
1281.01, 1314.72, 1348.4399, 1388.92, 1422.67, 1449.6801, 1480.08, 1507.12, 1537.54,
1578.13, 1611.96

Random frog 24
1581.51, 1503.74, 1524.02, 1605.2, 1500.36, 1473.33, 1469.95, 1554.45, 1507.12,
1608.58, 1534.16, 1584.89, 975.01, 1520.64, 1527.4, 1601.8101, 1476.71, 1530.78,
1496.98, 1210.29, 1206.92, 1449.6801, 1466.5699, 1446.3101

CARS 26
975.01, 981.72, 1156.4399, 1163.9, 1206.92, 1230.49, 1233.85, 1247.33, 1250.6899,
1257.4301, 1311.35, 1338.3199, 1449.6801, 1463.1899, 1466.5699, 1469.95, 1500.36,
1503.74, 1524.02, 1527.4, 1530.78, 1534.16, 1554.45, 1581.51, 1605.2, 1608.58

The selected wavelength 975.01 nm, 981.72 nm, and 995.15 nm were attributed to the water
absorption [15–17], the wavelength near 1020 nm (1018.65 nm) was assigned to protein [18].
The wavelength 1028.72 nm was assigned to a combination of C–H stretching first overtone and
C–H deformation second overtone of CH3 [19], the wavelengths between 1150 nm and 1214 nm were
assigned to the second overtones of C–H stretching [20,21]; the wavelengths between 1408 nm and
1462 nm were attributed to the water absorption [21]; the wavelengths between 1230 nm and 1400 nm
were corresponded to C–H second overtone [22]; the wavelengths between 1460 nm and 1600 nm were
attributed to the first overtone of O–H stretching variations [23]; the wavelengths between 1600 nm
and 1800 nm were attributed to the first overtones of C–H stretching [24].
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3.5. PLSR Model Using Optimal Wavelengths

PLSR models were built using the optimal wavelengths selected by four different methods.
The results of PLSR models are shown in Table 3. SPA-PLSR, Bw-PLSR, and CARS-PLSR models
obtained better performances, with rc and rp over 0.9. RF-PLSR obtained slightly worse results, with rc

and rp over 0.8. The Bw-PLSR model obtained the highest rp and lowest RMSEP (shown in Figure 4).
A fact that the number of wavelengths reduced from 190 wavelengths of the full spectrum to 15, 21,
24, and 26 wavelengths of the optimal wavelengths. The number of wavelengths was significantly
reduced at least 86.3% by optimal wavelength selection. It was noticed that the PLSR models using
selected optimal wavelengths obtained similar or slightly worse performance to the full spectrum
PLSR model. The results showed that the selected optimal wavelengths carried useful information
relating to the quality parameters. Although the number of optimal wavelengths was small compared
with the full spectrum, informative wavelengths could be used for calibration instead of the full
spectrum with similar results. As for spectral analysis, use of informative wavelengths relating to
chemical meaning and quality parameters had great potential for practical application instead of the
full spectrum. The overall results indicated that optimal wavelength selection could be used to detect
SO2 residual content in sulfur-fumigated Fritillaria thunbergii Bulbus by HSI.

Table 3. Results of PLSR models using optimal wavelengths selected by four different methods.

Methods Model Par * rc RMSEC (g/kg) rp RMSEP (g/kg)

SPA PLSR 13 0.939 0.668 0.912 0.819
Random

frog PLSR 7 0.888 0.892 0.845 1.064

Bw PLSR 13 0.942 0.653 0.917 0.786
CARS PLSR 12 0.956 0.568 0.909 0.840

* par: par means the parameter of the model, i.e., number of LVs in PLSR model.
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3.6. Visualization of SO2 Residual Content Distribution

A full-spectra PLSR model obtained good performance for SO2 residual content determination.
As mentioned in section “Image Visualization”, full spectra of all pixels within the hyperspectral
images was a heavy computational task and required high-level computational hardware. A fact that
Bw-PLSR obtained similar performances as the full spectrum, and the amount of data was significantly
reduced by 88.9%. Thus, the Bw-PLSR model was applied to predict the SO2 residual content of each
pixel within the hyperspectral images. Firstly, the samples were isolated from the background to make
the reflectance of the background zero. Secondly, the spectrum of each pixel was extracted, and the
sample preprocessing methods were applied on the extracted pixel-wise spectra. Thirdly, the optimal
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wavelength selected by Bw from the pixel-wise full spectra was extracted. Fourthly, the Bw-PLSR
model expressed as Equation (2) was applied to predict the SO2 residual content of each pixel, and
the predicted pixels were formed as a prediction map. The prediction map of a hyperspectral image
of the samples fumigated by 10 g sulfur per 500 g samples is shown in Figure 5. The prediction map
was acquired on a computer for less than two minutes with an Intel Core (TM) i7-6700 processor
(3.40 GHZ), a NVIDIA GeForce GTX 750 Ti graphics cards and a 256 GB solid state disk.
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by 10 g sulfur per 500 g samples.

As shown in Figure 4, the distribution of SO2 residual content in sulfur-fumigated
Fritillaria thunbergii Bulbus was non-uniform. The samples within the hyperspectral images showed
the average measured SO2 residual contents in the range of 1.1–3.464 g/kg, and it could be found that
most of the predicted SO2 residual contents were in the measured range, indicating the efficiency of
the prediction map. The distribution of SO2 residual content could be directly visualized from the
prediction map.

In fact, it was difficult to measure the actual SO2 residual contents of each pixel; thus, the accuracy
of the prediction map now evaluated by the theoretical distribution and the average prediction value
of the samples. The calibration model was essential in image visualization, a representative, robust,
and accurate model was needed to ensure the prediction performance.

The prediction maps showed that HSI combined with the chemometric methods could be
used to detect and visualize SO2 residual content in Fritillaria thunbergii Bulbus, providing a new
method for online visualization and monitor of the quality of Fritillaria thunbergii Bulbus and other
Chinese medicines.

However, the disadvantage of HSI to detect residual SO2 in Fritillaria thunbergii Bulbus could
be attributed to the high cost of the instruments, and establishment and maintenance of the
calibration models. The cost of the instruments would decrease with the development of HSI-related
manufacturing techniques. Establishment and maintenance of calibration models is essential in
practical application. The calibration models should be accurate and robust, and maintenance of
calibration models to cover more features of the unknown samples would enhance the prediction
accuracy and model applicability.
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4. Conclusions

HSI (874–1734 nm), combined with the PLSR multivariate analysis method and optimal
wavelength selection methods (SPA, Bw, RF, and CARS), were used to detect and visualize the
SO2 residual content in Fritillaria thunbergii Bulbus. The pixel-wise spectra were preprocessed by WT
(Daubechies 8 wavelet function and the decomposition level 3) and MAS (seven smoothing points) for
spectra extraction and image visualization. SPA, Bw, RF, and CARS selected 15, 21, 24, and 26 optimal
wavelengths, respectively. PLSR models using full spectra and optimal wavelengths obtained good
performance, with rc and rp over 0.9 (except the RF-PLSR model), indicating the efficiency of optimal
wavelength selection. The Bw-PLSR was applied on a hyperspectral image to form a prediction
map, and the prediction map showed good performance with most of the prediction values in the
measured SO2 residual content range. The overall results indicated that HSI could be applied as a
useful and efficient technique for detection and visualization of SO2 residual in Fritillaria thunbergii
Bulbus. The results of this study could be helpful to detect residual SO2 in other Chinese medicines, as
well as the quality of Chinese medicines. The pixel-wise prediction for visualizing SO2 residuals in
Fritillaria thunbergii Bulbus would help to develop online, rapid, and real-time visual detection systems
for Chinese medicine quality in the future. More importantly, selections of optimal wavelengths
carrying useful information related to the quality parameters could significantly improve the model
efficiency and robustness.

Acknowledgments: This work was supported by 863 National High-Tech Research and Development Plan
(2013AA102301), and Science and Technology Project of Zhejiang Province (2015C37060).

Author Contributions: Juan He., Chu Zhang, and Yong He conceived and designed the experiments; Juan He
performed the experiments; Juan He., Chu Zhang, and Yong He analyzed the data; Juan He contributed
reagents/materials/analysis tools; Juan He., Chu Zhang, and Yong He wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duan, B.; Huang, L.; Chen, S. Study on the destructive effect to inherent quality of Fritillaria thunbergii Miq.
(Zhebeimu) by sulfur-fumigated process using chromatographic fingerprinting analysis. Phytomedicine 2012,
19, 562–568. [CrossRef] [PubMed]

2. Jiang, X.; Huang, L.F.; Zheng, S.H.; Chen, S.L. Sulfur fumigation, a better or worse choice in preservation of
traditional Chinese medicine. Phytomedicine 2013, 20, 97–105. [CrossRef] [PubMed]

3. Song, A.; Liao, Q.; Li, J.; Lin, F.; Liu, E.; Jiang, X.; Deng, L. Chronic exposure to sulfur dioxide enhances
airway hyperresponsiveness only in ovalbumin-sensitized rats. Toxicol. Lett. 2012, 214, 320–327. [CrossRef]
[PubMed]

4. Zhang, Q.; Tian, J.; Bai, Y.; Yang, Z.; Zhang, H.; Meng, Z. Effects of sulfur dioxide and its derivatives on the
functions of rat hearts and their mechanisms. Procedia Environ. Sci. 2013, 18, 43–50. [CrossRef]

5. Ding, K.; Cao, G.; Xu, Z.; Chen, X. Quantitative analysis coupled with toxic evaluation to investigate the
influence of sulfur-fumigation on the quality of Chrysanthemum morifolium. Nat. Prod. Commun. 2014, 9,
1357–1358. [PubMed]

6. Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015.
7. Wu, X.Y.; Chao, Z.M.; Sun, W.; Wang, C. Qualitative and quantitative research on sulfur fumigation of

Angelicae Dahuricae Radix (Baizhi) by near-infrared spectroscopy. China J. Chin. Mater. Med. 2014, 39,
1863–1868.

8. Zhang, H.; Wu, T.; Zhang, L.; Zhang, P. Development of a Portable Field Imaging Spectrometer: Application
for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals. Appl. Spectrosc. 2016, 70, 879–887.
[CrossRef] [PubMed]

9. Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17.
[CrossRef]

10. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. 2001,
58, 109–130. [CrossRef]

http://dx.doi.org/10.1016/j.phymed.2011.12.010
http://www.ncbi.nlm.nih.gov/pubmed/22326548
http://dx.doi.org/10.1016/j.phymed.2012.09.030
http://www.ncbi.nlm.nih.gov/pubmed/23127540
http://dx.doi.org/10.1016/j.toxlet.2012.09.010
http://www.ncbi.nlm.nih.gov/pubmed/23010223
http://dx.doi.org/10.1016/j.proenv.2013.04.007
http://www.ncbi.nlm.nih.gov/pubmed/25918810
http://dx.doi.org/10.1177/0003702816638293
http://www.ncbi.nlm.nih.gov/pubmed/27006019
http://dx.doi.org/10.1016/0003-2670(86)80028-9
http://dx.doi.org/10.1016/S0169-7439(01)00155-1


Appl. Sci. 2017, 7, 77 11 of 11

11. Araújo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive
projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab.
2001, 57, 65–73. [CrossRef]

12. ElMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and
tenderness of fresh beef. J. Food. Eng. 2012, 110, 127–140. [CrossRef]

13. Li, H.D.; Xu, Q.S.; Liang, Y.Z. Random frog: An efficient reversible jump Markov chain Monte Carlo-like
approach for variable selection with applications to gene selection and disease classification. Anal. Chim. Acta
2012, 740, 20–26. [CrossRef] [PubMed]

14. Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling
method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [CrossRef] [PubMed]

15. Cope, M.; Delpy, D.T.; Wray, J.S.; Reynolds, E.O.R. A CCD spectrophotometer to quantitate the concentration
of chromophores in living tissue utilising the absorption peak of water at 975 nm. In Oxygen Transport to
Tissue XI; Springer: New York, NY, USA, 1989; pp. 33–40.

16. Sonnenschein, R.; Jarmer, T.; Vohland, M.; Werner, W. Spectral determination of plant water content of wheat
canopies. In Proceedings of the 4th EARSel Workshop of Imaging Spectroscopy; New Quality in Environmental
Studies; Warsaw University: Warsaw, Poland, 2005; pp. 727–737.

17. Kawamura, K.; Watanabe, N.; Sakanoue, S.; Inoue, Y. Estimating forage biomass and quality in a mixed sown
pasture based on partial least squares regression with waveband selection. Grassl. Sci. 2008, 54, 131–145.
[CrossRef]

18. Lee, M.H.; Cavinato, A.G.; Mayes, D.M.; Rasco, B.A. Noninvasive short-wavelength near-infrared
spectroscopic method to estimate the crude lipid content in the muscle of intact rainbow trout. J. Agric.
Food Chem. 1992, 40, 2176–2181. [CrossRef]

19. Wu, D.; Chen, X.; Cao, F.; Sun, D.-W.; He, Y.; Jiang, Y. Comparison of infrared spectroscopy and nuclear
magnetic resonance techniques in tandem with multivariable selection for rapid determination of ω-3
polyunsaturated fatty acids in fish oil. Food Bioprocess Tech. 2014, 7, 1555–1569. [CrossRef]

20. Weyer, L.G.; Lo, S.C. Spectra– Structure Correlations in the Near-Infrared. In Handbook of Vibrational
Spectroscopy; John Wiley & Sons, Inc.: New York, NY, USA, 2006; pp. 1817–1837.

21. Rogel-Castillo, C.; Boulton, R.; Opastpongkarn, A.; Huang, G.; Mitchell, A.E. Use of near-infrared
spectroscopy and chemometrics for the non-destructive identification of concealed damage in raw almonds
(Prunus dulcis). J. Agric. Food Chem. 2016, 64, 5958–5962. [CrossRef] [PubMed]

22. De la Roza-Delgado, B.; Soldado, A.; de Faria Oliveira, A.F.G.; Martínez-Fernández, A.; Argamentería, A.
Assessing the value of a portable near infrared spectroscopy sensor for predicting pork meat quality traits of
“Asturcelta autochthonous swine breed”. Food Anal. Methods 2014, 7, 151–156. [CrossRef]

23. Workman, J.J., Jr. Interpretive spectroscopy for near infrared. Appl. Spectrosc. Rev. 1996, 31, 251–320.
[CrossRef]

24. Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0169-7439(01)00119-8
http://dx.doi.org/10.1016/j.jfoodeng.2011.11.028
http://dx.doi.org/10.1016/j.aca.2012.06.031
http://www.ncbi.nlm.nih.gov/pubmed/22840646
http://dx.doi.org/10.1016/j.aca.2009.06.046
http://www.ncbi.nlm.nih.gov/pubmed/19616692
http://dx.doi.org/10.1111/j.1744-697X.2008.00116.x
http://dx.doi.org/10.1021/jf00023a026
http://dx.doi.org/10.1007/s11947-013-1147-z
http://dx.doi.org/10.1021/acs.jafc.6b01828
http://www.ncbi.nlm.nih.gov/pubmed/27309980
http://dx.doi.org/10.1007/s12161-013-9611-y
http://dx.doi.org/10.1080/05704929608000571
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Hyperspectral Image Acquisition 
	Measurement of SO2 Residuals 
	Multivariate Analysis 
	Spectral Preprocessing and Outlier Detection 
	Calibration Model 
	Optimal Wavelength Selection Methods 
	Image Visualization 
	Software and Model 


	Results and Discussion 
	Spectral Profiles 
	Statistical Analysis of SO2 Residual Content 
	PLSR Model Using Full Spectra 
	Optimal Wavelength Selection 
	PLSR Model Using Optimal Wavelengths 
	Visualization of SO2 Residual Content Distribution 

	Conclusions 

