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Abstract: Breast ultrasound is an important tool used in the medical treatment and diagnosis of breast
tumor. However, noise defined as speckles are generated inevitably. Although the existence of speckle
may be beneficial to diagnosis if used by a well-trained observer, it often causes disturbance which
negatively affects clinical diagnosis, not only by reducing resolution and contrast of ultrasound images,
but also by adding difficulties to recognize tumor region accurately. In this paper, we investigate
a number of popular de-speckling algorithms, including filters based on frequency domain, filters
based on local statistical properties, filters based on minimum mean square error (MMSE), and filters
based on Partial Differential Equation (PDE). Two visual measurement evaluation criteria, i.e., Mean
to Variance Ratio (VMR) and Laplace Response of Domain (LRD), are chosen for the performance
comparison of those filters in the application of ultrasound breast image filtering. Moreover,
the filtering effect is further evaluated with respect to the segmentation accuracy of tumor regions.
According to the evaluation results, we conclude that Bilateral Filter (BF) achieves the best visual
effect. Although Weickert J Diffusion (WJD) and Total Variation (TV) can also obtain good visual
effect and segmentation accuracy, they are very time-consuming.
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1. Introduction

Breast cancer is the second leading cause of cancer death in women after lung cancer. It was
estimated that 39,520 women in USA died of breast cancer in 2011 [1]. On current trends, the incidence
and death rates of breast cancer are not likely to fall in the near future. Although breast cancer is
regarded as one of the most fatal diseases, the earlier tumor is diagnosed, the greater the chance of
survival. It is very important to improve the accuracy of breast cancer diagnosis so that patients
can have the optimal opportunity of treatment and cure. Currently, ultrasound images are widely
used in medical fields, especially the B-mode ultrasound image. Breast ultrasound image (BUS)
plays a dominant role in tumor diagnosis and treatment because of its good accuracy, low-expense,
non-invasive and applicable nature [2].

However, as a result of the coherent nature of ultrasound imaging, a noise pattern known as
a speckle is inevitably generated. The speckle is known to hamper object recognition [3]. The existence
of speckle disrupts clinical diagnosis, especially the computer-aided diagnosis (CAD), not only by
reducing the image resolution and contrast [4] and hence causing classification errors of the breast
tumor, but also by adding difficulties to subsequent image processing, e.g., tumor region segmentation
and recognition. Hence, speckle suppression filtering (to achieve smoothness in the homogeneous
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region and clearer details in the edge region) is a prerequisite procedure in BUS image processing to
promote image quality and tumor segmentation accuracy.

Predecessors have made efforts to analyze the speckles in medical ultrasound images. Speckle
pattern is categorized in three classes according to the number of scatterers per resolution cell called
scatterer number density (SND). The first one is fully formed speckle (FFS) pattern. The SND of
this speckle pattern is larger than 10, and the amplitude of the backscattered signal can be modeled
as a Rayleigh (Rayleigh distribution) [5]. Moreover, the Speckle is a form of multiplicative noise
triggered by the interference between ultrasound waves [6]. The second one is non-randomly
distributed with long-range (NRLR) order [2], which can be modeled by K-distribution or Nakagami
distribution. The third one is non-randomly distributed with short-range (NRSR) order [2], and the
probability density function (PDF) of the backscattered signal becomes close to Rician distribution.
The three classes [7] are associated with a constant Signal Noise Ratio (SNR) of 1.92, below 1.92 [8] and
above 1.92, respectively.

Generally, we assume that in some cases, properties of speckle in BUS images are similar to FFS [5]
in which the contaminated image model can be expressed as the original one with multiplicative
noise. Additionally, image inevitably contains additive Gaussian white noise (GWN) due to the
inherent characteristics of communication channel. Therefore, the model of a contaminated image
approximately expressed as: Ig = I f · nm + na [4], where I f stands for original image, Ig is the
contaminated image, nm is the multiplicative noise and is assumed to obey Generalized Gamma
distribution [9], and na is the additive GWN. Note that nm and na, which form speckles, can be
regarded as degradation function and additive noise, respectively.

Various filtering algorithms have been applied to medical BUS images and achieved good
performance for speckle suppression. The existing filtering algorithms can be classified into the
following categories: (1) filters based on frequency domain; (2) filters based on the local statistical
properties; (3) filters based on the minimum mean square error (MMSE); and (4) filters based on Partial
Differential Equation (PDE).

The filtering algorithms based on the information of spectrum can be labeled as filters based on
the characteristics of frequency domain. They are applied to de-speckling by inhibiting a region of the
spectrum. However, the noise and the location in an image are not relevant to each other. Therefore,
we are unable to locate the noise in the frequency domain, which results in the inability to accurately
separate the noise from the image. Currently, speckle reduction via filtering in the wavelet domain
has aroused concern, e.g., the idea of soft-thresholding de-noising first presented by Donoho [10].
However, two major drawbacks of the thresholding methods should be concerned [11]. Firstly, it is
almost impossible to find the optimal solution for all kinds of images. Secondly, it is unadvisable to use
the same noise model for the diverse resolutions. Although the wavelet spectrum can present more
details than the frequency spectrum, the problem of how to recognize the noise remains unsolved.

For the filtering method based on local statistical properties, adaptive mean filters [12,13] have
been proposed. These filters remove speckle noise via local image statistics such as mean and variance,
instead of requiring degradation and noise function. In the homogeneous region of the image,
filters act like a mean filter, while in the edge region they act like a nearly all-past filter. However,
the performance of de-speckling is constrained by the local statistics that are ineffective in some cases,
such as the de-speckling area contains both speckle noise and significant texture. Non-local means
(NLM) de-noising [14,15] has been a focus of research in recent years, which is based on the non-local
averaging of all pixels in the image. In particular, the weight of each point is proportional to the
similarity of its neighborhood with that of the point being filtered. After the non-local means filter
was proposed, the concept of non-local was rapidly adopted by other researchers [16,17]. The Bilateral
Filter (BF), as a specialization of NLM filter algorithms, has been more widely applied in de-speckling
due to its user-friendliness and less time consumption [18].

For the filtering method based on the MMSE, this type of filtering algorithm already proposed for
de-speckling [19] includes the process of additive noise suppression and inverse degradation. The goal
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is to find the estimated value I∧
f

of non-contaminated image from Ig by minimizing mean square

error between Ig and I∧
f
. In order to obtain I∧

f
, it is necessary to obtain degradation and additive noise

function, which is quite difficult because of the characteristic of BUS image. Besides, the MMSE filter is
a linear filter and reduces speckle noise with blurring the image [20]. It has been known that linear
filters do not perform well in de-speckling since it blurs sharp edges [21], and the sharp edges are very
important for segmentation of tumors.

The PDE methods applied to achieve high-quality image de-noising have attracted extensive
attention [7,22]. The diffusion filtering category includes isotropic model such as Perona–Malik
diffusion (PMD) filter [23], anisotropic model such as Weickert J Diffusion (WJD) filter [24], and another
diffusion model such as Total Variation (TV) filter which was first proposed by Rudin et al. [25]. In PMD
model, the value of diffusion coefficient is only relevant to the magnitude gradient of image. However,
according to WJD and TV models, both the value and direction of diffusion are taken into account.
Therefore, the PMD model is the simplest one among these three algorithms, but is more sensitive
to noise.

In the past decades, a large amount of algorithms have been proposed to contribute to medical
ultrasound image filtering, and some works have been done to compare their performances.
Loizou et al. [26] has compared 10 de-speckle filters in ultrasound images of the carotid artery
bifurcation based on texture analysis, image quality evaluation metrics, and visual evaluation.
Finn et al. [27] described fifteen speckle filters for the application of echocardiography, and it also
discussed the computational performance of the filters. Manth [28] evaluated the performance of
de-speckle filters by using a dataset of 64 B-Mode liver ultrasound images based on three kinds of
measurements. Zhang et al. [29] made a comparison of eleven de-speckle filters for the BUS images and
simulated images based on several comparing methods, such as blind image quality metric (NIQE).
However, it did not discuss the computational performance of the filters and the filtering effect for the
subsequent processing, such as segmentation. Kaur et al. [30] made a comparison of eleven spatial
de-speckling filters for Ultrasound based on some performance metrics, such as mean square error.
However, there are a lot of de-speckling filters which are not spatial filters, such as Wavelet Transform
Filter (WTF).

Motivated by the application of ultrasound breast images, we systematically evaluate eight
de-speckling filters according to the categories of filters discussed above. The evaluation consists of
the performance of visual measurement, the filtering effect on tumor region segmentation accuracy
and computational performance. In relation to the BUS images, the degree of approximation of
the estimated image cannot be measured due to the inaccessible original image. Hence, reasonable
parameters should be set to compare and analyze the performance among different types of filtering
algorithms. In most cases, not only us, but also the doctors pay close attention to the visual
measurement. This includes the degree of smoothness in the homogeneous region and the clarity
of detailed features in the edge region. In this paper, Mean to Variance Ratio (VMR) [31] which is
also named as equivalent number of looks and Laplace Response of Domain (LRD) [32] are chosen to
evaluate the key performance, i.e., the degree of smoothness in the homogeneous region and clarity
of edge detailed features in the edge region, respectively. Moreover, we show the filtering effect on
tumor region segmentation accuracy. Referring to experimental results, a general conclusion discusses
the cause of different performances between different filters, parameter settings and improvement of
some certain filters.

2. Filtering Methods

For speckle suppression of medical ultrasound breast image, we can broadly categorize the
filtering algorithms and compare the performances among different filtering algorithms to find the
most preferred one. Because of numerous applications and versatility of de-speckling filters, this paper
is unable to discuss all proposed filters. In this paper, we discuss eight typical filtering algorithms
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according to the filter categories discussed above: WTF, Gaussian–Laplace Filter (GLF), Lee Filter (LF),
BF, Wiener Filter (WF), PMD, WJD, and TV.

2.1. Frequency Domain–Based Filter

Wavelet Transform Filter

WTF is based on wavelet theory and performs in the wavelet domain. The original signal will
be transformed to the wavelet domain by Wavelet Transform. For the reason that the sparsity of
wavelet coefficient, i.e., a few large coefficients contains most of information of the signal, the filtering
processing can perform according to a threshold. After the idea of soft-thresholding de-noising first
presented by Donoho [10], many researchers [33–35] tend to apply the WTF filter to de-speckling of
the medical ultrasound image. Generally, WTF can be expressed as follows

I∧
f
(t) =

1
Cϕ

x
Wϕ(s, τ)

ϕs,τ(t)
s2 dτds (1)

where Cϕ =
∫
(|ψ(u)|2/|(u)|)du, ψ(u) is the Fourier Transform of ϕ(t), and Wϕ(s, τ) with modified

wavelet coefficients is the Wavelet Transform of speckle image Ig(t), s is a positive value and defines
the scale of WTF and τ is a real number and defines the displacement of WTF.

In this method, the decomposition of a signal in wavelet domain and its wavelet coefficients can
be obtained. For the de-noising processing, wavelet coefficients lower than certain threshold values are
modified to zero. Finally, the reconstruction of the estimated image can be derived by inverse wavelet
transform with processed coefficients.

2.2. Local Statistical-Based Filter

2.2.1. Gaussian Laplace Filter

GLF is a kind of filter which both considers de-noising and edge protecting of an image. As most
edge detail locate in the high frequency region, high pass Laplace filter can be regarded as an effective
and simple example in images to preserve edge detail [36]. Nevertheless, filtering performance is
highly limited because of high sensitivity to noise and natural contradiction between de-noising and
retaining details of edge. To this end, it is essential for Gaussian smoothing to be used in cooperation
with a Laplace filter for BUS images [37]. GLF [32] can be shown as

I∧
f
(x, y) = Ig(x, y)× h(x, y) +∇2(Ig(x, y)× h(x, y)) (2)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 , h(x, y) = 1√
2πσ

exp(− x2+y2

2σ2 ) is a Gaussian function, and σ is the standard
deviation. As illustrated above, GLF is obviously composed of two parts. One is for de-noising, and the
other is for edge enhancement.

2.2.2. Lee Filter

The LF is based on local statistics [12] proposed by Lee [38], and dealing with the multiplicative
noise signal. Many researchers have used the LF for de-speckling in Synthetic Aperture Radar (SAR)
images [39,40]. Insana [41] indicates that the LF can also perform well for the medical ultrasound
breast image. Based on the properties of LF, images can be converted into a linear expression regardless
of whether it contains additive or multiplicative noise.

Therefore, this is appropriate for the BUS image in which multiplicative noise and additive noise
coexist. The LF function for this compounded noise can be expressed as

I∧
f
= I f + k(Ig − nm · I f − na) (3)
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Notation nm is the multiplicative noise and na is the additive noise. I f , Ig, nm and na stand for the
mean of I f , Ig, nm and na, respectively. In addition,

k =
nm ·Q

I f
2 · σ22 + nm

2 ·Q + σ1
2

and Q =
var(Ig) + Ig

2

σ22 + nm
2 − I f − σ1

2 (4)

where σ2
1 is the variance of na, σ2

2 is the variance of nm, and var
(

Ig
)

is the variance of Ig.
As the speckled medical ultrasound image can be described as Ig = I f · nm + na, the Lee filtering

algorithm seems to be effective. However, in fact, when it is used in BUS images, failure arise in
accurately estimate the mean and variance of nm, which may affect the performance of the suppression
of multiplicative noise.

2.2.3. Bilateral Filter

BF is a specialization of non-local mean filter. It extends the concept of Gaussian smoothing by
weighting the filter coefficients with a corresponding penalty for difference of pixel intensity between
the pixel to be filtered and its neighboring pixels. The output of the BF is a weighted average of its
neighboring pixels. The BF was first introduced by Aurich et al. [42] by using the name of “non-linear
Gaussian filter”, and then rediscovered by Tomasi et al. [43] who gave it the current name. Due to the
simplicity and good performance in edge preservation, many researchers highly praised this method
and applied it for de-speckling medical ultrasound images [18]. BF is defined as

I∧
f
(x, y) =

∑kl Ig(k, l)Wd(x, y, k, l)Wr(x, y, k, l)
∑kl Wd(x, y, k, l)Wr(x, y, k, l)

(5)

and,

Wd(x, y, k, l) = exp(− (x− k)2 + (y− l)2

σd
2 ), Wr(x, y, k, l) = exp(−

[Ig(x, y)− Ig(k, l)]2

σr2 ) (6)

where σd and σr are the parameters affecting low-pass filter and the degradation function separately.
It can be indicated that the smoothing degree in the homogeneous region of image depends on σd.

The higher σd is, the smaller cut-off frequency of the Gaussian low-pass filter is. The gray value of
homogeneous region is more close to the Direct Current (DC) component.

Assuming that I f (x,y) = C, (x, y) belongs to the homogeneous region, and the contaminated
image is Ig = I f · nm + na, where na is GWN, we have

F(0) FT←→ I∧
f
(x, y) = mean(Ig(x, y)) = mean(I f (x, y) + na) (7)

and
I∧

f
(x, y) = mean(If(x, y)) = C, and var(I∧

f
(x, y)) = 0 (8)

Where mean(·) operator means to calculate the mean value of an image, and var(·) operator means
to calculate the variance of an image. As shown above, in the homogeneous region of an image,
the de-noising result is equal to the expectation of the neighbor, such as de-noising by a low-pass
filter with the cut-off frequency zero. However, we cannot just increase σd because greater σd leads
to more loss of edge information. Thus, in order to preserve the smoothness of homogeneous region
and sharpness of the edge region, both σr and σd need to be adjusted simultaneously. The relationship
between σd and σr can be calculated by the fixed LRD [32] as the following

∇2[I∧
f
(x, y)] = C (9)
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Then

C = ∇2[I∧
f
(x, y)] = ∇2

[
∑kl Ig(k, l)Wd(x, y, k, l)Wr(x, y, k, l)

∑kl Wd(x, y, k, l)Wr(x, y, k, l)

]
(10)

If Ig(k, l) and LRD are kept constant, we can then obtain:

σd
2 ∝ 1/σr

2 (11)

The Equation (11) means that when increasing σd, in order to keep LRD unchanged, σr should be
decreased simultaneously.

2.3. MMSE-Based Filter

Wiener Filter

As one of the MMSE methods, Wiener filtering algorithm proposed by Wiener achieves optimal
results on average based on the statistic minimization criterion [44], and it has been widely applied.
The main idea of WF is to minimize mean square error between the filtered image and its original
image. It can filter the noise of image and protect details of image, simultaneously. Modified filter
algorithms [45] have represented their usefulness in de-speckling of medical ultrasound image. WF is
expressed as follows

F̂(u, v) = [
H ∗ (u, v)

|H(u, v)|2 + Sn(u, v)/Sg(u, v)
]G(u, v) (12)

or,

F̂(u, v) = [
1

H(u, v)
|H(u, v)|2

|H(u, v)|2 + Sn(u, v)/Sg(u, v)
]G(u, v) (13)

where H(u, v) is the degradation function, H∗(u, v) is conjugate with H(u, v), G(u, v) is the frequency
representation of Ig(x, y) and F̂(u, v) is the estimated value of Ig(x, y) in frequency space, and Sg(u, v)
and Sn(u, v) denote the frequency spectrum of contaminated image and noise, respectively. However,
Sg(u, v) is hard to obtain in real application such that Sn(u, v)/Sg(u, v) is often set to be a constant
KSNR to find the best visual effect.

Equation (13) is known as the famous WF formula. However, the essential condition of using WF
is to find the degradation function and both the power density spectrum of contaminated image and
noise in a linear and position-invariant system, which is hard to realize.

2.4. PDE-Based Filter

2.4.1. Perona–Malik Diffusion Filter

PMD filter is a kind of filter based on the anisotropic diffusion theory, which can both de-noise and
maintain boundaries. Perona and Malik [23] studied the isotropic diffusion filter or equivalent Gaussian
smoothing, and pointed out that Gaussian blurring does not “respect” natural object boundary.
Therefore, they introduced a diffusion coefficient which can automatically adjust the diffusivity
according to varied image content. This simple diffusion model has been applied to de-speckling of
medical ultrasound images [22].

The PMD [23] filter is described as{
∂Ig
∂t = div(c(x, y, t) · ∇Ig)

Ig(t = 0) = I0
(14)

In Equation (14), c(x, y, t) is diffusion coefficient which is chosen locally as a function for the
magnitude of the gradient of the image, e.g., c(x, y, t) = g(‖∇Ig(x, y, t)‖), ∇ is the gradient operator.
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The function g(·) is a non-negative monotone decreasing function with g(0) = 1. Two functions were
proposed to model the diffusion coefficient

g(‖∇Ig‖) = e−(‖∇Ig‖/K)2
(15)

and,

g(‖∇Ig‖) =
1

1 + (‖∇Ig‖/K)2 (16)

where K is a constant controlling the sensitivity of the diffusion coefficient to image gradient and it is
usually chosen depending on optimized experiments of visual measurement.

2.4.2. Weickert J Diffusion Filter

WJD filter is also a kind of filter based on anisotropic diffusion theory. During the diffusion
process, it chooses a large diffusion coefficient at the direction vertical to the edge direction while
a small diffusion coefficient at the direction parallel to the edge direction to protect the local details
of image. WJD filter is a modified filter from PMD, aiming to realize the anisotropy diffusion in the
discontinuous edge of image. Weickert et al. [24] replaced the diffusion coefficient c(x, y, t) in PMD
with a second order structure tensor D. This change greatly improves the diffusion model in de-noising
effect, and it has been used for de-speckling medical ultrasound image [7]

∂Ig

∂t
= div(D∇Ig) (17)

where D ∈ R2×2 is a symmetry positive semi-definite diffusion tensor. The diffusion tensor D can be
represented by its eigenvalues and eigenvectors

D = (w1 w2)

(
λ1 0
0 λ2

)
(w1 w2)

T (18)

where λ1 and λ2 are the eigenvalues, and w1 and w2 are the eigenvectors.
D can be described as a multi-scale structure matrix [46] which takes the following form

Jρ(∇Iσ) =

[
J11 J12

J21 J22

]
= Kρ × (∇Iσ · ∇IT

σ) (19)

where Iσ is denoted as the homogeneous region of the pre-smoothed image of contaminated image
Ig, and the pre-smoothing is to prevent mistaking speckles for edges by a Gaussian function with
standard deviation σ. Kρ is a Gaussian kernel with standard deviation ρ. The matrix ∇Iσ · ∇IT

σ is
further smoothed by the Gaussian kernel Kρ. Subsequently, eigenvalue decomposition is performed
on Jρ(∇Iσ) to obtain w1 and w2.

Jρ(∇Iσ) = (w1 w2)

(
λ1 0
0 λ2

)
(w1 w2)

T (20)

To enhance the image local structures, Weickert [24] redesigned the eigenvalues λ1 and λ2 in two
models as below

Coherence model 1:

λ1 = α

λ2 =

 α if λ1 = λ2

α+ (1− α) exp
(

−C
(λ1−λ2)

2m

)
else

(21)
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Coherence model 2:
λ1 = 1− exp( −C

(|∇Iσ|/K)m )

λ2 = 1
(22)

where α is often a small positive number, m is a real number, C is a constant greater than zero, and K is
a constant controlling the sensitivity to image gradient. Via λ1 the vector along the edge direction is
obtained, and via λ2 the vector vertical to the edge direction is obtained. Model 2 is the function of the
value of gradient, thus in order to consider the impact of the value and direction of gradient on the
diffusion more clear, we prefer to choose Model 2 as the algorithm evaluated in the experiments.

2.4.3. Total Variation Filter

TV Filter is also a filter method according to variational method, which minimizes a specific
energy function to perform de-noising of an image. It performs as a diffusion processing. The diffusion
direction of TV filter vertical to the gradient direction of image, and the direction parallel to gradient
direction of image have a diffusion coefficient zero, thus it can both de-noise and protect the details
of edges. The TV Filter was introduced by Rudin et al. [25]. Nowadays, TV used in de-speckling
for medical ultrasound images has gained an excellent effect [47]. It has attracted the attention of
many researchers. The total variation of an image is the integral of the absolute gradient of an image.
It has been proposed that an image with excessive details and noises can have high total variation.
Minimizing the total variation of an image can remove the noise whilst preserving important edges.
As a result, the process is equivalent to the following total variation minimization problem:

minimize
w

Ω

√
I2
x + I2

ydxdy (23)

with
w

Ω

I f dxdy =
∫
Ω

Igdxdy (24)

and
w

Ω

1
2
(I f − Ig)

2dxdy = σ2 (25)

where I f is the desired image, and Ω denotes as the region of image. Ix and Iy represent the two
vectors of the 2-D image I f about the gradient, and σ is the standard deviation of GWN.

The first constrain in Equation (24) ensures that the volume covered by the surface of the image
remains unchanged during the minimization process. The second constrain in Equation (25) can be
derived by the estimated variance of noise as important priori information.

With the Lagrange multiplier β, the minimization problem can be interpreted as

minimize
w

Ω

√
I2
x + I2

y + β(I f − Ig)
2dxdy (26)

The corresponding Euler–Lagrange equation is

0 =
∂

∂x

 Ix√
I2
x + I2

y

+
∂

∂y

 Iy√
I2
x + I2

y

− β(I f − Ig) (27)

with
∂I f

∂n
= 0 on ∂Ω (28)

where ∂Ω is the boundary of Ω. Using the gradient projection method, we get



Appl. Sci. 2017, 7, 37 9 of 23

∂I f

∂t
=

∂

∂x

 Ix√
I2
x + I2

y

+
∂

∂y

 Iy√
I2
x + I2

y

− β(I f − Ig) (29)

This is a forward time evolution process, i.e., t > 0. When the process evolves to a steady state
Equation (28), the recovered image is obtained. The TV Filter is efficient at simultaneously preserving
edge and smoothing noise. It keeps a strong diffusion in the homogeneous region where the image
gradient is relatively small.

2.4.4. Analysis of PDE Filtering Methods

As the PDE filtering methods have achieved good performance in de-speckling for ultrasound
images [7], it is necessary to discuss their details here. By observing the three algorithms of the PDE
methods, a diffusion model can be divided into isotropic diffusion and anisotropic diffusion, and
simply expressed as: I∧

f
(t) = Ig(t) +ϕ, where ϕ is the diffusion function, Ig(t) is the contaminated

image, and I∧
f
(t) is the result of diffusion. In isotropic diffusion, ϕ is the function of

∣∣∇Ig(t)
∣∣. While

in anisotropic diffusion, ϕ is the function of ∇Ig(t). Then the characteristics of PDE can be drawn
as follows.

(1) Either isotropic or anisotropic diffusion can improve the clarity of the edge detail. It can make
a blurred region be sharper after diffusion.

(2) In the case of ignoring the influence of additive noise, the diffusion process can be expressed as
the process of convergence from blurred edges to ideal ones.

Additive noise in medical ultrasound images, however, has brought greatly negative effects to
the diffusion process. For instance, in the WJD model, additive noise can be mistaken as the edge part.
Moreover, in the TV model, additive noise leads to serious influence on the total variation minimization
process. That is to say, the diffusion process tends to be regarded as an inverse degradation process,
but little related to the removal of additive noise. Therefore, we usually conduct image de-noising
for additive noise before diffusion in medical ultrasound images. From the histogram of image in
smoothing area, we can easily find that additive noise is similar to a GWN. As a result, many filters
based on the diffusion method choose the Gaussian low-pass filter to restrain noise.

Furthermore, for the process of inverse degradation, we can use the property of the diffusion
equation to make the blurred edge converge to the ideal edge. In practical applications, the diffusion
cannot be completed at once, but as an iterative process:

I∧
f
(t) = Ign(t) = Ig0(t) +ϕ(∇Ig0(t)) +ϕ(∇Ig1(t)) . . .ϕ(∇Ign−1(t)) (30)

where Ign(t) stands for the result after n times iterative processing.
When n→ ∞ , we obtain

I∧
f
(t)→ δ(t) , and LRD→ ∇2[δ(t)] (31)

and,

I∧
f
(t) = Ign(t)− Ig0(t) =

n

∑
i
ϕi (32)

where ϕi denotes the function ϕ(∇Igi (t)). Therefore, the value of the LRD depends on the values ϕi
and n.
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For the same diffusion results, we can increase ϕi to reduce the iterative time. However, in fact,
the greater ϕi enhances the negative impact of noise. Assuming that there is a pulse as noise, if ϕi

′ >

ϕi, then

Ign(t)− Ig0(t) =
n

∑
i
ϕi
′ >

n

∑
i
ϕi (33)

Obviously, we need to set ϕi rationally to reach the balance between iterative time
and noise-sensitiveness.

3. Evaluation Criteria Analysis for De-Speckling Performance

In this section, evaluation criteria are applied for quantitative evaluation of de-speckling and
image segmentation accuracy. Subsequently, we show the mathematical expression of the criterion,
experimental description as well as the parameter setting of filters.

3.1. Significance of the Visual Measurement

The non-availability of the original image of BUS image leads to the difficulty in channel
estimation. That is to say, the degradation function cannot be accurately estimated. Therefore,
the restoration for medical ultrasound image seems to be very difficult. However, in practical
applications, such as medical diagnosis, we tend not to require image restoration. On the contrary, we
are concerned more about the visual measurement, which consists primarily of the smoothness of the
image in the homogeneous region and the clarity of edge characteristic of edge region. For the same
instance, mean and standard deviation were applied to evaluate filtering algorithms [3], and Laplace
response was used to evaluate the sharpness degree of filtered images [32]. In that way, a contaminated
medical ultrasound image Ig = I f · nm + na [4] can be seen as the homogeneous area which is polluted
by additive noise, and the edge of the area becomes vague caused by the degraded function. Therefore,
we regard the de-noising and inverse degradation process as: (1) improvement of the smoothness in
the homogeneous region; and (2) sharpening the details of the edge region.

3.2. De-Noising Process to Improve the Smoothness

In order to measure the extent of the de-noising, some indices have been proposed, such as
VMR [31], Speckle Suppression Index (SSI) [48], Speckle Suppression and Mean Preservation Index
(SMPI) [49], and Mean Preservation Speckle Suppression Index (MPSSI) [50]. The SSI is a filtering
evaluation index derived from the VMR, which is similar to the normalization processing of VMR.
The SMPI and MPSSI are two indices modified from the VMR and SSI, which focus on solving the
problem that the filter overestimates the mean value [49] in real applications. However, we choose
the VMR as a general measure of the parameter to perform evaluation without considering more
complicated situations. The VMR is defined as

VMR =
1

MR
(34)

where MR =
(
σ
µ

)2
, µ and σ are the mean and standard deviation of an image, respectively.

Obviously, for a homogeneous region where the mean value is certain, larger VMR indicates
a higher degree of smoothing because better filter will get a smaller variance in the homogeneous
region. In practical applications, the normalized parameter can be expressed as

MR =

(
∧
σ
∧
µ

)2
/
(
σ
µ

)2

VMR = 1
MR

(35)
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where
∧
µ and

∧
σ are the mean and standard deviation of the filtered image, respectively; and µ and σ are

those of original image. Usually, in order to avoid the edge information eroding accuracy of VMR,
we only calculate the VMR in the homogeneous area of image.

3.3. Inverse Degradation Process to Improve the Clarity of the Edge

In order to measure the degree of inverse degradation, we choose the LRD as a measure of filtering
effect. The LRD is defined as

LRD =
x

x,y

∣∣∣∣∇2[I∧
f
(x, y)]

∣∣∣∣dxdy (36)

where ∇2 is the Laplace Operator, and (x,y) belongs to edge region.
Clearly, the Laplace response reflects the amount of information in the high-frequency spectrum

region. Sharper edges and more details result in stronger Laplace responses. In practical applications,
normalized LRD can be expressed as

LRD =

s

x,y

∣∣∣∣∇2[I∧
f
(x, y)]

∣∣∣∣dxdy

s

x,y

∣∣∣∇2[I f (x, y)]
∣∣∣dxdy

(37)

where (x,y) belongs to the edge region of original image. Typically, under the influence of noise,
the LRD of original image is often greater than that of filtered image.

3.4. Tumor Region Segmentation Accuracy

Image filtering is an important step in image preprocessing. It serves subsequence image analysis
such as the segmentation. Speckle suppression filter is expected to debase the influence of speckle
noise and improve the segmentation accuracy of region of interest (ROI). To this end, we apply
Fuzzy C Mean (FCM) algorithm [51] in segmentation of tumor regions of BUS images which are
filtered by the algorithms investigated in this study and evaluate their performances by comparing the
segmentation accuracies.

The performance of segmenting tumor region is evaluated by using a metric called averaged
radical error (ARE). As reported in [52–55], it is defined as

ARE(n) =
1
n

n−1

∑
i=0

|Cs(i)− Cr(i)|
|Cr(i)− Co| × 100% (38)

In Figure 1, the solid line denotes the “true” boundary of an object and the dashed line denotes
the boundary produced by the image segmentation. A number of radius vectors which are evenly
spread with Co as their center are emitted from the center of the object. The ratios of the distance from
Cr(i) to Cs(i) to that from Cs(i) to Co(i), i = 1 . . . n, is summed up and then averaged to obtain the
ARE. The “true” delineation is obtained by manual tracing carried out by 3 radiologists. An example
of estimated delineation is the boundary of the tumor region segmentation result, as illustrated in
Figure 2. The red curve represents the “true” delineation, and the pink curve is the boundary of the
segmentation result.
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Figure 2. The segmentation result: (a) original ultrasound image; and (b) segmentation result using
fuzzy C means method.

3.5. Description of Experiments

To illustrate the characteristics of the filters and their de-speckling performance, five experiments
are performed. In Experiment 1, we explored the relationship between σd and σr, verified the
correctness of the Equation (11), and obtained their detailed relationship curve which can result
in the optimal parameters setting. The parameters for the filter are very important. In this experiment,
applying the BF to filter the BUS images and tuning the value of σd, we aim to confirm the relationship
between σd and σr similar to Equation (11) and obtain optimal σd and σr for further improvement of
the BF.

In Experiment 2, by using the experiment of comparing each of PDE methods based on visual,
we distinguished the performances from different PDE methods and verified that the diffusion
information would affect the de-speckling effect. With drawing the relationship between ϕ and
the VMR in PM diffusion, Equation (33) can be validated. Meanwhile, appropriate ϕ with appropriate
number of iterative runs n could be obtained for the PDE methods. In this experiment, the PMD and
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WJD are compared with each other to find the different performance between isotropic and anisotropic
diffusion algorithms based on visual measurement. As typical anisotropic diffusion, the WJD can be
regarded as the modified model of PMD which is typical isotropic.

In Experiment 3, we conducted the following experiments. First, we selected the edges and
homogeneous regions of a specific image, and then adjust the parameters of the filters, respectively,
according to the visual measurement (i.e., VMR and LRD). After that, under the radiologists’ guidance,
we set the parameters for each filter empirically by a number of repeated experiments. We then applied
filters to the BUS images, and compute the VMR and LRD value in the homogeneous and edge region
of filtered images, respectively. Additionally, comparison was taken according to VMR and LRD to
analyze the performance of filters. It should be highlighted that the LRD is extremely sensitive to noise,
and the LRD value makes no sense if the image is not de-noised first. To compare two filtered images,
the LRD can be carried out in the case of the same VMR of two images.

In Experiment 4, the FCM algorithm [51] was utilized for BUS segmentation on the filtered images
which have been filtered in Experiment 3. The ARE value can be computed so as to compare image
segmentation accuracy. In this experiment, the “true” tumor regions of the ultrasound images are
manually defined as the average value calculated by three radiologists. The segmentation accuracy
evaluation based on the ARE for all filters investigated in this paper was calculated, and their
performance were compared.

In Experiment 5, we calculated the running time of the filtering algorithms for comparison of the
complexity of filtering algorithms. In this experiment, we counted completion time of eight filtering
algorithms and compared their complexities.

In Experiments 3, 4, and 5, all the eight de-speckling filters adopted in this study were investigated,
including WTF, GLF, WF, LF, BF, PMD, WJD, and TV. They were applied to a total of 40 ultrasound
images with breast tumors (20 are benign and the rest are malignant). In all five experiments, the BUS
images were provided by the Cancer Center of Sun Yat-sen University (Guangzhou, China), and taken
from a SonoCT (PhilipsHDI 5000 SonoCT, ATL Philips, Eindhoven, The Netherlands) with a L12-5
50 mm Broadband Linear Array at the imaging frequency of 7.1 MHz. Each image is of 400 × 300 pixels
in size. The simulation was carried out by Matlab 7.0 (7.0.0.19920(R14), MathWorks, Natick, MA, USA,
2004) running on a computer (MacBook Pro, Apple, San Francisco, CA, USA) with a 2.5 GHz dual-core
Intel Corei5 and 4 GB of RAM. This work was approved by Human Subject Ethics Committee of South
China University of Technology (Guangzhou, China).

4. Experimental Results

In this section, five groups of experimental results are presented. The first group is gained by
measuring the VMR and LRD, and determining the relationship between σd and σr. The second one
is obtained by comparing and analyzing image filtered by the PMD and WJD, while also testifying
the relationship between VMR and diffusion function. The third group is acquired by comparing
the performance of filters with appropriate parameters based on visual measurement in terms of the
VMR and LRD. The fourth group is obtained by comparing the ARE of the tumor regions after image
segmentation. The fifth is achieved by comparing the completion time of every filter.

4.1. Experiment 1

From the observation of Figure 3 and Table 1, we can draw a conclusion that the relationship
between σd and σr nearly obeys Equation (11) where the LRD is a constant. On the whole, σr falls
down with the increasing of the value of σd, see Figure 3a. Along with the increasing of the value of
σd, the value of MR first falls sharply and at last tends to be stable, see Figure 3b.

It is concluded that the parameters of σd and σr should be set simultaneously when using the BF
for the application of BUS image in order to preserve the smoothness of homogeneous region and
sharpness of the edge region, simultaneously. From Figure 3, we can see that σd = 12 should be
the best choice for the BF. In this experiment, we set σd in the BF to be 4, 8, 12, 16, 20, 22, and 24,
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respectively, and LRD = 0.836 ± 0.001 is a constant. Corresponding value of MR (1/VMR) and σr are
shown in Table 1.Appl. Sci. 2016, 6, 433 14 of 23 
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Figure 3. The relationship of σd, σr and MR (1/VMR) (MR, an intermediate variable; Mean to
Variance Ratio, VMR): (a) the relationship between σd and σr; and (b) the relationship between
σd and MR (1/VMR).

Table 1. The MR (1/VMR) (MR, an intermediate variable; Mean to Variance Ratio, VMR) value and σr

value that corresponding to the σd in the Bilateral Filter (BF).

σd σr MR (1/VMR)

4 35.0 ± 1.7 0.555 ± 0.038
8 27.3 ± 1.3 0.483 ± 0.027
12 25.0 ± 1.5 0.447 ± 0.025
16 22.8 ± 1.3 0.457 ± 0.017
20 21.5 ± 1.4 0.471 ± 0.016
22 21.1 ± 1.6 0.477 ± 0.021
24 20.9 ± 1.0 0.483 ± 0.022

4.2. Experiment 2

For a certain VMR value of an image before filtering, the corresponding standard deviation σd
of the image after filtering by PMD and WJD is shown in Table 2. The σd of images after filtering by
the PMD are much higher than those of filtering by WJD. We can come to the conclusion that WJD is
less sensitive to noise than PMD model. That is to say, anisotropic diffusion shows better performance
than isotropic diffusion in terms of edge preservation and de-noising.

Table 2. The σd value of Perona–Malik diffusion (PMD) and Weickert J Diffusion (WJD), which
corresponds to MR (1/VMR).

MR (1/VMR) 0.567 ± 0.001 0.563 ± 0.001 0.552 ± 0.001 0.537 ± 0.001 0.515 ± 0.001

σd of PMD 1.12 ± 0.03 1.14 ± 0.02 1.18 ± 0.01 1.26 ± 0.02 1.39 ± 0.02
σd of WJD 0.25 ± 0.038 0.32 ± 0.038 0.38 ± 0.038 0.42 ± 0.038 0.47 ± 0.038

In this experiment, λ(Ig(t)) = d(exp(−t/K2/2))/dt, K is set to be 2, 4, 6, 8, and 10, respectively,
and the iterative time is set to be 15. Table 3 indicates that when iterative time is kept unchanged for
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15, the value of MR rises as K decreases. Therefore, we can conclude that the high ϕi leads to high
degree of noise.

Table 3. The MR (1/VMR) value of PMD for different values of K, which corresponds to ϕi.

K 10 8 6 4 2

MR (1/VMR) 0.548 ± 0.011 0.585 ± 0.015 0.629 ± 0.020 0.670 ± 0.022 0.699 ± 0.025

From the observation of Figure 4e,f,h,i, the WJD model results in more continuous edge than
the PMD.
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4.3. Experiment 3

In this experiment, the parameters of all filters are set under the radiologists’ guidance (Table 4).
σ in WF denotes as the standard deviation for degraded function, KSNR is the noise to signal ratio in
WF. N_windowsize stands for the filter window in BF.

Table 4. The significant parameters set in the 8 filter algorithms separately.

Algorithm Parameters

WTF Decomposition scale is 10
GLF σ = 2
WF σ = 4, KSNR = 0.2
LF na = 0, σ1 = 0.3, nm = 0, σ2 = 0.02
BF σd = 12, σr = 23, N_windowsize = 25

PMD σ = 1.6, K = 10, iteration No. = 30
WJD σ = 1.0, ∆t = 0.25, iteration No. = 15
TV σ = 0.08, ∆t = 0.25, iteration No. = 15

1 WTF, Wavelet Transform Filter; GLF, Gaussian–Laplace Filter; WF, Wiener Filter; LF, Lee Filter;
TV, Total Variation.

As shown in Table 5, it can be seen clearly that the WTF, GLF, and WF can achieve high LRD and
low VMR (1/MR). Among these three filter algorithms, the WF and WTF can achieve greater clarity of
edge in edge region than the GLF. For a high VMR, the LF, BF, PMD, WJD, and TV can achieve high
LRD values, and their order from high to low is BF, LF, PMD, WJD, and TV. That is to say, the BF can
perform best in terms of keeping clarity of edge. The performance of LF is secondary, PMD, WJD,
and TV follows LF. Two groups of filtered image, including the first benign tumor image and the
second malignant tumor image are shown as the example of filtering results in Figures 5 and 6.

Table 5. The visual measurement, MR (1/VMR), and Laplace Response of Domain (LRD) value of the
filtered images.

Algorithm MR (1/VMR) LRD

WTF 0.689 ± 0.021 0.888 ± 0.017
GLF 0.642 ± 0.024 0.858 ± 0.015
WF 0.646 ± 0.030 0.903 ± 0.031
LF 0.475 ± 0.027 0.861 ± 0.025
BF 0.484 ± 0.017 0.864 ± 0.017

PMD 0.482 ± 0.016 0.844 ± 0.026
WJD 0.486 ± 0.012 0.831 ± 0.015
TV 0.488 ± 0.013 0.825 ± 0.015

Appl. Sci. 2016, 6, 433 16 of 23 

4.3. Experiment 3 

In this experiment, the parameters of all filters are set under the radiologists’ guidance (Table 4).  

σ  in WF denotes as the standard deviation for degraded function, SNRK is the noise to signal ratio 

in WF. _N windowsize  stands for the filter window in BF. 

Table 4. The significant parameters set in the 8 filter algorithms separately. 

Algorithm Parameters 

WTF Decomposition scale is 10 

GLF σ 2  

WF σ 4 , 0.2SNRK   

LF 0an  , 1σ 0.3 , 0mn  , 2σ 0.02  

BF σ 12d  , σ 23r  , _ 25N windowsize   

PMD σ 1.6 , 10K  , iteration No. = 30 

WJD σ 1.0 , 0.25t  , iteration No. = 15 

TV σ 0.08 , 0.25t  , iteration No. = 15 

1 WTF, Wavelet Transform Filter; GLF, Gaussian–Laplace Filter; WF, Wiener Filter; LF, Lee Filter; TV, Total 

Variation. 

As shown in Table 5, it can be seen clearly that the WTF, GLF, and WF can achieve high LRD 

and low VMR (1/MR). Among these three filter algorithms, the WF and WTF can achieve greater 

clarity of edge in edge region than the GLF. For a high VMR, the LF, BF, PMD, WJD, and TV can 

achieve high LRD values, and their order from high to low is BF, LF, PMD, WJD, and TV. That is to 

say, the BF can perform best in terms of keeping clarity of edge. The performance of LF is secondary, 

PMD, WJD, and TV follows LF. Two groups of filtered image, including the first benign tumor 

image and the second malignant tumor image are shown as the example of filtering results in 

Figures 5 and 6. 

Table 5.The visual measurement, MR (1/VMR), and Laplace Response of Domain (LRD) value of the 

filtered images 

Algorithm MR (1/VMR) LRD 

WTF 0.689 ± 0.021 0.888 ± 0.017 

GLF 0.642 ± 0.024 0.858 ± 0.015 

WF 0.646 ± 0.030 0.903 ± 0.031 

LF 0.475 ± 0.027 0.861 ± 0.025 

BF 0.484 ± 0.017 0.864 ± 0.017 

PMD 0.482 ± 0.016 0.844 ± 0.026 

WJD 0.486 ± 0.012 0.831 ± 0.015 

TV 0.488 ± 0.013 0.825 ± 0.015 

   

(a) (b) (c) 

Figure 5. Cont.



Appl. Sci. 2017, 7, 37 17 of 23
Appl. Sci. 2016, 6, 433 17 of 23 

   

(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. Image filtering results of the first benign tumor image: (a) source image; (b) Wavelet 

Transform Filter (WTF) result; (c) Gaussian–Laplace Filter (GLF) result; (d) Wiener Filter (WF) result; 

(e) Lee Filter (LF) result; (f) Bilateral Filter (BF) result; (g) PMD result; (h) WJD result; and (i) Total 

Variation (TV) result. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 
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Variation (TV) result.
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Figure 6. Image filtering results of the second malignant tumor image: (a) source image; (b) WTF result;
(c) GLF result; (d) WF result; (e) LF result; (f) BF result; (g) PMD result; (h) WJD result; and (i) TV result.
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4.4. Experiment 4

The ARE values of the BUS images which have been filtered in Experiment 3 were calculated
in this experiment as shown in Table 6. From the results of Table 6, it is obvious that the BF with LF
outperforms other filters in the metrics of ARE. However, for the images with different degrees of
speckle, the ARE value indicates that the LF fluctuates more significantly compared to the BF. The WTF
follows BF and LF, but its MR (1/VMR) value is very high (see Table 5). Therefore, the WTF cannot be
directly suitable to the filtering process of BUS images. The WJD and TV also did a good job. In spite
of good VMR, their poor LRD values lead to poor performance in tumor segmentation accuracy.
Although the PMD can make the filtered image obtain higher edge retention (see Table 5), the ARE of
PMD is the second worst among those filters. Taken as a whole, the PMD may not be an ideal choice
for increasing tumor region segmentation accuracy. Obviously, the WF with high MR (or low VMR)
values and the worst ARE is not recommended in filtering process of BUS images (see Tables 5 and 6).
In other words, when the homogeneous region is seriously polluted by additive noise, it is likely that
the segmentation can be corrupted, thus we tend to use filtered images with high VMR (1/MR) value.

Table 6. The results of averaged radical error (ARE) value for the filters.

Algorithm ARE (%)

WTF 9.20 ± 1.80
GLF 9.69 ± 1.55
WF 9.87 ± 1.88
LF 9.13 ± 1.91
BF 9.10 ± 1.51

PMD 9.74 ± 1.92
WJD 9.60 ± 1.75
TV 9.56 ± 1.87

4.5. Experiment 5

From the result of Table 7, the completion time of PMD is the shortest one, and the time of GLF,
WF and WTF follow it. The time of LF similar to that of BF is the median value among the whole
data. The WJD owns the longest completion time that seems close to that of TV. Each completion time
reflects the complexity extent of each filtering algorithm.

Table 7. The completion time of the investigated filters.

Algorithm Time (s)

WTF 3.89 ± 0.03
GLF 3.85 ± 0.05
WF 3.81 ± 0.04
LF 6.51 ± 0.03
BF 6.91 ± 0.02

PMD 2.86 ± 0.03
WJD 11.25 ± 0.06
TV 9.50 ± 0.08

5. Discussion

From the results, it can be seen that in relation to the visual measurement perspective, a smaller
variance is required from the homogeneous area of the filtering image so as to achieve a better outcome
of removing the additive noise. The WTF’s de-noising capability is determined by the threshold value
in the wavelet domain, i.e., when the additive noise is seen as WGN, the maximum value of wavelet
coefficient of noise decreases as the decomposition scale goes up. Hence, in order to get rid of the
additive noise, large wavelet coefficient can be restrained in a bigger decomposition scale.
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Similarly, the GLF restrains the additive noise by controlling the high frequency area. However,
the edge information of an image, namely severely mutated information, mainly concentrates upon the
high decomposition scale in the wavelet domain and lies in the high frequency area of the frequency
domain. In the application of WTF, the decomposition scale which contains most energy of noise is
difficult to determine. For the GLF, position of noise in spectrum is also hard to determine. Therefore,
in relation to the preservation and reinforcement of edge, effective method is the missing link in
specifically determining whether to restrain or resolve the scale and high frequency position.

The WF is widely used as an MMSE filter. However, the WF’s drawbacks are obvious,
i.e., its capability of suppressing the additive noise is determined by the estimation of S f (u, v)/Sg(u, v)
and H(u, v). Equation (13) is determined by channel estimation, but both of the former estimations
cannot be accurately obtained on account of the features of medical ultrasound images. Therefore,
under the circumstance where theoretical instruction is lacking, preferable capability cannot be
achieved even through repeated experiments. Generally, the MMSE filter is a linear filter such that it
blurs the image when reducing speckle noises [20]. Furthermore, it has been known that linear filters
do not perform well in de-speckling since it blurs sharp edges [21,56].

As for the LF, its capability of de-noising for additive noise is determined by the variance of the
additive noise. In addition, its ability of reversing degradation mainly depends on the variance of
the multiplicative noise. Nevertheless, with regard to the medical ultrasound image, the following
problems appear: (1) probability distribution function of nm cannot be accurately estimated; (2) during
the approximated evaluation of probability density function, SNR of different imaging regions are
uncertain, variance of nm cannot be accurately derived, and σ2 remains unknown; and (3) the inevitable
error existing in the estimation of variance of na brings major negative impact. In order to make the
problems simplified, in the experiment, we gained a better ability in reversing degradation by assuming
that the PDF of multiplicative noise follows Gaussian distribution N (1, 0.02). On the other hand,
we can easily figure it out that, theoretically, suppression of additive noise can be reached in the area
where variance of na can be accurately estimated or the degree of degradation is weak.

As a simple algorithm, the BF is the Gaussian low pass filter which is able to make VMR ascend by
reducing the noise frequency component. It proves its strong ability in eliminating additive noise in the
homogeneous area. Moreover, the BF obtains favorable capability in experiments by maintaining edge
information. In Equation (6), the weight of a pixel whose Euclidean distance from the central pixel
being filtered is larger than σd can be decreased. On the other hand, the weight of a pixel will decline if
its intensity difference with the central pixel which is filtered is greater than σr. As is indicated, it is not
difficult to prove that the BF can meet the requirements of visual measurement. Moreover, depending
on the results of Experiment 3 in Section 4, two conclusions can be easily drawn: (1) In order to keep
the LRD from changing when increasing σd, σr must be increased simultaneously, and the relationship
between σd and σr nearly obeys σd

2 ∝ 1/σr
2 in Equation (11); and (2) VMR(1/MR) ascends as the

value of σd goes up, yet for the purpose of keeping LRD from changing, the value of σd cannot be too
high. Generally speaking, when the average value of σd and σr reaches more or less than 20, the BF
achieves optimal outcome.

For these three filtering algorithms based on PDF, the PMD model is considered as an isotropic
diffusion model for it does not consider the direction of gradient of image during the diffusion
processing. The WJD and TV can be regarded as anisotropic diffusion models for they consider
the diffusion direction during diffusion processing. Among these models, the PMD is the simplest
one. However, compared with WJD and TV, the PMD model is more sensitive to noise and can
obtain less continuous edge for the reason that it takes diffused strength into account instead of the
direction. Therefore, although the PMD can get higher LRD in the case of high VMR, it does not
achieve a good effect in image segmentation. With respect to the results of Experiment 2, we can
promote to two conclusions:

(1) More continuous edge obtained in anisotropic diffusion: If some part of the original edge is
blurred, the diffusion at discontinuous points becomes stagnant in isotropic diffusion. However,
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in anisotropic diffusion, the diffusion vertical to edge direction becomes weaker while parallel to
edge direction keeps going on, which results in a more continuous edge.

(2) Isotropic diffusion is more sensitive to noise: In isotropic diffusion, the diffusion function ϕ is
only relevant to

∣∣∇Ig(t)
∣∣ (i.e., |ϕ| ∝ 1/

∣∣∇Ig(t)
∣∣).However, in anisotropic diffusion, one diffusion

function is vertical to edge (i.e., |ϕvertical | ∝ 1/
∣∣∇Ig(t)

∣∣), and another diffusion function is

parallel to edge (i.e.,
∣∣∣ϕparallel

∣∣∣ ∝
∣∣∇Ig(t)

∣∣). Therefore, in isotropic diffusion, noise exists in the
homogeneous region causes discontinuous diffusion; but in anisotropic diffusion, the noise is
likely to become weakened because the diffusion is vertical to edge direction.

At the same time, in Table 3, the result following Equation (34) is that the greater ϕ enhances the
negative impact of noise. That is to say, we should set ϕ appropriately to reach the balance between
iterative time and noise-sensitiveness. Most of the abbreviations used in this paper are described in
Table A1.

6. Conclusions

In this paper, we systematically investigated eight de-speckling algorithms, the WTF, GLF, WF,
LF, BF, PMD, WJD, and TV, for BUS image processing. Among the filtering algorithms in different
categories, the VMR and LRD are chosen to evaluate key performance, i.e., the degree of smoothness in
the homogeneous region and the clarity of detailed features in the edge region. We then demonstrate
the filtering effects of these filters with respect to tumor region segmentation accuracy. Finally, referring
to the experimental results, a general conclusion is drawn as the following.

In summary, speckle suppression filtering is very important when processing ultrasound images
of breast tumors. In this study, it is shown that the eight typical filters all have their merits. The images
filtered by the BF present a good visual effect and it is more likely to obtain good segmentation results.
Additionally, it is relatively fast, and its modified model is supposed to be acceptable for real-time
processing. The LF can obtain good visual result, but fluctuates significantly. The PMD is not only
fast but also good at edge preservation. However, it is not suitable for being applied to the tumor
region segmentation. Ultrasound images with breast tumors processed by the WJD and TV can achieve
splendid segmentation accuracies. However, the searching of similar pixels in the WJD and TV will
bring a heavy burden to its computation. Taking speed into account, the WJD and TV would not be
good choices for de-speckling BUS images.
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Appendix

Table A1. Abbreviations and their full name in the paper.

Abbreviation Full Name

BUS Breast Ultrasound
MMSE Minimum mean square error

PDE Partial Differential Equation
VMR Mean to Variance Ratio
LRD Laplace Response of Domain
BF Bilateral Filter
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Table A1. Cont.

Abbreviation Full Name

WJD Weickert J Diffusion
TV Total Variation

SND Scatterer number density
FFS Fully formed speckle

NRLR Non-randomly distributed with long-range
NRSR Non-randomly distributed with short-range
PDF Probability density function

GWN Gaussian white noise
NLM Non-local means
PMD Perona–Malik diffusion
NIQE Blind image quality metric
WTF Wavelet Transform Filter
GLF Gaussian–Laplace Filter
LF Lee Filter
WF Wiener Filter
DC Direct Current
ROI Region of interest
FCM Fuzzy C Mean
ARE Averaged radial error
SSI Speckle Suppression Index

SMPI Speckle Suppression and Mean Preservation Index
MPSSI Mean preservation Speckle Suppression Index
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