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Abstract: The need for a novel automated mosquito perception and classification method is becoming
increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases
and associated casualties. There exist remote sensing and GIS-based methods for mapping potential
mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods
generally do not account for species-wise identification of mosquitoes in closed-perimeter regions.
Traditional methods for mosquito classification involve highly manual processes requiring tedious
sample collection and supervised laboratory analysis. In this research work, we present the design
and experimental validation of an automated vision-based mosquito classification module that can
deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes
from other bugs such as bees and flies by extracting the morphological features, followed by support
vector machine-based classification. In addition, this paper presents the results of three variants of
support vector machine classifier in the context of mosquito classification problem. This vision-based
approach to the mosquito classification problem presents an efficient alternative to the conventional
methods for mosquito surveillance, mapping and sample image collection. Experimental results
involving classification between mosquitoes and a predefined set of other bugs using multiple
classification strategies demonstrate the efficacy and validity of the proposed approach with a
maximum recall of 98%.

Keywords: mosquito classification; support vector machine; feature extraction; computer vision;
automated mosquito surveillance

1. Introduction

It is estimated that half of the world’s population is under the risk of dengue fever, spread by
mosquitoes [1]. It is also identified that approximately 390 million dengue infections are identified
every year around the globe [2]. There is also evidence of the outbreak of combined infections of dengue
and chikungunya pathogens in human beings [3]. Even a typical dengue vaccine such as Sanofi Pasteur
CYD-TDV shows an efficiency of only 65.5% among people in the age group of above nine years and
44.6% in children younger than nine years [4]. The major transmission vectors of zika, dengue, yellow
fever and chikungunya include mosquitoes such as Aedes, Culex and Anopheles [5,6]. The inference from
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the analysis of research works related to mosquito-transmitted diseases demands the development of
an efficient automated system for detection, surveillance and classification of mosquitoes.

Several works have reported the prediction and mapping of geographical regions that are
vulnerable to mosquito transmitted diseases, by analyzing and manipulating the satellite images. Hay,
Snow and Rogers presented an aerial photographic identification of mosquito larva inhabitants through
of remote sensing [7]. In this study, the authors indicated the possibility of predicting spatial and
temporal distribution of malaria, by analyzing the mosquito larval density and data through remote
sensing. A similar technique was used by Zou, Miller and Schmidtmann, where the authors used
Global Information System (GIS), and integrated remote sensing methods for estimating the potential
larval inhabitants of Culex mosquitoes that transmit the West Nile virus [8]. In addition to the mosquito
larva inhabitant analysis on a macroscopic level, there are also works that reported on the analysis of
mosquito activities and flight trajectory analysis [9]. In the above-mentioned work, the authors used
multiple cameras to extract the flight trajectory of mosquitoes to understand the characteristics of
mosquito colonies. Even though several works have reported the geographical distribution of mosquito
larva and disease outbreak, minimal focus is given to species-wise classification of mosquitoes, which
lights the path for mosquito density mapping and classification.

The mosquito identification method includes DNA analysis, which required a very undeveloped
mosquito sample collection method. Moreover, the method requires several laboratory examinations
to be performed with an expert supervision [10,11]. Hence, an automated method could be more useful
for mosquito classification. Li et al. presented a mosquito classification by spectral analysis of wing
beat waveforms followed by an artificial neural network classification system [12]. Results of this
study indicated an average accuracy of 72.67% in classifying the mosquito species. Similarly, the work
carried out by Moore, Miller, et al. proposed a method for classifying flying insects including the Aedes
mosquito by analyzing their wing-beat frequencies [13]. The study indicated success in classifying
species and sex of individual insects with an accuracy of 84%. Even though the method of spectral
analysis of wing beat waveforms, followed by a trained classifier method, yields success, it is very
difficult to acquire the wing-beat waveform from a mosquito inhabitant.

The typical method for vision-based object classification starts with feature extraction, followed by
using a trained classifier for classification. Raymer et al. presents a new feature extraction approach that
uses genetic algorithm for feature selection, feature extraction, and training classifiers [14]. A method
for the order level classification of insects from the images using support vector machine (SVM) and
artificial neural network (ANN) has been mentioned by Wang et al. [15], where the authors introduced
a novel feature extraction method from the acquired images of insects. In this feature extraction method,
body area ratio, eccentricity, upper body length ratio, width ratio, body shape parameter and color
complexity parameters of the insects that attribute the uniqueness of the insects are taken into account.

Numerous works have been identified for formulating effective methods for image retrieval
and classification. A novel computer chip defect detection method was discussed in [16] that is more
effective and efficient than typical template image comparison methods. In the above-mentioned
work, the authors introduce a new methodology that uses phase only Fourier transform (POFT) for
saliency detection followed by a local discrepancy evaluation between the test images and defect free
images. The work mentioned in [17] presents a novel subspace learning framework called conjunctive
patches subspace learning (CPSL) for effective semantic subspace learning. In this work, the authors
also demonstrate the effectiveness of the proposed framework in improving the performance of
content-based image retrieval (CBIR). Similarly, the research work put forward by Zhang et al.
introduces two methods called biased maximum margin analysis (BMMA) and semi-supervised biased
maximum margin analysis (SemiBMMA) that reduces the downsides of conventional SVM-based
relevant feedback scheme in CBIR [18]. In addition to the image retrieval, significant research works
have been identified in formulating classification methods and improving existing methodologies for
classification. The work mentioned in [19] presented an effective method for complexity reduction and
performance elevation of neural network-based classifications. A novel neuro-SVM-based classification
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strategy had been proposed for the classification of LIDAR backscatter intensity data in the work
mentioned in [20]. From the authors’ perspective, the proposed architecture shows a high prediction
accuracy, hence it is most suitable for LIDAR data classification. The work of [21] discusses the usage
of a semi-supervised neural network for classification of hyperspectral images. The authors are able
to achieve better accuracy in hyperspectral image classification problems. Similarly, the design of
efficient artificial neural networks in the context of multi-sensor remote-sensing image classification is
mentioned in [22].

Even though both ANN- and SVM-based methodologies are used in classification and image
retrieval scenarios, it is identified that the SVM-based classification could provide more accurate
results [23–25]. This paper details the design and development of an automated mosquito classification
system, concluding with experimental results using the prototype sensor module that validates the
proposed approach in classifying mosquitoes from a set of other predefined bugs. The developed
system can classify mosquitoes from a set of other predefined bugs such as bees and flies. The main
challenges in designing an automated mosquito surveillance system includes the choice of extracted
features, classification algorithm and the non-trivial process of implementing theoretical designs
generated analytically into physical mechanisms. The proposed approach is environment-friendly,
in terms of mosquito surveillance in open or closed drain perimeter, narrow channels and reservoirs,
where the satellite mapping and manual examination methods are highly difficult. We analyze
the morphological characteristics that distinguish the mosquitoes from other insects and provide
color-based analysis for distinguishing the mosquito species. Our long-term objective is to deploy
the developed mosquito classification system on a mobile robotic platform, capable of autonomously
synthesizing mosquito-vector-density maps across larger areas.

The rest of the paper is organized as follows: Section 2 presents the method used in this paper.
Section 2.1 shows the system overview of the developed sensor module. Section 2.2 discusses the
feature extraction method implemented. Section 2.3 introduces the SVM-based classification process
used. Section 3 presents the experiments involving 400 images of mosquitoes and a predefined set
of other insects to validate our approach. Lastly, Section 4 concludes this study and discusses the
future work.

2. Methods

2.1. The System Overview

We structured a system for classification of mosquitoes among other insects based on vast research
literature that deals with pattern and object recognition approaches applied to diverse application
domains. Object recognition is usually performed by using a feature extraction method followed by
a trained classification. Some of the methods used for the object recognition include SURF [26] or
SIFT [27] feature extraction with Bag of visual word (BoW) representation of features, and training
SVM [28]. This typical method for feature extraction and classification forms the basis of our work.
The first step in this system of classification is image segmentation using split-and-merge algorithm to
isolate the insect of interest from the background region. After the image pre-processing, the feature
extraction is carried out in the images of every specimen. The morphological and color-based features
are extracted from the images simultaneously. Once the set of features are extracted they are combined
together and truth class labelling is done for these combined features.

The truth class labelling will cluster the extracted features, and the resultant clusters are used for
the purpose of training the SVM classifiers. Figure 1 shows the architecture diagram of the mosquito
classification system. We implemented the whole system in C++ platform linked with OpenCV 2.4.1
library on a PC with Windows system. OpenCV 2.4.1 is a portable, architecture neutral and open
source computer vision library.
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Figure 1. The schematic system architecture diagram of the proposed mosquito classification system.

2.2. The Feature Extraction

There are numerous feature extraction methods that exist in the image processing and computer
vision domains. One popular approach to this end is the SIFT feature extraction method that has been
extensively used for texture recognition and object identification tasks [27]. In the above-mentioned
work, the authors used a standard dataset containing images of patterns and objects. In the context of
mosquito classification, the above-mentioned methodology is challenging because it is quite tedious to
distinguish mosquitoes considering body pattern as a classification criterion. In this work, we propose
a new feature extraction method which accounts for both the color and morphological features of
the acquired images of insects. In this feature extraction method, morphological difference between
the mosquitoes and insects accounts for the identification of mosquitoes among the other insects.
As the first step of feature extraction, the color histogram of each image is extracted. After the color
histogram extraction, we segment all images for trunk and leg regions. Upon these, the ratios of the
trunk width to the leg length of segmented regions are determined using mathematical formulations
and distance calculation algorithms. As the third step in the feature extraction, we perform the truth
class labeling for the extracted feature and use it for training the support vector machine classifiers.
Figure 2 shows the flow diagram of the feature extraction method used in this research work. For the
background–foreground extraction, we used the graph cut algorithm commonly used in the computer
vision community. The graph cut is a graph theory-based image processing method which is used for
segmentation of images [29]. In order to use the graph cut algorithm for extracting the background
or foreground, the algorithm must be trained with foreground or background regions of the image.
Therefore, we determined the edges and saliency map of the images.

Both the edges and saliency map of the images are taken as the training data for the graph cut
algorithm. The saliency map is generated by combining multi scale image features to a feature map
which can be used as a tool for rapid scene analysis [30]. The saliency map integrates the orientation,
color, and intensity information from an image. Therefore, we extracted the color map, intensity map
and orientation map of the input images and integrated them to generate the saliency map. Figure 3
shows the saliency map generated from a sample mosquito image. On a saliency map, the pixels that
show the foreground data will possess the highest value. Hence, to identify the foreground, we have
defined a couple of thresholds N1 and N2 to determine the foreground from the saliency map. Using
trial and error methods, we assigned the values 50 and 30 corresponding to N1 and N2. The pixels
that show a value greater than N1% of the maximum pixel value in the saliency map are treated as
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most probable foreground pixels. The pixels that show a value less than N2% of the maximum pixel
value in the saliency map are treated as the least probable foreground pixels. The pixels that have a
value range between N2% to N1% of the maximum pixel value in the saliency map are considered as
moderately probable foreground pixels.Appl. Sci. 2017, 7, 51  5 of 12 
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Figure 3. The saliency map generation from an input image (A), the color map (B), intensity map (C),
and the orientation map (D) are combined to obtain the saliency map (E).

However, with the help of the saliency map alone, we cannot determine the foreground pixels
accurately. Hence, we also used the edge information of the image for determining the foreground
accurately. The edge information from the image is done by applying a Sobel filter in the image [31].
The Sobel filter applies a 2D gradient on the image, so that the rapid changes in a grayscale image
along the vertical and horizontal direction can be determined. To determine the foreground pixels
from an edge image, we introduced certain thresholds for deciding the foreground and background
data. As we did in the saliency map, three thresholds N3, N4 and N5 were fixed. The pixels that show
a value greater that N3 in the edge image are treated as most probable foreground pixels. The set
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of pixels that possesses values more than N5 in the edge image are treated as the most probable
background pixels. The pixels that have values ranging between N4 to N5 are treated as moderate
probable foreground pixels. By trial and error, we fixed the N3, N4 and N5 as 255 × 0.8, 255 × 0.5 and
255 × 0.2 respectively. After completing the foreground estimation of images by applying thresholds
in saliency map and edge images, the graph cut algorithm is trained. The images obtained from
the saliency map and edge images are used as the training images for the graph cut algorithm for
identifying the mosquito region Figure 4.
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Figure 4. The edge image (A); the training image (B) (the green region represents the most probable
foreground pixels and red region represents the moderate probable foreground region); the training
image (C) after thresholding the saliency map; and the segmented region (D).

Once the mosquito region is extracted from the image using graph cut, the next step in the image
segmentation process is decimation of each image to trunk and leg regions. We made an assumption in
this work that all the insects of the same species appear similar in size in all the images. The leg-trunk
decimation of the mosquito images can be done based on the morphological difference between the
legs and the body of the mosquito. The species that belong to the hexapod class typically possess
thinner and more elongated limb appendages than the thorax region. Hence, we decided upon the
width of mosquito region as the criterion for decimation. Since the mosquito region is complex and
irregularly structured, it is difficult to estimate the dimensions. Hence, for the width estimation, we
extracted the contours of the mosquito region using geometric methods. Once the contour is defined,
we assumed line segments that starts from each and every pixel on the contour and ends on another
pixel on the contour by bisecting the mosquito region. Each line segment emanating from a single pixel
will have a 45-degree difference in the slope. The lengths of assumed line segments give the thickness
of the mosquito region measured along eight directions from all pixels in its contour. The mosquito
region that shows a thickness above 40 pixels per unit or above is considered as the trunk region
and the remaining portion is considered as the leg region (Figure 5). The final task in the image
segmentation process is building smooth and complete leg and trunk regions which helps to extract the
length-to-width ratios from the leg and trunk regions. To fill the leg and trunk regions in the contour
images, we perform several erosion and dilation processes. To develop a filled and smooth trunk
region, a total of six erosions and 10 dilations are done. Similarly, for the leg region, 12 erosions and
dilations have been executed.

After the process of image segmentation, the ratios of the trunk width to the leg length of
segmented regions have to be estimated. For the trunk-width and leg-length estimation, we adopt
different methodologies. In the case of the leg-length estimation, we transform the leg region image to
a sparse image consisting of end point, branch point and passing point. The shortest distance between
the endpoints gives the length of the leg region. We use Dijkstra’s algorithm [32] to obtain the shortest
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distance between the end points. For finding out the width of the trunk region, we determine the
centroid of the trunk region first. The minimal distances measured from one boundary pixel to the
other in the trunk region are calculated along all the directions indicated by a straight line passing
through the centroid. This minimal distance gives the trunk width. Figure 6 explains the length and
width estimation of leg and trunk regions. The normalized form of the length-to-width ratio of the leg
and trunk regions becomes the morphological feature extracted from the mosquito images. Equation (1)
represents the normalization of ratios as captured in this work.

Xnorm =
(X−m)

(M−m)
(1)

where X is the leg length to trunk width ratio, M is the maximum value for X, and m is a minimum
value of X.Appl. Sci. 2017, 7, 51  7 of 12 
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indicates the incorrect identification of bees or flies, and orange color indicate the incorrect identification
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Appl. Sci. 2017, 7, 51 8 of 12

2.3. The Classification Process

After the feature extraction, the data vectors are encoded using truth class labelling before the
classification. In this work, we used support vector machine (SVM) classifiers for classifying the
mosquito species, bees and flies. SVM is a supervised learning algorithm used for data classification.
SVM classifies its input by considering the input as data vectors in a higher-dimensional space,
and optimal classification boundaries are created to separate the data vectors. The classification
boundaries can be the hyperplanes that partitions the vector space. If the data vectors can be placed
in a bi-dimensional space, we can consider the hyperplane as the line segment that defines the
classification boundary among the vectors that belong to the bi-dimensional space. Since SVM is a
supervised learning algorithm, it defines the hyperplanes using the training data given in its training
phase. In the training phase of the SVM, both the positive and negative examples from each category
to be classified (mosquitoes and other bugs) have to be used for the hyperplane generation. The SVM
classifiers define the hyperplanes by maximizing the Euclidian distance between the support vectors
and the margin of the hyperplane in the higher-dimensional space. In this work, we use three variants
of SVM classifiers, and the performance of these variants in the context of mosquito classification
is evaluated. We use C-Support Vector Classification (C-SVC) and nu-Support Vector Classification
(nu-SVC) variants of SVM modules to perform the classification. With the C-SVC module, we perform
the classification using linear and radial basis function (RBF) as the kernel functions. In addition to
C-SVC, we preformed the classification using RBF as the kernel for nu-SVC type of SVM classifiers.
Here, the three variants of SVMs (SVM-I, SVM-II and SVM III) address a single classification scenario
as comparisons. The strategy of using multiple classification methodologies on identical classification
scenario paves the way for identifying the felicitous variant of SVM for the classification task considered.
The mathematical expression that defines the C-SVS is shown below.

f (x) =
1
2
‖w‖2 + C

N

∑
n=1

ξn (2)

in this equation, we represent w as the weight vector, and C represents the penalty weight and ξn

is the slack variable. The nu-SVC classifier with ρ and ν as the parameters can be mathematically
expressed as,

1
2
‖w‖2 − νρ+

1
N

N

∑
n=1

ξn (3)

We fix the parameters such that, ρν = 0.5. The Table 1 shows the three types of SVM used in the
proposed classification scheme as well as the corresponding kernel functions used where X1 and X2

represent the feature vectors. In the case of RBF, we set the σ value as 5.0 × 10−4.

Table 1. Three types of support vector machine (SVM) and corresponding kernel functions used for the
classification process, C–SVC: C-Support Vector Classification, nu-SVC: nu-Support Vector Classification.

Type SVM Module Kernel Mathematical Expression for Kernel

SVM I C-SVC Linear K(x1, x2) = x1
T x2

SVM II C-SVC Radial Basis Function K(x1, x2) = exp (− |x1−x2|2
2σ2 )

SVM III nu-SVC Radial Basis Function K(x1, x2) = exp (− |x1−x2|2
2σ2 )

3. Results

The insect dataset was generated after three months of field data collection via a digital camera and
web-based image collection using images.google.com as the key search engine. A total of 400 images
of mosquitoes (200), flies (100) and bees (100) were collected. Among the 400 images, 100 images
of mosquitoes, 50 images of flies and another 50 images of bees were taken for training the system.
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Remaining images from each set were used for the validation of the system. Figure 6 demonstrates
the results from classified images from our training experiments using the SVM. We use the SVM
by invoking LibSVM library that is included in the OpenCV package. Figure 7 illustrates the sample
images correctly and incorrectly classified from our test. Table 2 shows the experimental results
of accuracy analysis in terms of mosquito identification, while SVM I is used for classification.
The experiments show accuracies of 65.6% and 76.0% in identifying the other bugs namely bees
and flies. The experiments show a recall percentage of 82%—the proportion of positive images that
are returned in the case of mosquito identification—and a recall percentage of 57% in identifying
other bugs.
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bug (B); (C,D) shows wrongly classified bug and mosquito.

Table 2. The result of the classification of mosquitoes and others bugs using SVM I.

Insect Mosquitoes Other Bugs Accuracy %

Mosquitoes 82 43 65.6
Others 18 57 76.0

Recall % 82.0 57.0

The results convey that the usage of SVM with linear kernel function is not effective for classifying
mosquitoes and other bugs. The linear basis function generates a simple 2D hyperplane to decimate
the data vectors into two classes. If the data points are clustered in an overlapped fashion in the
multidimensional space, the probability of error in the classification using SVM with linear kernel
function will be higher. In the above-mentioned case, a complex hyperplane can classify the data
points effectively, whereas the RBF kernel generates a complex hyperplane in the multi-dimensional
space. Tables 3 and 4 shows the experimental results of accuracy analysis in terms of the mosquito
identification where SVM II and SVM III are used. The results show the accuracies of 85.2% and 98.9%
when using SVM II and SVM III for identifying mosquitoes, respectively. Moreover, the classifications
using SVM II and SVM III show 97.6% and 92.2% accuracy in identifying the other bugs, namely bees
and flies. The results with SVM II show a recall percentage of 98%, but in the case of SVM III the recall
percentage is 92%.
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Table 3. The result of the classification of mosquitoes and others bugs using SVM II.

Insect Mosquitoes Others Bugs Accuracy %

Mosquitoes 98 17 85.2
Others 2 83 97.6

Recall % 98.0 83.0

Table 4. The result of the classification of mosquitoes and others bugs using SVM III.

Insect Mosquitoes Others Bugs Accuracy %

Mosquitoes 92 1 98.9
Others 8 99 92.5

Recall % 92.0 99.0

4. Conclusions

We have developed a novel mosquito identification and classification method based on SVM.
The image-based classification is achieved by extracting the width-to-length ratio of the trunk and
leg region of mosquitoes and other insects followed by a trained SVM classifier. The accuracy of
the proposed method using three variants of SVM classifiers is evaluated. The proposed approach
with C-SVC SVM module shows a maximum accuracy of 85.2%—the proportion of returning images
that are positive while identifying the mosquitoes—and a 97.6% accuracy in identifying the other
bugs namely bees and flies. The experiments show a recall percentage of 98%—the proportion of
positive images that are returned in the case of mosquito identification—and a recall percentage
of 85% in identifying other bugs. Future research will focus on: (1) developing sensor hardware
and extending our experiments to online field trials; (2) including additional features to improve
the performance of the classifier; (3) expanding the work done to compare alternative learning
approaches, including neural networks, genetic algorithms and fuzzy logic in the context of mosquito
classification; (4) integrating the proposed sensor module on-board a mobile robot platform to
synthesize mosquito vector density maps of extended regions; and (5) finding distinguishable features
to conduct sub-species mosquito classification.
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